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Preface

Origin

The University of Oslo in Norway is one of the first universities to introduce
numerical methods as an integral part of almost all mathematically oriented courses
for science students (first attempts started in 1997). This created the need for
textbooks in physics covering all the topics included in the syllabus. There were
many textbooks on oscillations and waves on the market, but none adhered well
with the learning objectives we adopted.

The Norwegian version of this book was originally written in 2008 for use in the
course “FYS2130 Svingninger og bølger” (Oscillations and Waves) and has
undergone many revisions and expansions since then. The course is given in the
fourth semester to students enrolled in the Department of Physics at the University
of Oslo. These students have taken courses in Python programming, classical
mechanics and electromagnetism, but have had limited education in oscillations and
wave phenomena.

Scope

In the present book, I have mostly adhered to traditional descriptions of the phe-
nomena; however, I have also tried to point towards potential limitations of such
descriptions. When appropriate, analogies between different phenomena are drawn.

The formalism and phenomena are treated quite differently from section to
section. Some sections provide only qualitative descriptions and thus only a
superficial or introductory understanding of the topics while other sections are more
mathematical and demanding. Occasionally, the mathematical derivations are not
essential to understand the material, but are included to show the connection
between basic physical laws and the phenomena discussed in the text.
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Principles from numerical methods are employed as they permit us to handle
more realistic problems than pure analytical mathematics alone, and they facilitate
to obtain a deeper understanding of some phenomena.

Program codes are given, ready to use, and is a tool for further exploration of the
phenomena that are covered. Our experience from teaching this topic to students
over years is that, numerical methods based on “hands-on computer code devel-
opment” expand the experimental attitude and facilitate the learning process.

We try in this book to emphasize how so-called algorithmic thinking can
improve understanding. As a personal example, the algorithm for calculating how a
wave evolves over time has given me a much deeper understanding of the wave
phenomena than by working with analytical mathematics over years. Another
example is the realization that all variants of classical interference and diffraction
can be calculated using a single computer program, demonstrating not only that
numerical methods are powerful, but also that the underlying physical mechanism is
identical in all these cases.

We have made an effort to ensure a logical and reader-friendly structure of the
book. Especially important parts of the core material in the text are marked by
coloured background, and various examples show how the core material can be
used in different contexts. Supplementary information and comments are given in
small print. Learning objectives point to the most important sections of each
chapter. Most of the chapters include suggestions to further reading.

There are three types of exercises in the book. The first type of exercise consists
of a list of concepts in each chapter that can be used by students in various ways for
active learning. Thereafter follow comprehension/discussion questions and more
regular problems often including calculations. Best learning outcome is achieved by
trying all the three types of tasks, including oral discussions when working with
understanding concepts and the comprehension/discussion questions. The problems
used in the exercises are taken from daily life experiences, in order to demonstrate
how physics is relevant in many aspects of our everyday life.

For the more regular problems, the aim is to encourage the reader to learn how to
devise a strategy for solving the problem at hand and to select the appropriate laws.
A “correct answer” without an adequate justification and reasoning is worthless. In
many tasks, not all the relevant quantities are supplied, and in these cases, the
reader must search for the necessary information in other books or the Internet. This
is a natural part of working with physics today. A list of answers for the problems is
not worked out yet. Some problems require particular data files to be analyzed that
will be available from a web page advertised by the publisher.

Content

In our daily life, oscillations and waves play an important role. The book covers
sound phenomena, our sense of hearing, and the two sets of measurements of sound
and units that are in use: one for physical purposes solely and the other related to
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the sense of hearing. Similarly, the book treats light phenomena and our sense of
vision, as well as the two sets of measurements and units that are in use for these
purposes. In addition, we also discuss colour mixing and important differences
between our senses of hearing and vision.

By introducing Fourier transform, Fourier series and fast Fourier transform, we
introduce important tools for analysis of oscillatory/wave phenomena. Our aim is to
give the reader all necessary details so that she/he can utilize this numeric method to
its full potential. We also point out a common misconception we often find in
connection with Fourier analysis.

We introduce continuous wavelet transform with Morlet wavelets as a kind of
time-resolved Fourier transform and explain why we have chosen this method
instead of a short-term Fourier transform. Much emphasis is put on optimizing the
analysis and how this is closely related to the time-bandwidth product; a classical
analogue to Heisenberg’s uncertainty principle. A computer program is provided
for this topic as well as for many other parts of the book.

One chapter is devoted to numerical method, mainly in how to solve ordinary
and partial differential equations of first or second order. Other topics covered in the
book are geometric optics, interference, diffraction, dispersion and coherence. We
also briefly cover skin effect, waveguides and lasers.

Intended Audience

The reader of the book should have some basic programming experience, prefer-
ably in Matlab or Python, and know basic mechanics and electromagnetism. The
principal ingredients of the book encompassing physical phenomena and formal-
ism, analytical mathematics, numerical methods, focus on everyday phenomena and
state-of-the-art examples are likely to be of interest to a broader group of readers.
For instance, we have experienced that established physicists who want to look up
details within the themes like colour vision, geometrical optics and polarization also
appreciate the book.

Computer Programs

In this book all computer programs are given in Matlab code. However, all the these
programs are available as separate files both in Matlab and in Python code at the
“additional resources” Web page at https://urldefense.proofpoint.com/v2/url?u=http-
3A__www.physics.uio.no_pow_&d=DwIFAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy
8CWbWnIf4XJhSqx8&r=9V0dbmmXGCupx1bqsdDysssYnqDmbKz79g1dipIcPn4
&m=FJQIEp2YVoX1g_zLnM3m3k9m6Oa6GBqfvvj68AbJtM0&s=cXDHnCeHU
xv0te6xsUN3OL9B2L4V3MHfUpayYSP6_gU&e=.
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Some introduction is given to programming style, reproducibility and doc-
umentation, but not at a level as is expected for a course fully devoted to pro-
gramming. We do not provide an introduction to “dimensionless variables”.
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Chapter 1
Introduction

Abstract Initially, the introductory chapter deals with different ways people com-
prehend physics. It might provide a better understanding of the structure of the book
and choices of the topics covered. It continues with a description and discussion on
how the introduction of computers and numerical methods has influenced the way
physicists work and think during the last few decades. It is indicated that the develop-
ment of physics is multifaceted and built on close contact with physical phenomena,
development of concepts, mathematical formalism and computer modelling. The
chapter is very short and may be worth reading!

1.1 The Multifaceted Physics

Phenomena associated with oscillations and waves encompass some of the most
beautiful things we can experience in physics. Imagine a world without light and
sound, and then you will appreciate how fundamental oscillations and waves are for
our lives, for our civilization! Oscillations and waves have therefore been a central
part of any physics curriculum, but there is no uniformwayof presenting thismaterial.

“Mathematics is the languageof physics” is a claimmadebymany.To someextent,
I agree with them. Physical laws are formulated as mathematical equations, and we
use these formulas to calculate the expected outcomes of experiments. But, in order to
be able to compare the results of our calculations with actual observations, more than
sheer mathematics is needed. Physics is also an edifice founded on concepts, and the
concepts are entwined as much with our world of experience as with mathematics.
Divorced from everyday language, notions and experiences, the profession would
bear little resemblance to what we today call physics. Then we would just have pure
mathematics! The Greek word φυσ ις (“physis”) means the nature and physics is a
part of natural science.

People are different. My experience is that some are fascinated primarily by
mathematics and the laws of physics, while others are thrilled by the phenomena in
themselves. Some others are equally intrigued by both these facets. In this book, I
will try to present formalism as well as phenomena, because—as stated above—it is
the combination that creates physics (Fig. 1.1)! A good physicist should be in close
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2 1 Introduction

Fig. 1.1 Oscillations and waves are woven into a host of phenomena we experience every single
day. Based on fairly general principles, we can explainwhy themost common rainbowhas invariably
a radius of 40−42◦ and is red outward, and the sky just outside the rainbow is slightly darker than
that just inside. You already knew this, but did you know that you can extinguish the light from
a rainbow almost completely (but not for the full rainbow simultaneously), as in the right part of
the figure, by using a linear polarization filter? The physics behind this is one of the many themes
covered in this textbook

contact with phenomena as well as formalism. For practical reasons and with an eye
on the size of the book, I have chosen to place a lot of emphasis on mathematics
for some of the phenomena presented here, while other parts are almost without
mathematics.

Mathematics comes in two different ways. The movement of, for example, a
guitar string can be described mathematically as a function of position and time. The
function is a solution of a differential equation. Such a description is fine enough
but has an ad hoc role. If we know the amplitude at a certain time, we can predict
the amplitude at a later instant. Such a description is a necessity for further analysis,
but really has little interest beyond this. In the mechanics, this is called a kinematic
description.

It is often said that in physics we try to understand how nature works. We are
therefore not satisfied by a mere mathematical description of the movement of the
guitar string. We want to go a little deeper than this level of description. How can
we “explain” that a thin steel string under such-and-such tension actually gives the
tone C when it is plucked? The fascinating fact is that with the help of relatively
few and simple physical laws we are able to explain many and seemingly diverse
phenomena. That gives an added satisfaction. We will call this a mechanical or
dynamic description.

Mathematics has traditionally been accorded, in my opinion, overmuch space,
compared with the challenge of understanding mechanisms. This is due in part to
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the fact that we have been using, by and large, analytical mathematical methods for
solving the differential equations that emerge. To be sure, when we use analytical
methods, we must penetrate the underlying mechanisms for the sake of deducing the
equations that portray the phenomena. However, the focus is quickly shifted to the
challenges of solving the differential equation and discussing the analytical solution
we deduce.

This approach has several limitations. First of all, the attention is diverted from the
content of the governing equations, wherein lie the crucial mechanisms responsible
for the formation of a wave. Secondly, there are only a handful of simplified cases
we are able to cope with, and most of the other equations are intractable by analytical
means.We often have to settle for solutions satisfying simplified boundary conditions
and/or solutions that only apply after the transient phase has expired.

This means that a worrying fraction ofmany generations of physicists are left with
simplified images of oscillations and waves and believe that these images are valid
in general. For example, according to my experience, many physicists seem to think
that electromagnetic waves are generally synonymous with plane electromagnetic
waves. They assume that this simplified solution is a general formula that can be used
everywhere. Focusing on numericalmethods of solutionmakes it easier to understand
why this is incorrect.

1.2 Numerical Methods

Since about the year 2000, a dramatic transformation of physical education in the
world has taken place. Students are now used to using computers and just about
everyone has their own or have easy access to a computer. Computer programs and
programming tools have become much better than they were a few decades ago, and
advanced and systematic numerical methods are now widely available. This means
that bachelor students early in their study can apply methods as advanced as those
previously used only in narrow research areas atmaster’s and Ph.D. level. Thatmeans
they can work on physics in a different and more exciting way than before.

Admittedly, we also need to set up and solve differential equations, but numerical
solution methods greatly simplify the work. The consequence is that we can play
around, describing differentmechanisms in differentways and studying how the solu-
tions depend on the models we start with. Furthermore, numerical solution methods
open the door to many more real-life issues than was possible before, because an
“ugly” differential equation is not significantly harder to solve numerically than a
simple one. For example, we could write down a nonlinear description of friction
and get the results almost as easily as without friction, whereas the problem is not
amenable to a purely analytical method of solution.

This means that we can now place less emphasis on different solution strategies
for differential equations and spend the time so saved for dealing with more real-
life issues. I myself belong to a generation which learned to find the square root of
a number by direct calculation. After electronic calculators came on the market, I
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have had no need for this knowledge. We are now in a similar phase in physics and
mathematics. For example, if we use the Maple or Mathematica computer programs,
weget analytical expressions for awealth of differential equations, and if a differential
equation does not have a straightforward analytical solution, the problem can be
solved numerically. Some skills from previous years therefore have less value today,
while other skills have become more valuable.

This book was written during the upheaval period, during which we switched
from using exclusively analytical methods in bachelor courses to a situation where
computers are included as a natural aid both educationally and professionally. We
will benefit directly from this not only for building up a competence that everyone
will be happy to employ in professional life, but also by using it as an educational tool
for enhancing our understanding of the subject matter. With numerical calculations,
we can focus more easily on the algorithms, basic equations, than with analytical
methods. In addition, we can address awealth of interesting issueswe could not study
just by analytical methods, which contributes to increased understanding. Numerical
methods also allow us to analyse functions/signals in an elegant way, so that we can
now get much more relevant information than we could with the methods available
earlier.

Using numerical methods is alsomore interesting, because it enables us to provide
“research-based teaching” more easily. Students will be able to make calculations
similar to those actually done in research today. There are plenty of themes to address
because a huge development in different wave-based phenomena is underway. For
example, we can use multiple transducers located in an array for ultrasound diag-
nostics, oil leakage, sonar and radar technology. In all these examples, well-defined
phase differences are used to produce spatial variations in elegant ways. Further-
more, in so-called photonic crystals and other hi-tech structures at the nanoscale,
we can achieve better resolution in measurements than before, even better than the
theoretical limits we believed to be unreachable just a few years ago. Furthermore,
today we utilize nonlinear processes that were not known a few decades ago. A lot of
exciting things are happening in physics now, and many of you will meet the topics
and methods treated in this book, even after graduation.

1.2.1 Supporting Material

A“Supplementarymaterial”web page at http://www.physics.uio.no/pow is available
for the readers of this book. The page will offer the code of the computer programs
(both Matlab and Python versions), data files you need for some problems, a few
videos, and we plan to post reported errors and give information on how to report
errors and suggestions for improvements.

http://www.physics.uio.no/pow
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1.2.2 Supporting Literature

Many books have been written about oscillations and waves, but none of the previous
texts covers the same combination of subjects as the present book. It is often useful
to read how other authors have treated a particular topic, and for this reason, we
recommend that you consult, while reading this book, a few other books and check,
for example, Wikipedia and other relatively serious material on the Web. Here are
some books that may be of interest:

• Richard Fitzpatrick: “Oscillations andWaves: An introduction”. CRC Press, 2013.
• H. J. Pain: “The Physics of Vibrations and Waves”. 6th Ed. Wiley, 2005.
• A. P. French: “Vibrations and Waves”. W. W. Norton & Company, 1971.
• Daniel Fleisch: “A Student’s Guide to Maxwell’s Equations”. Cambridge
University Press, 2008.

• Sir James Jeans: “Science and Music”. Dover, 1968 (first published 1937).
• Eugene Hecht: “Optics”, 5th Ed. Addison Wesley, 2016.
• Geoffrey Brooker: “Modern Classical Optics”. Oxford University Press, 2003.
• Grant R. Fowles: “Introduction to Modern Optics”. 2nd Ed. Dover Publications,
1975.

• Ian Kenyon: “The Light Fantastic”. 2nd Ed. Oxford University Press, 2010.
• Ajoy Ghatak: Optics, 6th Ed., McGraw Hill Education, New Delhi, 2017.
• Karl DieterMöller: “Optics. Learning byComputing, withModel Examples Using
MathCad, Matlab, Mathematica, and Maple”. 2nd Ed. Springer 2007.

• Peter Coles: “From Cosmos to Chaos”. Oxford University Press, 2010.
• Jens Jørgen Dammerud: “Elektroakustikk, romakustikk, design og evaluering av
lydsystemer”. http://ac4music.wordpress.com, 2014.

• Jonas Persson: “Vågrörelseslära, akustik och optik”. Studentlitteratur, 2007.

http://ac4music.wordpress.com


Chapter 2
Free and Damped Oscillations

Abstract This chapter introduces several equivalent mathematical expressions for
the oscillation of a physical system and shows howone expression can be transformed
into another. The expressions involve the following concepts: amplitude, frequency
and phase. The motion of a mass attached to one end of a spring is described by
Newton’s laws. The resulting second-order homogeneous differential equation has
three solutions, depending on the extent of energy loss (damping). The difference
between a general and a particular solution is discussed, as well as superposition of
solutions for linear and nonlinear equations. Oscillation in an electrical RCL circuit
is discussed, and energy conservation in an oscillating system which has no energy
dissipation is examined.

2.1 Introductory Remarks

Oscillations and vibrations are a more central part of physics than many people
realize. The regular movement of a pendulum is the best-known example of this kind
of motion. However, oscillations also permeate all wave phenomena. Our vision,
our hearing, even nerve conduction in the body are closely related to oscillations,
not to mention almost all communication via technological aids. In this chapter, we
will look at the simplest mathematical descriptions of oscillations. Their simplicity
should not tempt you into underestimating them. Small details, even if they appear
to be insignificant, are important for understanding the more complex phenomena
we will encounter later in the book.

2.2 Kinematics

In mechanics, we distinguish between kinematics and dynamics, and the distinction
remains relevant when we consider oscillations. Within kinematics, the focus is
primarily on describingmotion. The description is usually the solution of differential
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8 2 Free and Damped Oscillations

equations or experimental measurements. The underlying physical laws are not taken
into consideration.

In dynamics, on the other hand, we set up the differential equations of motion
based on known physical laws. The equations are solved either by analytical or
numerical methods, and we study how the solutions depend on the physical models
we started with. If we seek physical understanding, dynamic considerations are of
greater interest, but the kinematics can also be useful for acquiring familiarity with
the relevant mathematical description and the quantities that are included.

How do we describe an oscillation? Let us take an example: A mass attached to
one end of a spring oscillates vertically up and down. The top of the spring is affixed
to a stationary point.

The kinematic description may go like this: The mass oscillates uniformly
about an equilibrium point with a definite frequency. The maximum displace-
ment A relative to the equilibrium point is called the amplitude of oscillation.
The time taken by the mass to complete one oscillation is called time period
T . The oscillation frequency f is the inverse of the time period, i.e. f ≡ 1/T ,
and is measured in reciprocal seconds or hertz (Hz).

Suppose we use a suitably chosen mass and a limited amplitude of displacement
for the spring. By that we mean that the amplitude is such that the spring is always
stretched, and never so much as to suffer deformation.Wewill be able to observe that
the position of themass in the vertical direction z(t)will almost followamathematical
sine/cosine function:

z(t) = A cos(2π t/T ) .

However, such a description is not complete. There is no absolute position or absolute
time in physics. Therefore, when we specify a position z (along a line), we must also
specify the point with respect to which the measurement is made. In our case, this
reference point is the position of the mass when it is at rest.

Similarly, we must specify the reference point relative to which the progress
of time is measured. In our case, the origin of time is chosen so that the position
has a maximum value at the reference time t = 0. If there is a mismatch, we must
compensate by introducing an initial phase φ, and use the expression

z(t) = A cos(2π t/T + φ) .

Since the quantity 2π/T occurs in many descriptions of oscillatory movements,
it proves advantageous to define an angular frequency of ω as follows:

ω ≡ 2π/T = 2π f
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Fig. 2.1 A harmonic
oscillation is characterized
by amplitude, frequency and
phase; see the text
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where f is the frequency of oscillation. This is a fairly common way to describe an
oscillation (Fig. 2.1).
However, a “simple harmonic oscillation” can be described in many ways. The most
common mathematically equivalent ways are:

z(t) = A cosωt + B sinωt (2.1)

= C cos(ωt + φ) (2.2)

= � {
Deiωt

}
(2.3)

= � {
Eei(ωt+φ)

}
(2.4)

� {} indicates that we take the the real part of the complex expression within
the braces, and D is a complex number.

Euler’s formula for the exponential function (complex form) has been used in the
last two expressions. According to Euler’s formula:

eiα = cosα + i sin α .

This formula forms the basis for a graphical representation of a harmonic motion:
First, imagine that we draw a vector of unit length in a plane. The starting point of
the vector is placed at the origin and the vector forms an angle α with the x-axis.
The vector can then be written as follows:

x̂ cosα + ŷ sin α
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Fig. 2.2 A phasor is a vector
of a given length. The phasor
rotates at a given angular
frequency and with a definite
initial phase. The figure
shows the position of the
phasor at one point in time.
See the text Real 

axis

Imaginary 
axis

A“Phasor” t + 

A cos(t + )



where x̂ and ŷ are unit vectors along the x- and y- direction, respectively. The
similarity to the previous expression is striking, assuming that the real part of the
expression is taken to be the component along the x-direction and the imaginary part
as the y-component.

This graphical vector representation can be extended immediately to represent
a harmonic oscillation. We then use a vector with a length corresponding to the
amplitude of the harmonic motion. The vector rotates with a fixed angular frequency
of ω about the origin. The angle between the vector and the x axis is always ωt + φ.
Then the x-component of the vector at any given time indicates the instantaneous
amplitude of the harmonic oscillation. Such a graphical description is illustrated in
Fig. 2.2 and is called an phasor description of the motion.

Phasors are very useful when multiple contributions to a motion or signal of the
same frequency are to be summed up. The sum of all contributions can be found
by vector addition. Especially in AC power, when voltages over different circuit
components are summed, phasors are of great help. We will come back to their uses
later. Phasors are useful also in other contexts, but mostly when all contributions in
a sum have the same angular frequency.

It is important to learn all the mathematical expressions (2.1)–(2.4) for simple
oscillatory motion so that they can be instantly recognized when they appear. It is
also important to be able to convert quickly from one form to another. This book is
full of such expressions!

2.3 Going from One Expression to Another

Phasors are of immense aid. As mentioned, a phasor is a vector that rotates in the
complex plane as time passes (see Fig. 2.3). The vector rotates at an angular velocity
equal to ω. The component of this vector along the real axis represents the physical
value of our interest, and it is this component that can be expressed in more than four
equivalent ways.
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Fig. 2.3 Sketch of a phasor
that rotates around the origin
with an angular velocity ω.

Real axis

Imaginary axis

t + 

C

C cos(t + )

i C sin(t + )

= A cos(t) + B sin(t)

2.3.1 First Conversion

Let us first show the transition from Eqs. (2.2) to (2.1). We use Rottmann’s compi-
lation of mathematical formula (an important tool when working with this book!),
and use the trigonometric addition formula for cosines to get:

z(t) = C cos(ωt + φ)

= C {cosωt cosφ − sinωt sin φ}
= [C cosφ] cosωt + [−C sin φ] sinωt.

This expression is formally identical to Eq. (2.1), from which it follows that:

C cos(ωt + φ) = A cosωt + B sinωt if we set A = C cosφ and B = −C sin φ .

(2.5)

2.3.2 Second Conversion

We can go the opposite way by utilizing the details given in Eq. (2.5):

A2 + B2 = (C cosφ)2 + (C sin φ)2 = C2(sin2 φ + cos2 φ) = C2

C = ±
√
A2 + B2 .

And, by dividing the last two relations in Eq. (2.5), we get:

B

A
= −C sin φ

C cosφ
= − tan φ

https://www.springer.com/gp/book/9783860254622
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This is a fraction whose numerator is the y-component and the denominator the
x-component of the phasor at t = 0. Then, it follows that

φ = − arctan
B

A
.

It should be noted here that both the tan and arctan have a periodicity of π , and
one has to be careful about which of the two possible solutions one chooses. What
quadrant φ is in depends on the sign of A and B separately. We must keep this in
mind to make sure we choose the correct φ!

If a computer is used for calculating arctan, the atan2(B, A) variant is recom-
mended for both Matlab and Python. Then the angle comes out in the correct quad-
rant.

With these reservations, we have shown:

A cos(ωt) + B sin(ωt) = C cos(ωt + φ) where C =
√
A2 + B2 and φ = − arctan

B

A
.

(2.6)

2.3.3 Third Conversion

The transition from Eqs. (2.4) to (2.2) is very simple if we use Euler’s formula:

eiα = cosα + i sin α .

From this, it follows that:

� {
Eei(ωt+φ)

} = �{
E [cos(ωt + φ) + i sin(ωt + φ)]} = E cos(ωt + φ) .

If this is equal to C cos(ωt + φ) one must have:

� {
Eei(ωt+φ)

} = C cos(ωt + φ) if C = E . (2.7)

This simple relation holds equally well both ways (from Eqs. (2.4) to (2.2) or the
opposite way).
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2.3.4 Fourth Conversion

The last rendering to be considered here is also based on Euler’s formula. It is the
conversion of Eqs. (2.3) to (2.1). It is crucial to note that D is complex. We write
this number as a sum of a real and an imaginary part:

D = Dre + iDim

where Dre and Dim are both real. This leads (once again through Euler’s formula):

� {
Deiωt

} = �{
(Dre + iDim)(cosωt + i sinωt)

}

= � {
Dre cosωt + iDre sinωt + iDim cosωt + i2Dim sinωt

}

= Dre cosωt − Dim sinωt .

When this is compared with

A cosωt + B sinωt ,

one is led to the simple relation:

� {
Deiωt

} = A cos(ωt) + B sin(ωt) if D = A − iB . (2.8)

This simple relationship also works both ways (from Eqs. (2.3) to (2.1) or the
converse).

We could also look at the expression z(t) = C sin(ωt + φ) instead of z(t) =
C cos(ωt + φ), but with the procedures outlined above it should be easy to navigate
from one form to the next.

When we come to treat waves in later chapters, we will often start with harmonic
waves. The expressions then become almost identical to those we have in Eqs. (2.1)–
(2.4). It is important to be familiar with these expressions.

2.4 Dynamical Description of a Mechanical System

Let us come back now to physics. A spring often follows Hooke’s law: the deviation
from the equilibrium point is proportional to the restoring force exerted by the spring.

Suppose that the suspension hangs vertically without any mass at the end. It has
a length of L0. If a mass m is attached to the free end, and we wait until the system
has settled, the spring will have a new length, say L1, that satisfies the equation
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Fig. 2.4 Definition of
different lengths of the
spring with and without an
attached mass; see the text

L0
L1

L(t)

z(t)

In motion

Standstill

k(L1 − L0) = mg

where the experimentally determined k is called the spring constant, and g, the
acceleration due to gravity, is considered constant (disregarding the variation of g
with the height) (Fig. 2.4).

If the mass is pulled down slightly and released, the force acting on the mass will
always be

F(t) = k[L(t) − L0] − mg

where L(t) is the instantaneous length of the spring. Upon combining the last two
equations, one gets

F(t) = k[L(t) − L0] − k(L1 − L0)

= k[L(t) − L1] .

Important: The elongation of the spring from length L0 to L1 is a consequence of
the force of gravity. Therefore, in later expressions, neither L0 nor g, the acceleration
due to gravity, will enter.

The displacement from the equilibrium point, i.e. L(t) − L1 is renamed to−z(t).
The force that acts on the mass will then be

F(t) = −kz(t) .

The negative sign indicates that the restoring force is in the opposite direction with
respect to the displacement.
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According to Newton’s law, the sum of the forces acting on the mass is equal to
the product of the mass and the instantaneous acceleration:

F(t) = mz̈(t) = −kz(t) .

Note once more that the gravitational force is not directly included in this expression. This is
because the restoring force due to the spring and the gravitational pull counterbalance each other
when z = 0.

z̈ is the double derivative of z with respect to time, i.e. acceleration in the vertical
direction:

z̈ ≡ d2z

dt2
.

The equation of motion can then be written as:

z̈(t) = − k

m
z(t) . (2.9)

This is a second-order homogeneous differential equation with constant coef-
ficients, and we know its general solution to be

z(t) = B sin

(√
k

m
t

)

+ C cos

(√
k

m
t

)

where B and C are two constants (with dimensions of length). We can identify this
solution as Eq. (2.1) if we set the angular frequency ω in the latter equation to

ω =
√

k

m
.

The constants B and C are found by imposing the initial conditions, and the par-
ticular solution for the oscillatory motion is thereby determined with one particular
amplitude and one particular phase.

The angular frequency ω is convenient to use in mathematical expressions. How-
ever, when we observe an oscillating system, it is expedient to use frequency f and
period T . Their interrelationship is stated below:

f = ω

2π
,

T = 1

f
= 2π

ω
.
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For the mechanical mass–spring oscillator one gets:

f = 1

2π

√
k

m
,

T = 2π

√
m

k
.

What have we learned in this section? Well, we have seen that a mass, attached to
a spring and experiencing the forces exerted by the spring and gravity, will oscillate
up and down, executing a simple harmonic motion with a certain amplitude and time
period. We have managed to “explain” the oscillatory motion by combining Hooke’s
law and Newton’s second law.

The kinematic description gave in Sect. 2.1 is identical to the solution of the
dynamic equation we set up in this section based on Newton’s law.

2.5 Damped Oscillations

No macroscopic oscillations last ceaselessly without the addition of energy. The
reason is that there are always forces that oppose the movement. We call these
frictional forces.

Frictional forces are often difficult to relate to, because they arise fromcomplicated
physical phenomena occurring in the borderland between atomic and macroscopic
dimensions. A basic understanding of friction has begun to grow during the last
decades, because grappling with this part of physics requires extensive modelling by
means of computers.

Air friction is complex and we need at least two terms to describe it:

Ff = −bv − Dv2

where v is the velocity (with direction), and b and D are positive constants, which
will be called friction coefficients.

An expression that also indicates the correct sign and direction is:

#   »
F f = −b #»v − Dv2

#»v

v
= −b #»v − D |v| #»v . (2.10)

In other words, the friction force
#   »
F f works in a direction opposite to that of

the velocity #»v .



2.5 Damped Oscillations 17

If we start with a system executing harmonic motion without friction, and we
add friction as given in Eq. (2.10), it is not possible to find a general solution using
analytical mathematics alone. If the problem is simplified by setting the frictional
force to −bv only, it is possible to use analytical methods. The solution is useful for
slow motion in air. For small speeds, the term Dv2 will be less than the term bv in
Eq. (2.10) so that the v2 term can be neglected.

Remarks: −Dv2 is a nonlinear term that is often associated with turbulence, one of the difficult
areas of physics, often associated with chaotic systems. Friction of this type depends on a number of
parameters that can be partially included into the so-called Reynolds number. In some calculations,
the quantity D must be replaced by a function D(v) if Eq. (2.10) is to be used. Alternatively, the
Navier–Stokes equation can be used as a starting point. Reasonably accurate calculations of the
friction of a ball, plane or rocket can be accomplished only by using numerical methods (Those
interested will be able to find more material in Wikipedia under the headings “Reynolds number”
and “Navier–Stokes equation”.).

Since no great skill is needed for solving the simplified differential equation,
we accept the challenge! The solution method will consolidate our familiarity with
complex exponents and will show the elegance of the formalism. Moreover, this is
standard classical physics widely covered in textbooks, and the results are useful in
many contexts. The mathematical approach itself finds applications in many other
parts of physics.

The starting point is, as before, Newton’s second law, and we use it for a mass
that oscillates up and down at the end of a spring in air. The equations can now
be written: ∑

F = ma ≡ mz̈

−kz(t) − bż(t) = mz̈(t)

z̈(t) + b

m
ż(t) + k

m
z(t) = 0 . (2.11)

This is a homogeneous second-order differential equation, and we choose a
trial solution of the type:

z(t) = Aeαt . (2.12)

Remark: Here, both A and α are assumed to be complex numbers.

Differentiation of the exponential function (2.12), insertion into (2.11) and finally
the abbreviation of exponential terms and the factor A gives the characteristic poly-
nomial

α2 + b

m
α + k

m
= 0 .
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We rename the fractions to get a tidier expression:

b

m
≡ 2γ (2.13)

k

m
≡ ω2 . (2.14)

The equation now becomes:

α2 + 2γα + ω2 = 0 .

This is a quadratic equation whose roots can be written as:

α± = −γ ±
√

γ 2 − ω2 . (2.15)

There arise three different types of solutions, depending on the discriminant:

• γ > ω : Supercritical damping, overdamping

If the frictional force becomes large, we get what is called overdamping. The
criterion of overdamping γ > ω ismathematically equivalent to b > 2

√
km.

In this case, both A and α in Eq. (2.12) are real numbers, and the general
solution can be written as:

z(t) = A1e
(
−γ+

√
γ 2−ω2

)
t

+ A2e
(
−γ−

√
γ 2−ω2

)
t
. (2.16)

where A1 and A2, determined by the initial conditions, involve the initial
values of velocity and displacement.

• This is a sum of two exponentially decaying functions, one of which goes to zero
faster than the other. There is no trace of oscillatory motion here.
Note that, for certain initial conditions, A1 and A2 may have different signs, and
the time course of the displacement may hold surprises!

• γ = ω : Critical damping
The frictional force and the effective spring force now match each other in such
a way that the movement becomes particularly simple. Based on Eqs. (2.12) and
(2.15), we find one solution: It can be described as a simple exponential function:

z(t) = Ae−γ t .
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It is known from the theory of differential equations that the general solution of a
second-order differential equation must have two arbitrary constants, so that one
may satisfy two initial conditions. This means that we have yet to find the full
solution. To find the missing solution, we will use a simple trial solution of the
type:

z(t) = f (t)e−γ t .

If this trial solution is substituted into our differential equation (2.11) with γ = ω,
we find easily that f̈ must be equal to 0. After two integrations with respect to t ,
we find f (t) = A + Bt .

Thus the general solution of Eq. (2.11) for critical damping is then:

z(t) = Ae−γ t + Bte−γ t . (2.17)

Critical damping in many cases corresponds to the fastest damping of a
system and is the one sought for, for example, in vehicle shock absorbers.

• γ < ω : Sub-critical damping; underdamping
In this case, α in Eq. (2.15) becomes complex, which means that the solution will
contain both an exponential decreasing factor and an oscillating sinusoidal term.
From Eq. (2.15), we get then:

α± = −γ ±
√

γ 2 − ω2 (2.18)

= −γ ± iω′ . (2.19)

where ω′ ≡ √
ω2 − γ 2 is a real number. The general solution then becomes:

z(t) = e−γ t�
{
A eiω

′t + Be−iω′t
}

where A andB are complex numbers, and � means that we take the real part of
the expression.

The solution for sub-critical damping can be put in a simpler form:

z(t) = e−γ t A cos(ω′t + φ) . (2.20)

Here the constant A and φ must be assigned such values as to make the particular
solution conform to a given physical system. The mass will oscillate on both sides
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Fig. 2.5 Examples of
overcritical, critical and
sub-critical damping of an
oscillation that would be
simple harmonic in the
absence of friction. The
friction is increased by a
factor of four from one curve
to another: sub-critical,
critical and overcritical
damping
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of the equilibrium point while the amplitude decreases to zero. The oscillation
frequency is lower thanwhen there is no damping (something that is to be expected
since the friction acts to slow down all movement).

It is common in textbooks to present a figure that typically shows the time course
for a damped harmonic motion, and Fig. 2.5 perpetuates the tradition. However, it
should be noted that such figures can be very misleading, because they often assume
that the initial velocity is zero (as in our figure). In a task last in this chapter, we
ask you to investigate how an overdamped harmonic motion looks under some other
initial conditions. If you solve that task, you will see that the solution is more diverse
than the traditional figures indicate!

2.6 Superposition and Nonlinear Equations

Whenwe tried to figure out how a damped oscillation changes with time, we assumed
the validity of the differential equation:

z̈(t) + b

m
ż(t) + k

m
z(t) = 0 (2.21)

and found a general solution that consisted of two parts. For overcritical damping,
the solution looks like this:

zA(t) = A1e
(
−γ+

√
γ 2−ω2

)
t + A2 e

(
−γ−

√
γ 2−ω2

)
t

where γ and ω are defined in Eqs. (2.13) and (2.14) above.
In the interests of simplicity, we set:

f1(t) = e
(
−γ+

√
γ 2−ω2

)
t
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and

f2(t) = e
(
−γ−

√
γ 2−ω2

)
t
.

One solution can then be written as:

zA(t) = A1 f1(t) + A2 f2(t) .

Another solution of the differential equation could be:

zB(t) = B1 f1(t) + B2 f2(t) .

It is easy then to see that

zAB(t) = [A1 f1(t) + A2 f2(t)] + [B1 f1(t) + B2 f2(t)]

zAB(t) = (A1 + B1) f1(t) + (A2 + B2) f2(t)

will also be a solution of the differential equation. This is due to the fact that the
differential equation (2.21) is a linear equation.

This is called the “superposition principle”. This principle pervades many parts
of physics (and notably also in quantum mechanics).

Previously, many people considered superposition principles to be a fundamental
property of nature, but it is not. The reason for the misunderstanding is perhaps that
most physicists of those days worked only with linear systems where the superpo-
sition principle holds. Today, thanks to computers and numerical methods, we can
tackle physical systems that were previously inaccessible. This means that there has
been an “explosion” in physics in the last few decades, and the development is far
from over.

Let us see what differences arise when nonlinear descriptions are used. By non-
linear description, for example, we mean that forces describing a system showing a
nonlinear dependence on position or speed. For example, whenwe described damped
oscillations, we found that friction must often be modelled with at least two terms:

F = −bv − Dv2 .

The second term on the right-hand side makes a nonlinear contribution to the force.
The differential equation would then become:

z̈(t) + b

m
z̈(t) + D

m
[z̈(t)]2 + k

m
z(t) = 0 (2.22)

In this case, we can prove the following:
If f A(t) is one solution of this equation, and fB(t) is another solution, it is in

general not true that the function f A(t) + fB(t) is a solution of Eq. (2.22).
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In other words, when we include a second-order term to complete the friction
description, we see that the superposition principle no longer applies! Even if
we find a possible solution for such an oscillating system, and then another
solution, the sum of these individual solutionswill not necessarily be a solution
of the differential equation.

The term Dv2 is a nonlinear term, and when the physics is such that nonlinear
terms play a nonnegligible role, the superposition principle does not apply.

Take a look at the “list of nonlinear partial differential equations” on theWikipedia
to get an impression of how important nonlinear processes have now become within,
for example, various areas of physics. The overview indirectly shows howmanymore
issues we can study today compared to what was possible a few decades ago. Despite
this, we still have a regrettable tendency to use formalism and interpret phenomena,
in both classical and quantum physics, as if the world was strictly linear. I dare say,
physicists will have, within a few decades, such a rich store of experience to build
on that the general attitude will change. Time will show!

2.7 Electrical Oscillations

Before we proceed with forced oscillations, we will derive the equation of oscillatory
motion for an electrical circuit. The purpose is to show that the mathematics here is
completely analogous to that used in mechanical system.

In electromagnetism, there are three principal circuit elements: Resistors, induc-
tors (coils) and capacitors. Their behaviours in an electrical circuit are given by
the following relationships (where Q stands for the charge, I = dQ/dt is electric
current, V is voltage, R is resistance, L inductance and C capacitance):

VR = RI (2.23)

VC = Q/C (2.24)

VL = L dI/dt

= L d2Q/dt2 . (2.25)

If the circuit elements are connected in a closed loop, the total voltage change will
be zero when we go around the loop from any point to the same point (Kirchhoff’s
law). For example, we connect a (charged) capacitor to a resistor (by closing the
switch in Fig. 2.6), the voltage across the capacitor will always be the opposite of the
voltage across the resistor. Thus, it follows that
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Q
C R

I

RI =−Q/C

dQ
d t

=− 1
RC

Q .

Fig. 2.6 The voltage across a charged capacitor will decrease exponentially to zero after the capac-
itor is connected to a resistor

RI = −Q/C

dQ

dt
= − 1

RC
Q .

If the charge on the capacitor was Q0 at time t = 0, the solution of this differential
equation is:

Q = Q0e
−t/RC .

The charge on the capacitor thus decreases exponentially and goes to zero (The reader
is supposed to be familiar with this.).

In the context of “oscillations and waves”, we will concentrate on oscillating
electrical circuits. An oscillating electrical circuit usually consists of at least one
capacitor and an inductor. If the two elements are connected in series so as to form
a closed loop, Kirchhoff’s law gives:

Q

C
= −L

dI

dt
= −L

d2Q

dt2

d2Q

dt2
= − 1

LC
Q .

We can write this in the same way as was done for the mechanical system:

Q̈(t) = − 1

LC
Q(t) . (2.26)

Ifwe compareEq. (2.26)withEq. (2.9),we see that they are completely analogous.
The coefficient on the right-hand side is k/m for the mechanical system, and 1/LC
in the electrical analogue, but they are both positive constants.

This is oscillation once more, and we know that the overall solution is:
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Q = Q0 cos(ωt + φ)

where ω = 1/
√
LC . Q0 and φ are two constants whose values are fixed on the basis

of the initial state (t = 0) of the system.

Itmay beworth reflecting onwhy theremust be two initial conditions to obtain a specific solution
for the LC circuit as compared to the RC circuit. In the RC circuit, the current is uniquely given if
the charge is given. We can then decide, by means of a snapshot, either the charge or the voltage,
will vary with time (assuming that R and C are known). For the LC circuit, this is not the case.
There we must know, for example, both charge and current at a particular instant, or the charge at
two adjacent times, to determine the further development. The reason is that we can not deduce
power from one charge (or voltage) alone. The difference in physical descriptions for the RC and
(R)CL circuit is reflected mathematically by the difference between a first-order and a second-order
differential equations.

An electrical circuit in practice contains some kind of loss/resistance. Let us take
the simplest example, namely that the loss is due to a constant series resistance R in
the closed loop. If Kirchhoff’s law is used again, we get the following differential
equation:

Q

C
= −RI − L

dI

dt
= −R

dQ

dt
− L

d2Q

dt2

or
d2Q

dt2
+ R

L

dQ

dt
+ 1

LC
Q = 0 . (2.27)

This is a homogeneous second-order differential equation that can be solved using
the characteristic polynomial:

a2 + R

L
a + 1

LC
= 0

whose solution is:

a± = − R

2L
±

√(
R

2L

)2

− 1

LC
.

The general solution to the differential equation is:

Q = Q0,1e
− R

2L t+
(√

( R
2L )2− 1

LC

)
t + Q0,2e

− R
2L t−

(√
( R
2L )2− 1

LC

)
t
. (2.28)

We note that for R = 0, we recover Eq. (2.26), whose solution is

Q = Q0,1e(
√−1/LC)t + Q0,2e

−(
√−1/LC)t

= Q0,1e
i(

√
1/LC)t + Q0,2e

−i(
√
1/LC)t

= Q0 cos(ωt + φ) .
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where ω = 1/
√
LC . We see again that there are two constants to be determined by

means of the initial conditions.
When R �= 0, we get an exponentially decreasing term e−(R/2L)t multiplied by

either an oscillating term or a second exponentially decreasing term, depending on
whether (R/2L)2 is less or greater than 1/LC. When (R/2L)2 = 1/LC , the term
under the radical in Eq. (2.28) becomes zero, which corresponds to what we have
seen previously with two coincident roots. In such a case, the overall solution turns
out to of the same form as Eq. (2.17). Again, it is natural to talk about sub-critical,
critical and supercritical damping, similar to a mechanical pendulum.

We have seen that electrical circuits are described by equations completely anal-
ogous to those for a mechanical pendulum. Other physical phenomena show similar
oscillating behaviour.

Common to all the systems examined above is the equation for oscillatory
motion, which can be stated, in its simplest form, as

d2 f

dt2
+ c1

d f

dt
+ c2 f = 0

where c1 and c2 are positive constants.

2.8 Energy Considerations

Let us calculate the energy and its time development in electrical circuits. We limit
ourselves to a loss-less oscillating system, that is, we take R = 0. The solution of
the differential equation is then:

Q = Q0 cos(ωt + φ)

where ω = 1√
LC

. Q0 and φ are two constants whose values are determined by using
the initial conditions (t = 0) of the system.

The energy stored in the capacitor at any particular time is given by:

EC = 1

2
QV = 1

2

Q2

C
.
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The instantaneous energy is thus:

EC(t) = 1

2

[Q0 cos(ωt + φ)]2
C

= 1

2

Q0
2

C
cos2(ωt + φ) .

From electromagnetism we know that the energy stored in an inductor is given
by the expression:

EL = 1

2
L I 2 = 1

2
L

(
dQ

dt

)2

.

Substituting the expression for Q from the general solution, the instantaneous
energy in the inductance is found to be

EL(t) = 1

2
L

[
d[Q0 cos(ωt + φ)]

dt

]2

= 1

2
LQ0

2ω2 sin2(ωt + φ) .

Since ω = 1√
LC

, the expression can also be written as:

EL(t) = 1

2

Q0
2

C
sin2(ωt + φ) .

The total energy, found by summing the two contributions, is thus:

Etot(t) = EC(t) + EL(t)

= 1

2

Q0
2

C

[
cos2(ωt + φ) + sin2(ωt + φ)

]

Etot(t) = 1

2

Q0
2

C
.

We notice that the total energy remains constant, i.e. time-independent.
Although the energy of the capacitor and inductor varies from zero to a maxi-
mum value and back in an oscillatory fashion, these variations are time shifted
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by a quarter period, making the sum independent of time. The energy “flows”
back and forth between the capacitor and inductor. A time shift between two
energy forms seems to be a characteristic feature of all oscillations. Sim-
ple oscillations are often solutions of second-order differential equation, but
oscillations may also originate from phenomena that have to be expressed
mathematically in different way.

For the mechanical system, potential energy (from the conservative spring force)
and kinetic energy are the two energy forms. You are recommended to perform a
similar calculation as we have done in this section for the mechanical system to see
that the result is indeed analogous to what we found for the electrical system (This
is the theme for a calculation task in the end of this chapter.).

The energy calculations we have just completed apply only if there is no loss in
the system. If loss due to resistance (the equivalent of friction) is preset, the energy
will of course decrease over time. The energy loss per unit time pattern will depend
on the extent of damping (supercritical, critical or sub-critical), but in general, the
energy loss will follow an exponential decline.

2.9 Learning Objectives

The title of the book is “Physics of Oscillation and Waves”, but just about all basic
theory of oscillations is presented already in this chapter and Chap. 3. Nevertheless,
the basic ideas from these two chapters will resurface many times when we refer to
waves. We therefore think that a thorough study of this chapter and Chap. 3 will pay
handsome dividends when the reader moves to later chapters.

After working through this chapter you should be able to
• Know that a harmonic oscillatory motion can be expressed mathematically
in a variety of ways, both with sines and/or cosine functions, or in complex
form (using Euler’s formula). One goal is to recognize the different forms
and to be able to go mathematically from any of these representations to
another.

• Know that oscillations may occur in systems affected by a force that tries to
bring the system back to equilibrium. Mathematically, this can be described
easily in simple cases:

z̈ = −kz

where x is the displacement from the equilibrium position and k is a real,
positive number.
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• Know that any oscillation must contain the two terms given in the equation
in the previous paragraph, but that other terms may also be included.

• Knowhowphysical laws/relationships are combined by deriving the second-
order differential equation for both a mechanical and an electrical system.

• Know that in order tofind aunique solution to the above-mentioned equation,
two independent initial conditions must be imposed and suggest at least a
few different choices of initial conditions.

• Be able to derive and solve the equation of oscillatory motion both for free
and damped oscillation with linear damping. This means that you must be
able to distinguish between supercritical, critical and sub-critical damping,
and to outline graphically typical features for different initial conditions.

• Be able to deduce the equation for oscillatory motion also for a nonlinearly
damped system and find the solution numerically (after studying Chap. 4).

• Be able to explain why the superposition principle does not apply when
nonlinear terms are included in the equation of motion.

2.10 Exercises

Remark:
For each of the remaining chapters, we suggest concepts to be used for student active
learning activities. Working in groups of two to four students, improved learning
may be achieved if the students discuss these concepts vocally together.

The purpose of the comprehension/discussion tasks is to challenge the student’s
understanding of phenomena or formalism. Even for these tasks, it may be beneficial
for learning that students discuss the tasks vocally in small groups.

The “problems” aremore traditional physics problems.However, our apperception
is that the correct answer alone is not considered a satisfactory solution. Fullmarks are
awardedonly if the correct answer is supplementedwith sound arguments, underlying
assumptions, and approaches used for arriving at the answer.

Suggested concepts for student active learning activities: Kinematics, dynam-
ics, amplitude, phase, frequency, harmonic, second-order differential equation, gen-
eral solution, particular solution, initial conditions, phasor, damping, characteristic
polynomial, supercritical/critical/sub-critical damping, superposition, linear equa-
tion.

Comprehension/discussion questions

1. Make a sketch similar to Fig. 1.1, which shows a time plot for one oscillation,
but also draw the time course for another oscillation with the same amplitude
and initial phase term, but a different frequency compared to the first one. Repeat
the same for the case where the amplitudes are different, while the phase and
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frequency are the same. Finally, present the third variant of such sketches (Find
out what is meant by this.).

2. What demands must we make for a force to be able to form the basis for oscil-
lations?

3. If a spring is cut in the middle, what will be the spring constant for each part
compared to that for the original spring? How large is the time period for a mass
at the end of the half-spring compared with the period of the mass in the original
spring?

4. Suppose we have a mass in a spring that oscillates up and down with a certain
time period here on earth, and that the spring and the mass are brought to the
moon. Will the time period change?

5. Suppose we do as in the previous task, but take a pendulum instead of a mass
and spring. Will the time period change?

6. A good bouncing ball can bounce up and down many times against a hard
horizontal surface. Is this a harmonic motion (as we have used the word)?

7. In the text, a rather vague statement is made about a judicious choice of mass and
maximum extension of the spring to achieve an approximately harmonic oscil-
latory motion. Can you give examples of what conditions will be unfavourable
for a harmonic motion?

Problems

8. Show mathematically that the total energy of an oscillating mass–spring system
(executing up and downmovement only) is constant in time if there is no friction
present (Remember that changes in potential energy in the gravitational field
disappear if you take the equilibrium position of the plot as the starting point for
the calculations.).

9. It is sometimes advantageous to describe dynamics by plotting velocity versus
position, instead of position versus time, as we have done so far. Create such a
plot for a mass that swings up and down at the end of a spring (plot in phase
plane). What is the shape of the plot?

10. Make a plot in the phase plane (see previous task) for themovement of a bouncing
ball that bounces vertically up and down on a hard surface (practically without
loss).What is the shape of the plot?Comment on similarities/differences between
the plots in this and the previous task.

11. A spring hangs vertically in a stand. Without any mass, the spring is 30cm long.
We attach a 100g ball at the lower end, stretch the spring by pulling the mass
(and then releasing it) and find, after the ball has come to rest, that the spring
has become 48cm long. We then pull the ball 8.0 cm vertically downwards, keep
the ball steady, and then let go. Find the oscillation period of the ball. Write a
mathematical expression that can describe the oscillatory movement. Find the
maximum and minimum force between the ball and the spring.

12. Anoscillatingmass in a springmoves at a frequency of 0.40Hz.At time t = 2.0 s,
its position is +2.4cm above the equilibrium position and the velocity of the
mass is −16cm/s. Find the acceleration of the mass at time t = 2.0 s. Find a
mathematical description appropriate to the movement.
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13. Amassm hangs in a massless spring with spring constant k. The amplitude is A.
How big is the displacement relative to the equilibrium point when the kinetic
energy is equal to half of the potential energy?

14. An oscillatory motion can be described by the equation z(t) = A cos(ωt + φ)

where A = 1.2m, the frequency f = ω/(2π) = 3.0Hz, and φ = 30◦. Find out
how this oscillatory motion can be formally specified when we (a) do not use
the phase term, but only a combination of sine and cosine terms, and (b) when
using a complex description based on Euler’s formula.

15. Another oscillatory motion is given at y(t) = �{(−5.8 + 2.2i)eiωt }. Convert the
equation to the same form as Eq. (2.1) and convert further until it has the same
form as Eq. (2.1).

16. Show that the period of a mathematical pendulum with small amplitude is given
by T = 2π

√
L/gwhere L is the length of the pendulum and g is the acceleration

due to gravity. Hint: Use the relation τ = Iα where τ is the torque, I the moment
of inertia (mL2) and α is the angular acceleration, to show that the equation of
motion is θ̈ (t) = (g/L) sin θ and then use the usual approach for sines at small
angles.

17. A mass weighing 1.00N is hung at the end of a light spring with spring constant
1.50N/m. If we let the mass swing up and down, the period is T . If instead we let
the mass settle down and pull it to the side and release it, the resulting movement
will have a period of 2T (the amplitude in the second case is very small). What
is the length of the spring without the mass? (You may need the expression in
the previous assignment.)
Note: We recommend strongly that you make a real mass/spring system with a
length so that the period of the sidewise pendulum oscillation is twice the period
for the vertical mass–spring pendulum. Start the movement of the system by a
pure vertical displacement of the mass, and release it from rest at this position.
Watch the movement. You may be surprised! What you witness is an example
of a so-called parametric oscillator.

18. Show that the energy loss for a damped pendulum where the frictional force
is Ff = −bv is given by dE/dt = −bv2. Here, b is a positive number (friction
coefficient) and v is the velocity (Start from themechanical energy of the system,
E = Epotential + Ekinetic.).

19. An object of m = 2.0kg hangs at the end of a spring with the spring constant
k = 50N/m. We ignore the mass of the spring. The system is set in oscillations
and is damped. When the velocity of the mass is 0.50m/s, the damping force is
8.0N.
(a) what is the system’s natural oscillation frequency f (i.e. if the damping was
not present)?
(b) Determine the frequency of the damped oscillations.
(c) How long does it take before the amplitude is reduced to 1% of the original
value?



Chapter 3
Forced Oscillations and Resonance

Abstract In this chapter, we study a mechanical system forced to oscillate by the
application of an external force varying harmonically with time. The amplitude of
the oscillations, which is shown to depend on the frequency of the external force,
reaches its peak value when the frequency of the applied force is close to the natural
frequency of the system, a phenomena called resonance. However, details depend
on the energy loss in the system, a property described by a quality factor Q, and the
phase difference is described by so-called phasors. Emphasis is placed on how the
system behaves when the external force starts and vanishes. Numerical calculations
facilitate the analysis. At the end, some relevant details concerning the physiology
of the human ear are briefly mentioned.

3.1 Introductory Remarks

The words “resonance” and “resound” are derived from the Latin root resonare
(to sound again). If we sing with the correct pitch, we can make a cavity to sing
along and, to somehow, augment the sound we emitted. Nowadays, the word is
used in diverse contexts, but it always has the connotation of an impulse causing
reverberation in some medium.When we tune the radio to receive weak signals from
a transmitter, we see to it that other, unwanted signals, also captured by the radio
antenna at the same time, are suppressed. It may seem like pure magic. The physics
behind such phenomena is straightforward when we limit ourselves to the simplest
cases. If we dig a little deeper, we uncover details that make our inquiry much more
demanding and exciting.

3.2 Forced Vibrations

The Foucault pendulum in the foyer of the Physics building at the University of
Oslo oscillates with the same amplitude year after year, although it encounters air
resistance, which, in principle, should have dampened its motion. This is because
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the bob at the end of the pendulum receives a small electromagnetic push each time
it passes the lowest point. When that happens, a small red LED lights up. The push
comes exactly at the time the bob is moving away from the equilibrium point. In this
way, the time period is almost completely determined by the natural oscillation period
of the pendulum itself (determined by the length of the pendulum and acceleration
due to gravity).

In other contexts, “the pushes” come at a rate different from the natural rate of
oscillation of the system. Electrons in an antenna, the diaphragm of the loudspeaker,
the wobble of a boat whenwaves pass by, are all examples of systems being forced by
a vibratorymotion energized by an external force that varies in time independently of
the system in motion. Under such circumstances, the system is said to be executing
forced oscillations.

In principle, an external time-dependent force can vary in infinitely many ways.
The simplest description is given by a harmonic time-varying force, i.e. as a sinusoid
or cosinusoid. In the first part of the chapter, we assume that the harmonic force lasts
for a “long time” (the meaning of the phrase will be explained later).

If we return to themechanical pendulum examined earlier and confine ourselves to
a simple friction term and a harmonic external force, the movement can be described
analytically.

For a mechanical system, the starting point is Newton’s second law (see Chap.
2): The sum of the forces equals the product of mass with acceleration:

F cos(ωF t) − kz(t) − bż(t) = mz̈(t)

where F cos(ωF t) is the external force that oscillates with its own angular
frequency ωF . If we put

ω2
0 = k/m ,

(angular frequency of the freely oscillating system), the equation can also be
written as follows:

z̈(t) + (b/m)ż(t) + ω2
0z(t) = (F/m) cos(ωF t) . (3.1)

This is an inhomogeneous second-order differential equation, and its general
solution may be written as:

z(t) = zh(t) + z p(t)

where zh is the general solution of the corresponding homogeneous equation
(with F replaced by zero) and z p is a particular solution to the inhomogeneous
equation itself.
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We have already found in Chap. 2 the general solution of the corresponding
homogeneous equation, so the challenge is to find a particular solution.

We know that the solution of the homogeneous equation decreases with time to
zero. Therefore, after a long time from start, the movement will be dominated by the
external periodic force.

It becomes natural then to investigate if a particular solution may have the
form:

z p(t) = A cos(ωF t − φ) (3.2)

where A is real.

Here, we have to discuss the choice of the sign of the phase term φ. Assume φ

to be positive. In that case, we have: If F is maximum at time t = t1 (for example,
ωF t1 = 2π ), the displacement z p(t) will reach its maximum value at a time T = t2
(with t2 > t1), i.e. at a time later than when F was at its maximum.

We then say that the output z p(t) is delayed with respect to the applied force.
When the expressions for z p(t) and F(t) are inserted into Eq. (3.1) and the terms

are rearranged, the following result is obtained:

(ω2
0 − ω2

F ) cos(ωF t − φ) − (b/m)ωF sin(ωF t − φ) = F/(Am) cos(ωF t) .

If we use the trigonometric identities for the sines and cosines of difference of angles
(see Rottmann), we find:

(ω2
0 − ω2

F ){cos(ωF t) cosφ + sin(ωF t) sin φ} − (b/m)ωF {sin(ωF t) cosφ − cos(ωF t) sin φ}

= F/(Am) cos(ωF t) .

Upon collecting the terms with sin(ωF t) and cos(ωF t), we get:

[
(ω2

0 − ω2
F ) cosφ − F/(Am) + (ωFb/m) sin φ

]
cos(ωF t)

+ [
(ω2

0 − ω2
F ) sin φ − (ωFb/m) cosφ

]
sin(ωF t) = 0 .

Since sin(ωF t) and cos(ωF t) are linearly independent functions of t , the above
equation can be satisfied only if each term within the square brackets vanishes sepa-
rately. This conclusiongives us twoequationswhich canbeused for the determination
of the two unknowns, namely A and φ.

Equating to zero the terms within the square brackets multiplying sin(ωF t), we
find:

(ω2
0 − ω2

F ) sin φ = (ωFb/m) cosφ .
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The phase difference between the output and the applied force can be expressed
as:

cot φ = cosφ

sin φ
= ω2

0 − ω2
F

ωFb/m
. (3.3)

We see that whenωF = ω0, cot φ = 0, which means that φ = π/2 or 3π/2. Since
cot φ changes from a positive to negative value when ωF passes ω0 from below, only
the choice φ = π/2 is acceptable.

When we set the expression with the square brackets multiplying cos(ωF t) to
zero, we get:

(ω2
0 − ω2

F ) cosφ − F/(Am) − (bωF/m) sin φ = 0 .

Weuse the expression sin x = ±1/
√
1 + cot2 x fromRottmann (and a corresponding

expression of cos) together with Eq. (3.3).

After a few intermediate steps, we get the following expressions for the ampli-
tude of the required oscillations:

A = F/m
√

(ω2
0 − ω2

F )2 + (bωF/m)2
. (3.4)

It is time now to sum up what we have done:
When a system obeying an inhomogeneous linear second-order ordinary

differential equation is subjected to a harmonic force that lasts indefinitely, a
particular solution (which applies “long after” the force is applied) is itself a
harmonic oscillation of the same frequency that is phase shifted with respect to
the original force, as given in Eq. (3.2). “Long after” refers to a timemany time
constants 1/γ long, where γ is proportional to the damping of the system. We
refer to the exponential decaying term e−γ t in the solution of the homogeneous
differential equation discussed in the previous chapter.

The amplitude of the oscillations is then given by Eq. (3.4), and the phase
difference between the output and the applied force (or the input) is given by
Eq. (3.3). Figure3.1 shows schematically how the amplitude and phase vary
with the frequency of the applied force. The frequency of the force is given
relative to the frequency of the oscillations in the same system if there was no
applied force or no friction/damping.

We see that the amplitude is greatest when the frequency of the applied force is
nearly the same as the natural frequency of oscillation in the same system when the
applied force and damping are both absent. We call this phenomenon resonance, and
it will be discussed in more detail in the next section.
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Fig. 3.1 The amplitude of a forced oscillation (left) and the phase difference between the output
and the applied force (right) as a function of the frequency of the applied force

The phaseφ appearing inEq. (3.2) is approximately equal toπ/2 at resonance; that
is, the output is lagging behind (in phase) by about π/2 with respect to the applied
force. For the spring oscillation, it means that the force is greatest in the upward
direction when the pendulum has its highest speed and passes the equilibrium point
on the way upwards.

Away from resonance, the phase difference is less than (greater than) π/2 when
the applied frequency is lower than (higher than) the “natural” frequency. These
relationships canbe summarized so that the pendulum“is impatient“ and tries tomove
faster when the applied force changes too slowly relative to resonance frequency
(“natural frequency“). The movement of the pendulum depends more and more on
the force when the force changes too quickly in relation to resonant frequency.
The phase difference is an important characteristic of forced fluctuations.

3.3 Resonance

One sees from Eq. (3.4) that the amplitude of the forced oscillations varies with the
frequency of the applied force. When the frequency is such that the amplitude is
greatest, the system is said to be at resonance.

It may be useful to reflect a little about what is needed to get the largest possible
output, which corresponds to the highest possible energy for the system.

Let us start with the mechanical mass–spring oscillator again. We then have a
mechanical force that works on a moving system. We remember from mechanics
that the work done by the force is equal to the magnitude of the force multiplied
by how far the system moves under the action of the force. For a constant force,
the power delivered by the force equals the power multiplied by the velocity of the
system experiencing the force. Force and velocity are vectorial forces, and it is their
dot product that counts (Remember P = #»

F · #»v from the mechanics course.).
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Fig. 3.2 A close-up view of
the relative amplitude in a
forced oscillation as a
function of the frequency of
the applied force. Note the
numbers along the axes
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In our case, the force will deliver the greatest possible power to the system
if the power has the highest value while the pendulum bob has the highest
possible velocity. Force and velocity must work in the same direction. This
will happen if the force, for example, is the greatest, while the bob passes the
equilibrium position on the way up. This corresponds to the position is phase
shifted π/2 by force. To achieve such a state, the external force must swing
with the resonance frequency.

So far, we have been somewhat imprecise when we have discussed resonance.
Strictly speaking, we must differentiate between two nuances of the term resonance,
namely phase resonance and amplitude resonance. The difference between the two
is often in practice so small that we do not have to worry about it.

Phase resonance is said to occur when the phase difference between the applied
force and the output equalsπ/2. This happenswhen the frequency of the applied force
(input frequency) coincides with the natural frequency of the (undamped) system.

A close-up view of Fig. 3.1 shown in Fig. 3.2 shows that the amplitude is greatest
at a slightly lower frequency than the natural frequency. The small but significant
difference is due to a detail we mentioned when we discussed damped harmonic
motion in the previous chapter. In the presence of damping, the oscillation frequency
is slightly lower than the natural frequency. The frequency at which amplitude is
greatest indicatesamplitude resonance for the system.The two resonance frequencies
are often quite close to each other, as already mentioned.

Let us find mathematical expressions for the two resonance frequencies.
The amplitude resonance frequency can be found by differentiating the expression

for the amplitudegivenbyEq. (3.4) (a commonprocedure for finding extremevalues).
We calculate the ωF angular frequency at which:

dA

dωF
= 0 .
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We find that

ωF =
√

ω2
0 − b2

2m2
.

If we want to state the frequency rather than the angular frequency, we use the
expression:

The amplitude resonance frequency is:

famp.res. = 1

2π

√

ω2
0 − b2

2m2
(3.5)

where ω0 = √
k/m.

The phase resonance frequency is:

fph.res. = 1

2π
ω0 . (3.6)

We observe that the two resonance frequencies coincide only when b = 0 (no
damping).

3.3.1 Phasor Description

We will now consider forced oscillations in an electrical circuit. First, we will pro-
ceed in much the same manner as adopted in dealing with the mechanical system
examined above, but eventually we will go over to an alternative description based
on phasors. The system is a series RCL circuit with a harmonically varying voltage
source V0 cos(ωF t), as shown in Fig. 3.3. The differential equation for the system
then becomes [compare with Eq. (2.27)]:

L
d2Q

dt2
+ R

dQ

dt
+ 1

C
Q = V0 cos(ωF t) . (3.7)

Fig. 3.3 A series RCL
circuit driven by a
harmonically varying applied
voltage. The labels +, I , and
Q indicate the signs chosen
for our symbols

R

L
CV (t)F

I Q+
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This is an inhomogeneous equation, whose solution is found in the same way as
for its mechanical counterpart considered above. The solution consists of a sum of
a particular solution and the general solution of the homogeneous equation (with
V0 = 0). The solution of the homogeneous equation is already known, and it only
remains for us to find a particular solution. We try a similar solution as for the
mechanical system, but adopt a complex representation:

Qp(t) = AeiωF t (3.8)

where A can be a complex number.
At the same time, a complex exponential form is chosen for the externally applied

voltage:
V (t) = V0 cos(ωF t) → V0e

iωF t . (3.9)

It goes without saying that the real part of the expressions are to be used for repre-
senting physical quantities.

Inserting the expressions for Qp(t) and V (t) into Eq. (3.7), and cancelling the
common factor e(iωF t), we get:

−Lω2
F A + iRωF A + 1

C
A = V0 .

Solving the equation for A, we get:

A

(
−Lω2

F + iRωF + 1

C

)
= V0

A = V0
1
C − Lω2

F + iRωF
.

A again becomes a complex number (except when R = 0).
The instantaneous current in the RCL circuit is found by applying Ohm’s law to

the resistor:

I = VR

R
= dQ

dt
.

If we wait long enough for the solution of the homogeneous equation to die out, only
the particular solution remains, and the current is then given by the expression:

I = dQp

dt
= AiωFe

iωF t

Simple manipulations lead one to the following expression:

I (t) = V0

R + i(LωF − 1
CωF

)
eiωF t . (3.10)
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This expression should be comparedwith VF , the voltage applied to the circuit, which
in complex form is given by:

VF (t) = V0e
iωF t .

It follows from Eq. (3.10) that if R = 0 the current will be phase shifted 90◦
relative to applied voltage. If in addition L = 0, the current will lead the voltage by
90◦. However, if ωF L is much larger than 1/(ωFC) (C “shorted”), the current will
be offset 90◦ after the voltage (In a calculation exercise at the end of the chapter you
are asked to show this.).

If R �= 0, but LωF − 1
CωF

= 0, the current and voltage will be in phase, and I =
V0/R. This corresponds to ωF = 1√

LC
, which was named phase resonance above.

The connection between R,C , L , current and phase can be elegantly illustrated
by means of phasors. We have already mentioned phasors, but now we extend
the scope by drawing in multiple rotating vectors at the same time. Figure3.4
shows an example.

Both currents and voltages are displayed in the same plot. We start with a vector
that represents the current generated by the applied voltage. Then we draw vectors
representing voltages across the resistor, capacitor and inductor resulting from the
current flow. The vector which shows the voltage across the capacitor will then be
90◦ after the vector showing the current, the voltage across the resistor will have the
same direction as the current and the voltage across the inductance will be 90◦ ahead
of the current. The total voltage across the serial link of R, C and L should then be
the vector sum of the three voltage phasors and correspond to the applied voltage.
We see that the phase difference between current and voltage will be between +90◦
and −90◦.

Real axis
Voltages
Current

Imaginary axis

t

compleks
I(t)

compleks 
V(t)

I(t)V(t)

V (t)R

V (t)C

V (t)L

Fig. 3.4 Example of phasor description of an RCL circuit subjected to a harmonically varying
voltage. The current at any time (anywhere in the circuit) is the x components of the vector I (t),
while the voltage across the various circuit components is given by the x component of the vectors
VR(t), VC (t) and VL (t), and their sum is V (t). See the text for details
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Fig. 3.5 A time plot in
which the current slightly
leads the applied voltage

Time

Voltage
Current

V(t)
I(t)

Phasor diagrams can also be based on quantities other than those we have chosen
here. One variant is to use complex impedances that are added vectorially. The
strength of phasor diagrams is that we can easily understand, for example, how the
phase differences change with frequency. The depiction in Fig. 3.4 applies only to
a particular applied angular frequency ωF . If the angular frequency increases, the
voltage across the capacitor decreases while the voltage across the inductance will
increase. Phase resonance occurs when the two voltage vectors are exactly the same
size (but oppositely directed) so that their sum is zero.

Figure3.5 shows the time development of voltage and current in a time plot. The
current in the circuit is slightly leading the applied voltage. For a series RCL circuit
with an applied voltage, this means that the applied frequency is lower than the
resonant frequency of the circuit.

Note that phasors can be used only after the initial rather complicated oscillatory
pattern is over, andwe have a steady sinusoidal output corresponding to the particular
solution of differential equation.

3.4 The Quality Factor Q

In the context of forced oscillations, it is customary to characterize oscillating
systems with a Q-factor or Q-value, where the symbol Q, not to be confused
this with the charge Q in an electrical circuit, stands for “quality”, which is
why the Q-factor is also called the quality factor. The factor tells us something
about how easy it is to make the system oscillate, or how long the system will
continue to oscillate after the driving force is removed. This is more or less
equivalent to how small loss/friction is in the system.

The quality factor for a spring oscillator is given by:

Q = mω0

b
=

√
mk

b2
. (3.11)

We see from this formula that the smaller the value of b, the larger is the quality
factor Q.

Figure3.6 shows how the oscillation amplitude varies with the frequency of the
applied force for four different quality factors. A Q-value of 0.5, in this case, cor-
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Fig. 3.6 When the
frequency of the applied
force changes relative to the
system’s own natural
frequency, the amplitude will
be greatest when the two
frequencies are nearly equal.
The higher the quality factor
Q (i.e. smaller loss), the
higher the resonance
amplitude
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responds to critical damping and we see no hint of any resonance for such a large
damping.

There are two traditional ways of defining Q. The first is:

Q ≡ 2π
stored energy

energy loss per period
= 2π

E

Eloss-per-period
. (3.12)

This definition implies a particular detail which few people are familiar with, but
which is extremely important for forced oscillations in many contexts. Once we have
achieved a steady state (when the applied force has been working for long and is still
present), the loss of energy will be compensated by the work done on the system by
the applied force. We see from Eq. (3.12) that a system with a high Q-value loses
only a tiny part of the total energy per period.

Suppose now we turn off the applied force. Then the system will oscillate at the

amplitude resonance frequency ω′ =
√

ω2
0 − (b/2m)2 ≈ ω0”, and the energy will

eventually disappear. It will take the order of Q/(2π) periods before the energy is
used up and the oscillations end. Let us look a little more closely at this.

Loss of energy per period is a slightly unfamiliar quantity. Let us consider first
Ploss, which is “energy loss per second” with the unit watt. We know that after the
force has been removed, the loss will be given by:

Ploss = −dE

dt
. (3.13)

Then we can approximate the loss of energy over a period of time T with:

Eloss-per-period = Ploss T .
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Using the definition given in Eq. (3.12), we get:

Ploss = 2π

T Q
E . (3.14)

Combining Eqs. (3.13) and (3.14) and the relation ω = 2π/T , we get a differential
equation governing the time development of the stored energy after the removal of
the driving force. The equation is:

Ploss ≡ −dE

dt
= ω0

Q
E .

The solution is:
E(t) = E0e

−ω0t/Q .

The energy falls to 1/e of the initial energy after a time

Δt = Q

ω0
= QT

2π
. (3.15)

We see that the amplitude of oscillation decreases in a neat exponential manner
after the removal of an applied oscillatory force, with the time constant given in Eq.
(3.15).

It can be shown that nearly the same time constant describes the growth of the
output after the application of oscillating force. Obviously, the time course is not as
simple because it depends, apart from other factors, on whether or not the frequency
of the applied force equals the resonant frequency of the circuit (see Fig. 3.7). Never-
theless, if it takes an interval of the order of 10ms for an oscillation to die out after an
applied force is removed, it will also take nearly the same interval to build a steady
amplitude after we switch on the applied force.

One might think that the time constant (and thus the Q-value) of the system could
be found by referring to the thin red line in Fig. 3.7 and noting how long it takes
from the moment the force is removed till the output falls to 1/e of the value just
before the power was turned off. It turns out, however, that the number so inferred
is twice the expected value! The difference can be traced to the fact that the time
constant deduced in Eq. (3.15) applies to how energy changes over time, whereas
Fig. 3.7 shows amplitude and not energy. The energy is proportional to the square
of the amplitude. Note that the stationary amplitude after the force has worked for a
while is greatest at the resonance frequency!

The curves in Fig. 3.7 show that after an applied force is turned on, the amplitude
of the oscillations increases, without becoming infinite. Sooner or later, the loss in
energy is as large as the power applied through the oscillating force.After equilibrium
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Fig. 3.7 Two examples of the build-up of oscillations in an oscillating system after an external
sinusoidal force is coupled and subsequently removed (the force acts only during the interval
indicated by a thick red line at the bottom). The frequency of the applied voltage is equal to the
resonant frequency on the left and slightly lower on the right. While the force is present, the system
oscillates with the frequency of the force. After the force has ceased, the circuit oscillates with its
own resonance frequency. The thin red line marks the value 1/e times the maximum amplitude just
before the applied force was removed. The Q-factor of the circuit is 25

a steady state is achieved, the amplitude of the oscillations will remain constant as
long as the applied force has constant amplitude.

The mathematical solution of an inhomogeneous differential equation for an oscillating system
subjected to an oscillatory forcewith given initial conditions is rather tedious. However, it is possible
to find such a solution exactly using, for example, Maple or Mathematica. However, we have used
numerical solutions in the preparation of Fig. 3.7; it is a rational approach since complex differential
equations can often be solved numerically about as easily as simple differential equations. More
about this in the next chapter.

In experimental context, a different and important definition of the Q-value is
often used instead of that in Eq. (3.12). If we create a plot that shows energy
(NOTE: not amplitude) in the oscillating system as a function of frequency
(as in Fig. 3.8), the Q-value is defined as:

Q = f0
Δ f

(3.16)

where the half-width Δ f , shown in the figure, compared to the resonance
frequency f0.

This relationship can be shown to be in accordance with the relationship given in
Eq. (3.12), at least for high Q-values.

The definitions given in Eqs. (3.12) and (3.16) apply to all physical oscillating
systems, not just the mechanical ones.
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Fig. 3.8 The Q-value can
also be defined from a
graphical representation of
energy stored in the
oscillating system as a
function of frequency. The
Q-value is then given as the
resonance rate f0 divided by
the half value Δ f

f
0

E      /2

E

Frequency

O
sc

illa
tio

n 
en

er
gy

max

max

0

f

For the most interested: It is now possible to make a remarkable observation: A resonant circuit
responds significantly to frequencies within a frequency band of width

Δ f = f0
Q

.

However, the circuit needs a certain amount of time

Δt = Q

ω

to build-up the response if we start from zero. It takes about the same time also for a response that
is already built to die out.

The product of Δ f and Δt comes out to be:

ΔtΔ f = Q

ω

f0
Q

ΔtΔ f = 1

2π
. (3.17)

Multiplying this expression with Planck’s constant h, and using the quantum postulate that
the energy of a photon is equal to E = h f , we get:

ΔtΔE = h

2π
. (3.18)

This expression is almost identical to what is known as Heisenberg’s uncertainty relationship
for energy and time. There is a factor 1/2 in front of the term after the equality sign, but such a
factor will depend on how we choose to define widths in frequency and time.

There are certain parallels between a macroscopically oscillating system and the relationships
we know from quantum physics. In quantum physics, Heisenberg’s uncertainty relationship is
interpreted as an “uncertainty” in time and energy: we cannot “measure” the time of an event more
accurately than what is implicit in the relationship

Δt = h

2πΔE

provided that we do not change the energy of a system by more than ΔE .
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Our macroscopic variant applies irrespective of whether we do measurements or not, but mea-
surements will of course reflect the relationship that exists. We will return to this relationship later
in the book, but in the form of Eq. (3.17) instead of (3.18).

“Inertia” in a circuit is important for what we can dowithmeasurements. For a high Q oscillation
cavity in themicrowave region (called a “cavity”),we can easily achieve Q-values of 10,000 ormore.
If such a cavity is used in pulsed microwave spectroscopy, it will take of the order of 60,000 periods
to significantly change the energy in the cavity. If the microwave frequency is 10GHz (1010 Hz),
the time constant for energy changes will be of the order of 6µs. If we study relatively slow atomic
processes, this may be acceptable, and the sensitivity of the system is usually proportional to the
quality factor. However, if we want to investigate time intervals lasting only a few periods of the
observed oscillations, we must use cavities with much lower Q-value. More will be said about this
in the next chapter.

3.5 Oscillations Driven by a Limited-Duration Force

So far, we have considered a system that is influenced by an oscillating force lasting
“infinitely long”, or a force that has lasted for a long time and ends abruptly. In
such a situation, we can determine a quality factor Q experimentally in terms of
the frequency response of the system as shown in Fig. 3.8 and Eq. (3.16). Relative
oscillation energy (relative amplitude squared) must be determined after the system
has reached the stationary state, i.e. when the amplitude no longer changes with time.

How will such a system behave if the oscillatory force lasts only for a short time?
We will now investigate this matter.

When we introduce a limited-duration force (a “temporary force”), we must
choose how the force should be started, maintained and terminated. For a variety
of reasons, we want to avoid sudden changes, and have chosen a force whose overall
amplitude follows a Gaussian shape, but follows, on a finer scale, a cosinuosidal
variation. Mathematically, we shall describe such a force by the function:

F(t) = F0 cos[ω(t − t0)]e−[(t−t0)/σ ]2 . (3.19)

where σ indicates the duration of the force (the time during which the amplitude falls
to 1/e of its maximum value). ω is the angular frequency of the underlying cosine
function, and t0 is the time at which the force has the maximum amplitude (peak of
the pulse occurs at time t0). The oscillating system is assumed to be at rest before
the force is applied.

Figure3.9 shows two examples of temporary forceswith different durations. Here,
the force has a frequency equal to 100Hz (period T = 10 ms). In the figure on the
left, σ is equal to 25ms, i.e. 2.5 × T , and successive peaks have been marked (from
maximum onwards until the amplitude has decreased to 1/e) to highlight the role
played by the size of σ . In the figure to the right, σ = 100ms, i.e. 10 × T ; again, the
markings give an indication of the relationship between ω (or rather the frequency
or period) and σ .
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Fig. 3.9 The force F(t) for centre frequency 100Hz and pulse width σ equal to 0.025 and 0.10 s.
See the text for further explanations
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Fig. 3.10 The temporal response of the system (right) due to the applied force shown in the left
part of the figure

We would now like to study how an oscillating system will behave when it is
subjected to a temporary force. Based on Fig. 3.7, we expect the response to be quite
complicated. Since it is not easy to make headway analytically, we have opted for
numerical calculations instead.

Figure3.10 shows the time course for one temporary force alongwith the response
of the system. For simplicity, the frequency of the force has been made equal to the
resonant frequency of the system, and according to the initial conditions chosen, the
system is at rest before the force is applied.

Figure3.10 shows some interesting features. The system attempts, but fails to keep
pace with the force as it grows. We see that the peak of the response (amplitude)
occurs a little later than the time at which the force reached its maximum value.

The force adds some energy to the system.When the force decreases as quickly as
it does in this case, the system cannot get rid of the supplied energy at the same rate
as that at which the force decreases. Left with surplus energy after the vanishing of
the force, the system executes damped harmonic oscillations at its own rate. It may
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Fig. 3.11 Dependence of the
maximum amplitude on the
duration of the applied force
(σ ). Note the logarithmic
scale on both axes
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be mentioned that σ here is 25ms and that the Q-factor of the oscillating system is
chosen to be 25, which corresponds to a decay time for the energy for the oscillations
of 40ms.

It may be useful to point out some relationships between various parameters:

• Howmuch energy can be delivered to the systemwithin a given time depends
on the force (proportionality?).

• The amount of energy that can be delivered, for a given input of force, will
depend on how long the force works.

• The loss of energy is independent of the strength of the force after it has
disappeared.

• The loss of energy is proportional to the amplitude of the oscillations.

As mentioned, we expect the amplitude to increase when the force lasts longer
and longer, but the precise relationship is not self-evident. In Fig. 3.11 are shown
calculated results for the maximum amplitude attained by the system for different σ
values. ω always corresponds to the resonance frequency of the system. The figure
has logarithmic axes to get a large enough range of σ . The straight line represents
the case that the amplitude increases linearly with σ (duration of the force).

We see that for too small σ (the power lasting only a few oscillation periods),
the maximum amplitude increases approximately proportionally with the duration
of the force. When the force lasts longer, this does not apply anymore, and beyond
a certain limit, the amplitude of the oscillation does not increase, however long the
duration of the pulse may be. This is due to the fact that at the given amplitude, the
loss is as large as the energy supplied by the power.

If the amplitude of the force is increased, the amplitude of the oscillations will
also increase, but so will the loss. It is therefore found that the duration of the force
required to obtain the maximum amplitude is approximately independent of the
amplitude of the force.
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Fig. 3.12 The frequency response (actually only maximum amplitude) of the oscillating system
for different durations (σ ) of the force pulse (left part). The σ values used are respectively 25, 50,
100, 200, 400 and 800ms (from blue/widest to red/narrowest curves). In the right part of the figure,
corresponding frequency analyses of the force pulses themselves are shown. See the text for further
explanations

3.6 Frequency Response of Systems Driven
by Temporary Forces *

There is an unexpected consequence of using short-term “force pulses”. We will
address this topic already now,1, but will return to it more than once in other parts of
the book. Full understanding of the phenomenon under discussion is possible only
after a review of Fourier analysis (see Chap. 5).

In Fig. 3.8, we showed how large an oscillation energy (proportional to amplitude
squared) a system gets if it is exposed to a harmonic force with an “infinitely long”
duration. The oscillation energy achieved was plotted as a function of the frequency
of the applied force. A plot like this is usually called “frequency response” of the
system, and the curve can be used to determine the Q-factor of the oscillating system
from Eq. (3.16). The narrower the frequency response, the higher the Q-factor.

It is natural to determine the frequency response also for the case when the force
lasts only a short time. Themaximum energy system achieves as a result of the power
is plotted as a function of the centre frequency of the power in a similar manner as
in Fig. 3.8, and the result is given in the left part of Fig. 3.12. Relative energy is
proportional to the square of the amplitude of the oscillations.

It turns out (left part of Fig. 3.12) that the frequency response of the system
becomes different with temporary “force pulses” than with a harmonic force of
infinitely long duration (as shown in Fig. 3.8). The frequency response becomes

1This sub-chapter is for the most interested readers only.



3.6 Frequency Response of Systems Driven by Temporary Forces 49

wider and wider (spreading over ever greater frequency range on both sides of the
resonant frequency) as duration of the force pulse becomes shorter and shorter.

If, on the other hand, we apply longer and longer “force pulses”, the frequency
response of the system will reach a limiting value. There is a lower limit for the
width of the curve, and thus a maximum limit for the calculated Q-factor. In general,
the term Q-factor is used only for this limiting value. For shorter power pulses, the
frequency response is specified rather than the Q-value.

However, it is possible to make a frequency analysis of the temporary force pulse
itself. We will find out how this is done in Chap. 5 when we come to review Fourier
analysis. To provide already now a rough idea of what a frequency analysis entails,
it will be enough to say that such an analysis yields information about the frequency
content of a signal, and tell us “which frequencies will be needed to reproduce the
signal at hand”.

The right part of Fig. 3.12 shows the frequency analysis of the “force as a function
of time” for the same σ values as in the left part of the figure. The figure actually
shows a classical analogy to Heisenberg’s uncertainty relationship also known as the
time-bandwidth product . We already found this in Eq. (3.17), and we will return to
this in Chap. 5.

The two halves of Fig. 3.12 can be condensed into a single plot, and the result will
then be as shown in Fig. 3.13.
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Fig. 3.13 The correlation between the frequency response of a system and the frequency of the
driving force when the duration of the force changes. There are two border cases. In one case (I) the
force lasts so long that the response depends only on the system itself (how much loss it is, and thus
which Q-value it has). In the other case (II), the system’s loss is so low in relation to the working
time of the influence that the response to the force depends only on the force itself (how short time
it lasts). The system’s features have the least to say for the response



50 3 Forced Oscillations and Resonance

Based on these observations, we can say that:
• Thequality factor is a parameter/quantitywhich characterizes the oscillating
system. The smaller the loss in the system, the higher the Q-factor and the
narrower frequency response, well and mark for harmonic forces that last
long.

• When the force lasts for a short time (few oscillations) the frequency of the
force is poorly defined. When an oscillating system is subjected to such a
force, the frequency response is dominated by the frequency characteristic
of the power itself and, to a lesser extent, the system itself.

Figure3.13 is of some interest in the debate about whether Heisenberg’s uncertainty relationship
is primarily due to the perturbing influence of measurement on a system, or to the system itself. We
do not delve into this issue here, but the result suggests that each point of view has some merit.

3.7 Example: Hearing

Finally in this chapter, we will say a little about our hearing and the mechanisms
behind the process. Forced oscillations occupy the centre state in the present section,
while other aspects associated with hearing will be treated in Chap. 7.

In our ears (see Figs. 3.14, 3.15 and 3.16), sound waves in the air cause oscilla-
tions at different frequencies in the auditory canal, tympanic membrane (eardrum),
auditory ossicles (three tiny bones in the middle ear that conduct sound from the
tympanic membrane to the inner ear), and the cochlea (“snailhouse”)—a system of
fluid-filled ducts which makes up the inner ear.

It is the inner ear that is of particular interest for us here, since it exemplifies reso-
nance phenomena and demonstrates how ingenious our hearing sense is. Figure3.15

Fig. 3.14 Anatomical
structures of the human ear.
Inductiveload, CC BY 2.5,
[1]
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https://commons.wikimedia.org/wiki/File:Anatomy_of_Human_Ear_with_Cochlear_Frequency_Mapping.svg
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Fig. 3.15 The inner ear has a three-channel structure that stretches almost three rounds from bottom
to top. This figure indicates how this would look like if we stretched out the insides of the cochlea.
See the text for details
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Fig. 3.16 Details on the anatomical structure of the basilar and tectorial membrane and their close
connection through the organ of Corti. Note the hair cells that translate mechanical strain to electric
signals. The organ of Corti structures are found along the full length of the basilar membrane with
the result that it is an impressive number of nerve cells going from each ear to the brain
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illustrate a “stretched out” cochlea with the fluid-filled ducts scala vestibuli from the
oval window to the top of the cochlea and scala tympani from the top back to the
round window (which is facing the air filled space of the middle ear).

One wall of the scala tympani has a particular structure called the basilar mem-
brane, and weakly connected to the wall along the scala vestibuli we find the tectorial
membrane. These membranes will oscillate when the ear picks up a sound signal.

Between the basilar and tectorial membranes, we find “hair cells” that respond
to pressure. The amplitude of the oscillations is picked up by these hair cells, and
the information is transmitted through the nerves to the brain (via different signal
processing centres along the way).

It is a fascinating structure of cells named Organ of Corti (see Fig. 3.16) that
translate pressure changes into electrical signals in nerves. Figure3.16 also indicates
how the third duct inside the cochlea, the air filled scala media, is a part of the total
structure.

From our perspective, the important part is the basilar membrane. Earlier in this
chapter, forced oscillations have been analysed. Byway of a trial, that analysis will be
applied to oscillations in the basilar membrane, which extends diametrically across
the conical cavity of the cochlea in the inner ear (see Figs. 3.15 and 3.16).

Themembrane can vibrate, just like the belly (top plate) of a violin, in unison with
the pressure variations generated by the sound. The membrane, however, changes
character from the outer to the inner parts of cochlea. The relative length of some
fibres in the basilar membrane varies from the outer to the inner part as indicated
in Fig. 3.15. As a result, if we hear a dark sound (low frequency), only the inner
part of the basilar membrane will vibrate. If we hear a light sound (high frequency),
only the outer part will vibrate. This is a fabulous design that allows us to hear many
different frequencies at the same time as separate audio impressions. We can hear
both a bass sound and a disk rhythm simultaneously, because the two sound stimuli
excite different parts of the basilar membrane. The hair cells and nerve endings pick
up vibrations from different parts of the membrane in parallel.

It was the biophysicist Georg von Békésy from Budapest who found out how the basilar mem-
braneworks as a “position-frequencymap”.He received theNobel Prize in Physiology andMedicine
for this work in 1961.

The basilar membrane is a mechanical oscillation system that behaves in a man-
ner similar to the externally driven mass–spring oscillator and RCL circuit. Different
parts of the membrane have properties that make them responsive to different fre-
quency ranges. We can assign different Q-values to different parts of the basilar
membrane.

Based on what we have learned in this chapter, we should expect that even if we
hear a sound that delivers a harmonic force with a well-defined frequency on the
eardrum, the basilar membrane will vibrate not at one position only along the basilar
membrane, but over a somewhat wider area. Since we have “parallel processing” of
the signals from the hair cells, the brain can still “calculate” a fairly well-defined
centre frequency.
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If, however, we listen to shorter and shorter sound pulses, we expect that wider
and wider parts of the basilar membrane will be excited. This would make it harder
for the brain to determine which centre frequency the sound pulse had. This means
that it is harder to determine the pitch of a sound when the sound lasts very shortly.

When musicians play fast passages on, for example, a violin they can falter a little
with the pitch without the error coming to the notice of a listener. If they stumbled
as much with longer lasting tones, their slips will not escape the attention of the
audience.

When the sound pulse lasts only one period (and this period, for example, corre-
sponds to 1000Hz), we only hear a “click”. It is impossible to tell which frequency
was used to create the sound image itself.

On the other hand, it is easier to perceive the direction of the audio source of a
click than the source of a sustained sound. The ability to determine the time fairly
precisely when a sound occurs, along with the fact that we have two ears, is very
important in order to determine the direction the incoming sound (Nevertheless, it
should be mentioned that there are other mechanisms to determine where a sound
comes from.).

According toDarwin, our ears are the result ofmillions of years of natural selection
that was beneficial for the survival of our species. The ear has become a systemwhere
there is an optimal relationship between the ability to distinguish between different
frequencies and the ability to follow fairly quick changes over time. Resonance,
time response and frequency response are very important details to understand our
hearing.

An interesting detail with regard to hearing relies on phase sensitivity. Nerve impulses (they
are digital!) cannot be transmitted over nerve fibres with a repetition rate much higher than about
1000Hz. It is therefore impossible for the ear to send signals to the brainwith a better time resolution
than about 1 ms. This means that the ear cannot, in principle, provide information about the phase
of a sound vibration for frequencies higher than a few hundred hertz (Some disagree and claim
that we can follow phases up to 2000Hz.). The prevalent view is that sound impression become
indifferent to the phase of the various frequency components of a sound signal.

3.8 Learning Objectives

After working through this chapter you should be able to:

• Set up the differential equation for a system subject to forced harmonic
oscillations and find an analytical solution for this when the friction term is
linear.

• Find a numerical solution of the aforementioned differential equation also
for nonlinear friction terms and for nonharmonic forces (after having been
through Chap. 4).
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• Derive mathematical expressions for resonance frequency, phase shift and
quality factor for a single mechanical oscillating system or an electrical
oscillating circuit.

• Set up a phasor diagram to explain typical features of an RCL circuit for
different frequencies of an applied voltage.

• Know the time course of the oscillations in a circuit, as an externally applied
force begins and when it ends and how the time course is affected by the
Q-factor.

• Know how the response to an oscillating system changes when the force
lasts for a limited period of time.

• Know the coarse features of the anatomy of the ear well enough to explain
how we can hear many pitches all at the same time.

• Know that in a mechanical system we cannot get both high frequency-
selectivity and high time resolution simultaneously.

Both for the mechanical and electrical oscillating system examined so far, we end up with an
equation where the second derivative of a quantity along with the quantity itself is included. It may
lead to the opinion that all oscillations must be described by a second-degree differential equation.

However, there are also oscillations that are normally described by two or more coupled first-
order differential equation and a significant time delay between the “force” and “the response” in
the differential equations. In biology, such relationships are not uncommon.

3.9 Exercises

Suggested concepts for student active learning activities: Forced oscillation,
resonance, phasor, phase difference, quality factor, initial and terminal transient
behaviour, frequency response, simultaneous multiple frequency detection, basilar
membrane, cochlea, inner ear.

Comprehension/discussion questions

1. For a mass–spring oscillator, the phase difference between the applied force and
the amplitude of the bob change with the frequency of the applied force. How is
the phase difference at the resonance frequency and at frequencies well below
and well above it?

2. How does the phase difference between the applied force and the velocity vary
for a mass–spring oscillator exposed to a harmonic force?

3. It is often easier to achieve a high Q-value in a oscillating system with a high
resonance frequency than with a low one. Can you explain why?

4. If our hearing (through natural selection could distinguish much better between
sound at nearby frequencies than we are able to achieve, what would the disad-
vantage have been?
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5. We operate with two almost equal resonant frequencies. What are their charac-
teristics? Is it possible for these frequencies to coincide?

6. What would happen to an oscillating system without damping if it was exposed
to a harmonic applied force at the resonant frequency?What would happen if the
applied force had a frequency slightly different from the resonance frequency?

7. In several laboratories attempting to detect gravity waves, oscillating systems
with suitable resonance frequencies and Q-values are used as detectors. For
example, a resonance frequency of about 2–4kHz is chosen when one wants
to detect gravity waves due to instability in rotating neutron stars. What is the
motivation behind using an oscillating system as a detector for this purpose?

8. For a mechanical system, the phase shift π/2 between the amplitude and the
applied force was explained by the fact that such a phase shift corresponds to
the force supplying the maximum power to the system (maximum force applied
over the longest possible way). Explain in a similar manner the phase shift also
for the electrical RCL circuit with a harmonically varying applied voltage.

9. Attempt to explain the phase shift for the RCL series circuit with applied voltage
in case the frequency is far less and far greater than the resonant frequency of
the circuit alone. Based on how the impedance of a capacitor and the impedance
of an inductance change with frequency.

10. How can the oscillations that led to the collapse of the Tacoma Narrows Bridge
in Washington, USA, in 1940 be explained as a forced oscillation? Do you think
the Q-value was big or small? (May be relevant to watch one of the movies
featured on YouTube.)

11. An AC voltage V (t) = V1 cos(ωF t) is applied to an electrical oscillating circuit,
ωF is equal to the resonance (angular) frequency of the circuit. After a long
time, the oscillations in the circuit stabilize and the amplitude of the current
fluctuations is I1. An interval of duration t1 elapses between the connection of
the AC voltage to the circuit and the current reaching the value 0.9 × I1. We
then remove the voltage and let the circuit come to rest. We then reconnect to
the AC voltage, but now with twice the amplitude: V (t) = 2V1 cos(ωF t).
(a) How large is the current in the circuit (relative to I1) a long time after the AC
voltage was reconnected?
(b) How long does it take for the amplitude of the current in the circuit to reach
90% of the limiting, long-time value?
(c) What do we mean by the expression “long-time value” in this context?

Problems

12. In the case of old-fashioned radio reception in the medium wave range, we
used circuitry consisting of an inductance (coil) and capacitance (capacitor) to
discriminate between two radio stations. The radio stations occupied 9kHz on
the frequency band, and two radio stations could be as close as 9kHz. In order for
us to choose one radio station from another, the receiver had to have a variable
resonant circuit that suited one radio station, but not another. The frequency of
the Stavanger transmitter was 1313kHz.Which Q-factor did the radio receiver’s
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Fig. 3.17 Sensitivity curve
of a “single-photon detector”

Wavelength (nm)
400 600  800 1000

80

60

40

20

0

resonant circuit need? [These considerations are still applicable in our modern
times, although digital technology makes certain changes.]

13. Figure3.17 shows “sensitivity curve” for a “single-photon detector”. Let us con-
sider this curve as a sort of resonance curve, and try to estimate how long a contin-
uous electromagnetic wave (light) will have to illuminate the detector to achieve
maximum/stationary response in the detector? (Imagine a similar response as
in Fig. 3.7.) The frequency of the light can be calculated from the relationship
λ f = c where λ is the wavelength, f the frequency and c the velocity of light.

14. Search the web and find at least ten different forms of resonance in physics.
Enter a web address, where we can read a little about each of these forms of
resonance.

15. Derive the expressions given in Eq. (3.11) from Eq. (3.12) and other expressions
for an oscillating mass–spring oscillator.

16. The Q-value for an oscillating circuit is an important physical parameter.
(a) Give at least three examples of how the Q-value influences the func-
tion/behaviour of a circuit.
(b) Describe at least two procedures as to how the Q-value can be determined
experimentally.
(c) If we use a temporary force, it is more difficult to determine the Q-value
experimentally. Explain why.

17. A series RCL circuit consists of a resistance R of 1.0	, a capacitor C of 100nF,
and an inductance L of 25µH.
(a) Comparing Eq. (3.7) (slightly modified) with Eq. (3.1), we realize that these
equations are completely analogous. Just by replacing a few variables related
to the mechanical mass–spring oscillator, we get the equation for an electrical
series RCL circuit. Using this analogy, we can easily reshape the expressions
for phase shift [Eq. (3.3)], amplitude [Eq. (3.4)], Q-value [Eq. (3.11)] and the
expressions for phase resonance and amplitude resonance for the mass–spring
oscillator, to corresponding formulas for a series RCL circuit. Determine all
these terms for a series RCL circuit.
(b) Calculate the resonant frequencies (both for phase and amplitude resonance)
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of the circuit (based on amplitudes of charge oscillations, not current oscilla-
tions).
(c) Calculate the Q-value of the circuit.
(d) What is the difference in phase between the applied voltage and current in
the circuit at phase resonance and at a frequency corresponding to ω0 + Δω/2
in Eq. (3.16)?
(e) Howwide is the frequency response of the circuit for a “long-lasting” applied
voltage?
(f) How “long” must the applied voltage actually last for the circuit to reach
an almost stationary state (that amplitude no longer changes appreciably with
time)?
(g) Assume that the circuit is subjected to a force pulse with centre frequency
equal to the resonance frequency and that the force pulse has a Gaussian ampli-
tude envelope function [Eq. (3.19)] where σ has a value equal to twice the time
period corresponding to the centre frequency of the circuit. Estimate the width
of the frequency response to the circuit with this force pulse.

Reference

1. Inductiveload, https://commons.wikimedia.org/wiki/File:Anatomy_of_Human_Ear_with_
Cochlear_Frequency_Mapping.svg. Accessed April 2018
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Chapter 4
Numerical Methods

Abstract The purpose of this chapter is to provide a brief introduction as to how a
first- or second-order differential equation may be solved to the desired precision by
using numericalmethods like Euler’smethod and fourth-order Runge–Kuttamethod.
Emphasis is placed on the difference between an analytical and a numerical solution.
Movement of a pendulum for an arbitrary amplitude is calculated numerically to
exemplify how easily some problems can be solved by numerical methods. Methods
for solving partial differential equations are also described, but are not used until
a later chapter. The importance of testing, reproducibility and documentation of
successive program versions are discussed. Specimen programs are given at the end
of the chapter.

4.1 Introductory Remarks

During my student days (1969–1974), Norway’s largest computer had a memory
capacity (RAM)of 250kBand it filled awhole room.Wemade programs by punching
holes in a card, one card for each line (see Fig. 4.1). The pack of cards was carried
carefully to a separate building; Abel’s House (it was a disaster to drop the pack).
A waiting period of a few hours up to a whole day passed before we could collect
the result in the form of a printout on perforated pages. A punching error meant
that a card had been punched again so that the wrong card in the stack could be
exchanged with the new card. This was followed by a new submission and another
waiting period. Guess if debugging a program took an eternity! Today, the situation is
totally different. Everyone owns a computer. Program development is incomparably
easier and far less time-consuming than in earlier times. And numerical methods
have become a tool as natural as analytical mathematics.

But all tools have one thing in common: training is needed in how they are to be
used. In this chapter, our primary concern will be to see how the equation of motion
for an oscillating systemand thewave equation can be solved in a satisfactorymanner.
It is not enough to read how things can be done. Practice is needed for acquiring the
requisite skills and mastering the routine.
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Fig. 4.1 Examples of punch cards, along with a modern memory device (sizes indicated) with
storage capacity equivalent to 800 million punch cards (which would have weighed 1900 tons!).
The memory device weighs about 0.5g

Parts of the chapter were written by David Skålid Amundsen as a summer job for CSE 2008.
Amundsen’s text has since been revised and expanded several times by Arnt Inge Vistnes.

4.2 Introduction

When in the “old days” (i.e. more than 30years ago), we investigated the motion of
a mathematical or physical pendulum in a lower-level physics course, we had to be
content with “small amplitudes”. At that time, with only the rudiments of analytical
mathematics in our toolkit, we could only proceed by imposing the approximation of
small displacements, which implied that the movement is a simple harmonic motion.
Larger amplitudes are much more difficult to handle analytically, and if we consider
complicated friction as well, there is simply no analytical solution to the problem.

Once we have learned to use numerical methods of solution, it is often almost as
easy to use a realistic, nonsimplified description of a moving system as an idealized
simplified description.

This book is based on the premise that the reader already knows something about
solving, for example, differential equations with the aid of numerical methods. Nev-
ertheless, we make a quick survey of some of the simplest solution methods so that
those who have no previous experience with numerical methods would nonetheless
be able to keep pace with the rest. After the quick review of some simplemethods, we
spend a little more time on a more robust alternative. Additionally, we will say a little
about how these methods can be generalized to solve partial differential equations.

It should be mentioned here that the simplest numerical methods are often good
enough for calculating, for example, the motion of a projectile, even in the presence
of air resistance. However, the simplest methods often accumulate errors and give
quite a bad result for oscillatory motion. In other words, it is often necessary to use
some advanced numerical methods in dealing with oscillations and waves.
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This chapter is structured along the following lines:
First, a quick review of the simplest numerical methods used for solving dif-

ferential equations is given. Secondly, the fourth-order Runge–Kutta’s method is
presented. This first part of the chapter is rather mathematical. Then comes a prac-
tical example, and finally, we will include examples of program codes that can be
used for solving the problems given in later chapters.

4.3 Basic Idea Behind Numerical Methods

In many parts of physics, we come across the second-order ordinary differential
equations:

ẍ ≡ d2x

dt2
= f

(
x(t), ẋ(t), t

)
. (4.1)

with the initial conditions x(t0) = x0 and ẋ(t0) = ẋ0. The symbol f
(
x(t), ẋ(t), t

)

means that f (for the case when x is the position variable and t the time) is a function
of time, position and velocity.

In mechanical systems, differential equation often arises when Newton’s second
law is invoked. In electrical circuitry containing resistors, inductors and capacitors,
it is often Kirchhoff’s law together with the generalized Ohm’s law and complex
impedances that are the source of differential equations.

When we solve second-order differential equations numerically, we often con-
sider the equation as a combination of two coupled first-order differential
equations. We rename then the first derivative and let this be a new variable:

v ≡ dx

dt
.

The two coupled first-order differential equations then becomes:

dx

dt
= v

(
x(t), t

)
,

dv̇

dt
= f

(
x(t), v(t), t

)
.

We will shortly see some simple examples of this in practice.
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4.4 Euler’s Method and Its Variants

We can solve a first-order differential equation numerically by specifying a starting
value for the solution we are interested in, using our knowledge of the derivative of
the function to calculate the solution for a short time �t afterwards. We then let the
new value act as a new initial value to calculate the value that follows �t after this
(that is, at t = 2�t). We repeat the process until we have described the solution in
as many points n as we are interested in.

The challenge is to find out how we can determine the next value from what we
already know. It can be done in a crude or refined method. The easiest method is
perhaps Euler’s method. It is based on the well-known definition of the derivative:

ẋ(t) = lim
�t→0

x(t + �t) − x(t)

�t
.

If �t is sufficiently small, we can manipulate this expression and write:

x(t + �t) ≈ x(t) + �t ẋ(t) .

Assume the initial values are given by (xn, ẋn, tn). Then follows the discrete version
of our differential equation (named “difference equations”):

xn+1 = xn + ẋn�t .

By using such an update equation for both x(t) and ẋ(t), we get the famil-
iar Euler method (in our context for the solution of second-order differential
equation):

ẋn+1 = ẋn + ẍn�t

xn+1 = xn + ẋn�t .

Thus, we have two coupled difference equations.
Figure4.2 outlines how the method works. This is the most common way to

make such an illustration, but in my view it only gives a superficial understanding.
What happens when the discrepancy between the correct solution and the numerical
solution becomes bigger and bigger? Here are some details we should know.

Figure4.3 looks similar to Fig. 4.2, but is illustrating a different message. The
mid-blue blue curve (bottom) shows how a projectile thrown obliquely will proceed
with an initial velocity of 1.0m/s in the horizontal direction and 3.0m/s in the vertical
direction. The calculation is based on an analytical solution to this simple problem.
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Fig. 4.2 Euler’s simple
method of calculating a
function numerically. The
top (blue) curve is the exact
analytic solution. The lower
(red) curve is calculated
using Euler’s simple method,
while the middle curve is
calculated using the
midpoint method. The time
step is the same in both cases
and is chosen very large to
accentuate the differences
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Fig. 4.3 Calculation of an
oblique throw using Euler’s
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The figure also shows a plot of the solution found by using Euler’s method (red
curve) with very large time steps (0.2 s). Even after the first step, the calculated new
position is quite far from what it should be.

After the first step, new values have been calculated for position and speed in both
horizontal and vertical directions. These values are now plugged into the differential
equation. If we had calculated the path for exactly these values, we would have got
the solution given by a green curve (next to bottom). This is a different solution of
the differential equation than we started with!

Not even now, we manage to follow this new solution closely since the time step
is so big and when we use Euler’s method once more, we get a position (and velocity)
quite far from the second solution of the differential equation we started with.

We keep going along this route. For each new time step, we get a new solution
of differential equation, and in our case, the error, being systematic, becomes bigger
and bigger after each time step.

It can be shown that if we reduce the time step significantly (!) compared to that
used in Fig. 4.3, the solution will be far better than in the figure. Nevertheless, it is
not always enough to only reduce the size of the time step.

First of all, we cannot make the step size so small that we run into trouble
with inputting numbers accurately on a computer (without having to use extremely
time-consuming techniques).Whenwe calculate xn+1 = xn + ẋn�t , the contribution
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ẋn�t must not always be so small that it can only affect the least significant digit of
xn+1.

Another limitation lies in the numerical method itself. If we make systematic
errors which accumulate at each time step, no matter how small the time steps are,
we also get problems. Then we must use other numerical methods instead of this
simplest variant of Euler’s method.

An improved version of Euler’s method is called the Euler-Cromer method.
Assume that the starting values are (xn, ẋn, tn). The first step is identical to
Euler’s simple method:

ẋn+1 = ẋn + ẍn�t .

However, the second step in the Euler-Cromer method differs from that in the
simpler Euler version: To find xn+1, we use ẋn+1 and not ẋn as we do in Euler’s
method. It provides the following update equation for x :

xn+1 = xn + ẋn+1�t .

The reason that the Euler-Cromer method works and that it often (but not always)
works better than Euler’s method is not trivial, and we will not go into this. Euler’s
method often causes the energy of the modelled system to become an unconserved
quantity that slowly but steadily increases. This problem becomes dramatically
reduced with the Euler-Cromer method, which in most cases works better.

Another improvement over Euler’s method, which is even better than the Euler-
Cromer method, is Euler midpoint method. Instead of using the gradient at the begin-
ning of the step, and using this for the entire interval, we use the gradient in themiddle
of the interval. By using the slope at the midpoint of the interval, we will usually get
a more accurate result than using the slope at the beginning of the interval when we
are looking for the average growth rate.

In Euler’s midpoint method, we first use the gradient at the beginning of the
interval, but instead of using this value for the entire interval, we use it for half
the interval. Then we calculate the gradient at the middle of the interval and
use this for the entire interval. Mathematically, this is done by using the same
notation as before:

ẋn+ 1
2

= ẋn + f
(
xn, ẋn, tn

)
1
2�t ,

xn+ 1
2

= xn + ẋn
1
2�t .
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Here, ẋn+ 1
2
and xn+ 1

2
are the values of the unknown function and its derivative

at the midpoint of the interval. The update equation for the entire range will
be as follows:

ẋn+1 = ẋn + f
(
xn+ 1

2
, ẋn+ 1

2
, tn+ 1

2

)
1
2�t ,

xn+1 = xn + ẋn+ 1
2
�t .

4.5 Runge–Kutta Method

In Euler’s method, we found the next value by using the slope at the beginning of
the chosen step. In Euler’s midpoint method, we used the slope in the middle of the
chosen step. In either case, it is quite easy to imagine that for some functions we will
be able to get a systematic error that will add up to a significant total error after many
subsequent calculations have been carried out. It can be shown that the error wemake
becomes significantly less if we switch to using more refined methods for finding the
next value. One of the most popular methods is called the fourth-order Runge–Kutta
method. A total of four different estimates of the increase, one at the beginning, two
in the middle and one at the end are then used to calculate the average increase in
the interval. This makes the Runge–Kutta method much better than Euler’s midpoint
method, and since it is not much harder to program, this is often used in practice.

Let us see how the fourth-order Runge–Kutta method works and how it can be
used to solve a second-order differential equation (At the end of the chapter one
will find a pseudocode and the full code for a program that uses the fourth-order
Runge–Kutta method.).

4.5.1 Description of the Method

The Runge–Kutta method is not really difficult to understand, but you probably have
to read the details that are included twice to see it.Wewill first provide amathematical
review and then try to summarize the method using a figure (Fig. 4.4). Let us begin
with a fewwords about the mathematical notation. Consider the differential equation
given below:

ẍ(t) = f
(
x(t), ẋ(t), t

)
. (4.2)

For the damped mass–spring oscillator considered in Chap. 2 (where t does not
appear explicitly), this equation will take the following form:
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z̈(t) = − b

m
ż(t) − k

m
z(t) . (4.3)

Suppose we are at the point (xn, ẋn, tn) and that the duration of the time step is �t .
In what follows we will find estimates for xn , ẋn and ẍn , and it will be convenient
to replace ẋn , and ẍn by vn and an , respectively. An additional numerical index will
be used to indicate the ordinal position of an estimate (first, second, etc.). With this
notation, the kth estimate of a quantity χn (χ = x, v = ẋ, a = ẍ) will be represented
by the symbol χk,n .

We can find the first estimate of ẍn by using Eq. (4.1):

a1,n = f (xn, ẋn, tn) = f (xn, vn, tn) .

At the same time, the first derivative is known at the beginning of the time step:

v1,n = ẋn = vn .

The next step on the route is to use Euler’s method to find ẋ(t) and x(t) in the middle
of the step:

x2,n = x1,n + v1,n
�t

2
,

v2,n = v1,n + a1,n
�t

2
.

Furthermore, we can find an estimate of the second derivative at the midpoint of the
step by using v2,n , x2,n and Eq. (4.2):

a2,n = f (x2,n, v2,n, tn + �t/2) .

The next step now is to use the new value for the second derivative at the midpoint in
order to find a new estimate of x(t) and ẋ(t) at the midpoint of the step using Euler’s
method:

x3,n = x1,n + v2,n
�t

2
,

v3,n = v1,n + a2,n
�t

2
.

With the new estimate of x(t) and ẋ(t) at the midpoint of the step, we can find a new
estimate for the second derivative at the midpoint:

a3,n = f (x3,n, v3,n, tn + �t/2) .

Using the new estimate of the second derivative in addition to the estimate of the
first served in the middle range, we can now use Euler’s method to estimate x(t) and
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ẋ(t) at the end of step. This is done as follows:

x4,n = x1,n + v3,n�t ,

v4,n = v1,n + a3,n�t .

Finally, in the same way as before, we can estimate ẍ(t) at the end of the step using
these new values:

a4,n = f (x4,n, v4,n, tn + �t) .

Wecan now calculate aweighted average of the estimates, and thenwe get reasonable
estimates of the average values of the first and second derivatives in the step:

an = 1
6

(
a1,n + 2a2,n + 2a3,n + a4,n

)
, (4.4)

vn = 1
6

(
v1,n + 2v2,n + 2v3,n + v4,n

)
. (4.5)

Using these averages, which are quite good approximations to the mean values of
the slopes over the entire step, we can use Euler’s method of finding a good estimate
of x(t) and ẋ(t) at the end of the step:

xn+1 = xn + vn�t (4.6)

vn+1 = vn + an�t (4.7)

tn+1 = tn + �t (4.8)

These are equivalent to the initial values for the next step.

In the Runge–Kutta method (see Fig. 4.4), we extract much more information
from the differential equation than in Euler’s method. This makes the Runge–
Kutta method significantly more stable than Euler’s method, Euler-Cromer
method andEuler’smidpointmethod. TheRunge–Kuttamethod does notmake
an excessive demand on the resources of a computer, but it is relatively simple
to program. The Runge–Kutta method, in one or other variant, is therefore
often the method we first turn to when we want to solve ordinary differential
equations numerically.

Programming of the basic part of the Runge–Kutta method is done almost
once and for all. It is usually only a small file that changes from one problem
to another. The file specifies exactly the differential equations that will be used
in exactly the calculations that will be performed. See example code later in
the chapter.
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Fig. 4.4 Summary of the
fourth-order Runge–Kutta
method. See text
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Some concentration is required to fully understand Fig. 4.4: In point 1 (xn, tn), the
slope is k1. We follow the tangent line at point 1 for half a step to point 2 (pink). This
point is based on another solution of differential equation (thin pink line) than the
one we seek. We calculate the slope k2 at point 2 for this solution (pink dotted line).
We then draw a line from point 1 again, but now with the gradient we found at point
2. Again we only go half the step length and find point 3 (green). There is yet another
solution of the differential equation that goes through this point (thin green line). We
calculate the slope k3 at point 3 for this solution (dotted green line). We then draw a
line through point 1 again, but now with the slope we just found. Now we go all the
way up to point 4 (brown). Again there is a new solution of the differential equation
that goes through this point. We calculate the slope k4 of this solution at point 4.

The final step is to calculate the weighted mean of four different slopes and use
this from the starting point 1 in the figure a full time span �t to get the estimate
(point 5) for the change of our function in the current time interval. The result is
relatively close to the correct value (compare point 5 by a red dot in the figure).

4.6 Partial Differential Equations

Many physical problems are described by partial differential equations, perhaps the
most well known areMaxwell’s equations, Schrödinger equation and wave equation.
The term “partial differential equation” means that the unknown function depends
on two or more variables, and that derivatives with respect to these occur in the
differential equation.

There are several methods for solving partial differential equations, but a key
concept is finite differences. It is about replacing the differentials in the differential
equation with final differences. Consider the simple differential equation

∂y

∂x
= K

∂y

∂t
. (4.9)
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The simplest way to convert the derivatives in this equation into difference quo-
tients is to use the definition of the derivative, as we have done before. The above
equation will then become

y(x + �x, t) − y(x, t)

�x
= K

y(x, t + �t) − y(x, t)

�t
.

This equation can be solved for y(x, t + �t), which gives

y(x, t + �t) = y(x, t) + �t

K�x

[
y(x + �x, t) − y(x, t)

]
.

Suppose that y(x, t) is known at a time t = t0 for the interesting interval in x . The
right-hand side of the above equation gives y(x, t0 + �t), the value of the function
at a later time t + �t . However, note that we also need the value of the function
at a different x from that appearing on the left-hand side. This means that we will
encounter a problemwhen we come to calculating the value of the function at a point
x near the outer limit of the region over which the calculation is to be performed.
From the equation above, we see that we need to know what the function was at the
next x coordinate at the last instant, and at the extreme x point, this is not feasible.

This means that, in order to find a unique solution to our problem, we must
know the boundary conditions, that is, the state of the system at the boundary
of the region of interest. These must be specified before the calculations can
even begin.
Note: Initial and boundary conditions are two different things and must not be
mixed together. Initial conditions specify the state of the system at the very
beginning of the calculations and must also be used here. Boundary conditions
specify the state of the system at the endpoints of the calculations at all time.

The finite differences introduced above are, however, rarely used, since they can
be replaced by something that is better and not much more difficult to understand.
Instead of using Euler’s method in the above differentials, Euler’s midpoint method,
which significantly reduces the error in the calculations, is used. If we do this, the
discretization of Eq. (4.9) leads to the following result:

y(x + �x, t) − y(x − �x, t)

2�x
= K

y(x, t + �t) − y(x, t − �t)

2�t
.

It is not hard to understand that the result will now be better, for instead of calculating
the average growth through the current point and the next point, the average growth
is used through the previous and next point. In the same way as before, this equation
can be solved with regard to y(x, t + �t), and the result will be:
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y(x, t + �t) = y(x, t − �t) + �t

K�x
[y(x + �x, t) − y(x − �x, t)] .

We see that we get the same problem with boundary conditions as above; in fact,
an extra boundary condition is needed, even at the beginning of the x grid. Since
this is a problem that concerns a spatial dimension, we need to set two boundary
conditions to make the solution unique (there are two boundaries). To use the first
one the update equation must therefore take into account the other boundary as well.

In the same way as we replaced first derivative with a finite difference quotient,
the nth derivative can be approximated in the same way. An example is the second
derivative that can be approximated with the following difference quotient:

f ′′(x) ≈ f (x + �x) − 2 f (x) + f (x − �x)

�x2
. (4.10)

Proof

f ′′(x) ≈ f (x + �x) − 2 f (x) + f (x − �x)

(�x)2
(start)

= [ f (x + �x) − f (x)] − [ f (x) − f (x − �x)]
(�x)2

(4.11)

= 1

�x

⎡

⎢
⎢
⎣

f (x + �x) − f (x)

�x
≈ f ′(x)

− f (x) − f (x − �x)

�x
≈ f ′(x−�x)

⎤

⎥
⎥
⎦ (4.12)

= f ′(x) − f ′(x − �x)

�x
. (end)

This expression is nothing more than the definition of the derivative; thus, it is a
proof of the validity of Eq. (4.10). The expressions make it clear why we must know
the value of the function at three points (at least) in order to be able to calculate a
second derivative.

As with the ordinary differential equations, we can move on and use methods that
provide an even better result.

There are a number of methods available for different parts of physics. Interested
refer to special courses/books in numerical calculations.
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4.7 Example of Numerical Solution: Simple Pendulum

Let us take a concrete example, namely a pendulum that can swing with arbitrary
large amplitudes (up to ±π ) without collapsing (i.e. the suspending rod is “rigid”).
We expect all mass to be in a tiny ball (or bob) at the end of the rod.

Mechanics tell us that the force that pulls the pendulum along the path towards
the equilibrium point is

Fθ = −mg sin θ

where θ denotes the angular amplitude. If the length of the rod is L , the moment of
this force around the pivot (suspension point) is:

τ = −mgL sin θ .

The torque applied around the pivot can also be written as:

τ = Iα = I θ̈ .

Here α = θ̈ is the angular acceleration and I the moment of inertia about the axis of
rotation (which passes through the pivot and is perpendicular to the plane in which
motion takes place). By using our simplifying assumptions for the pendulum, we
have:

I = mL2

which leads to the differential equation for the motion of the bob:

mL2θ̈ = −mgL sin θ ,

θ̈ = − g

L
sin θ .

In an elementary mechanics course, this equation is usually solved by assuming that
the angle θ is so small that sin θ ≈ θ . The solution then turns out to be a simple
harmonic motion with swing frequency (angular frequency) given by:

ω =
√

g

L
.

The approximation sin θ ≈ θ was made to use analytical methods. This approach
was not absolutely necessary in just this particular case, because we can solve the
original differential equation analytically also for large angles by utilizing the series
expansion of the sinus function. However, it is by far easier to use numericalmethods.

The result of numerical calculations where we use fourth-order Runge–Kutta
method is shown in Fig. 4.5. We see that the motion is near harmonic for small
angular amplitudes, but very different from a sinusoid for a large swing amplitude.
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Fig. 4.5 A pendulum swings harmonically when the amplitude is small, but the swinging motion
changes considerably when the swing angle increases. The swing period changes as well. See also
the text

Moreover, the period has changed a lot. Note that in the right-hand part of the figure,
we have chosen amotionwhere the pendulum almost reaches the “right-up” direction
both “forward” and “return” (swing angle near +π and −π ).

If we wanted to include friction in the description of the pendulum motion, it
would represent a more complex expression of the effective force than we had in our
case. For nonlinear description of friction, there is no analytical solution.

Since the main structure of a numerical solution would be the same, irrespective
of our description of the effective force acting on the system, the more complicated
physical conditions can often be handled surprisingly easily with numerical solution
methods (see Fig. 4.7 in one of the tasks in the problem section below).

This is an added bonus of numerical solutions: the force that works—and thereby
the actual physics of the problem—becomes more central in our search for the solu-
tion! What force produces which result? Numbers are numbers, and there is no need
to figure out different—occasionally intricate—analytical methods and tricks espe-
cially adapted for each functional representation of the force. The focus is where
it should be: basically, the effective force, the governing differential equation, the
pertinent initial condition(s), and the results that emerge from the analysis.

4.8 Test of Implementation

It is so easy to make a mistake, either in analytical calculations or in writing a
computer program for obtaining numerical solutions. We have examples of many
disasters in such contexts.

It is therefore very important to test the results of numerical solutions to detect
as many errors as we can. It is often easier said than done! We often use numerical
methods because we do not have any analytical methods to fall back on.
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Fig. 4.6 Comparison between analytical and numerical solution of a shuttle movement. For expla-
nations: See the text

In the case of the simple pendulum, there happens to be a trick up our sleeve.
There is an analytical solution that is approximately correct for small amplitude. For
this special case, we can test if the numerical solution becomes nearly the same as
the analytical. If there is a serious disagreement between these two solutions, there
must be an error somewhere.

That the numerical solution is close to its analytical counterpart in this special
case, is unfortunately not a proof that the program is flawless! The implementation of
the program beyond the special casemay give incorrect results. Here it is necessary to
consider the physical predictions: Do they seem reasonable or otherwise? It is often
impossible to be absolutely sure that a computer program is completely correct.
Within numerical analysis, there are special techniques that can be used in some
cases. We cannot go into these. The main point is that we must be humble and alert
to the possibility of errors and try to test the implementation of numerical methods
every time we develop a computer program.

As an example, we will now try to check the program we used in the calculations
that led to Fig. 4.5. We will use only the small amplitude case in our test.

In Fig. 4.6, the results of the numerical calculations (red curve) are shown on the
left with an analytical solution (dashed blue curve) for the special case when the
pendulum swing is small (maximum ±0.023 rad). There is no perceptible difference
between the two curves.

Plotting analytical and numerical solutions in the same figure are a common way
to check that two solutions are in agreement with each other. However, this is a very
rough test, because there is limited resolution in a graphical representation. In the
right part of the figure, we have chosen a better test. Here, the difference between
analytical and numeric results is plotted, and we see that there were certainly some
differences, although we did not see this in the left part.

We can now see that the difference is increasing systematically. After six periods,
the difference has increased to 2.7 × 10−5 rad. Is this an indication that our computer
program is incorrect?
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We know, however, that the analytical solution is itself only an approximation,
and the smaller the swing angle, the smaller will be the error in the approximation.
We can then reduce the amplitude and see what happens. Calculations show that
if the amplitude is reduced to 1/10 of what we have in the figure, the maximum
difference is reduced after six periods to 1/1000 of the earlier value. If we reduce the
amplitude to 1/100 of the original, the maximum difference is reduced to 10−6 of
the original difference. We see that numerical and analytical solutions are becoming
more and more similar and in a way that we would expect. If we take a look at the
series development for the sine function, it gives us a further clue that our results are
what we would expect.

We can then feel reasonably sure that the program behaves as it should for small
angular displacements, and that it seems to handle larger angles as it should, at least
as long as they remain small.

There is also another test we often have to do in connection with numerical calculations. We
chose to use 1000 steps within each period in the calculations whose results are plotted in Figs. 4.5
and 4.6. For calculations that span very many periods, we cannot use such small time steps. If we go
down to, e.g., 100 calculations per period, the result will still be acceptable usually (depending on
what requirements we impose), but if we go down to, say 10 steps per period, the result will almost
certainly depend markedly on the choice of the step size. We often have to do a set of calculations
to make sure that the “resolution” in the calculations is appropriate and manageable (neither too
high nor too low).

4.9 Reproducibility Requirements

Today it is easy to change a program from one run to another. Ironically, this presents
extra challenges that need to be taken seriously. When we make calculations to be
used in a scientific article, a master’s thesis, a project assignment, and almost in any
context where our program is used, we must know the exact program and parameters
that are used if the results are to have full value. In experimental physics, we know that
it is important to enter in the laboratory journal all details of how the experiments have
been performed. The purpose is that it should be possible to test the results we get.
This is essential for reproducibility and for achieving so-called intersubjectivity (that
the result should be independent of which person actually executes the experiment),
which is extremely important in science and development.

In experimental work, one occasionally succumbs to the temptation of not jotting
downall relevant detailswhile the experiment is underway.Being interested primarily
in the result, we think that when we have come a little further and got even better
results, then we would write down all the details. Such practice often causes some
frustration at a later date, because suddenly we discover that an important piece of
information was never actually noted. At worst, the consequence of this lapse may
be that we have to repeat the experiment, and hunt for the conditions under which
the previous experiment, the results of which proved to be particularly interesting,
was performed.
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Modern use of numerical methods can inmanyways be compared to experimental
work in the laboratory. We test how different parameters in the calculation affect
the results, and we use different numerical methods in a similar manner as we use
different measuring instruments and protocols in experiments. This means that there
are stringent requirements for documentation for those who use numerical methods
as for the experimentalist.

In order to comply with this requirement, we should incorporate good habits in
the programming. One way we can comply with reproducibility requirements is to
do the following:

• In the program code, insert a “version number” for your application.
• In the result file you generate, the version number must be entered automatically.
• Every time you change the program in advance of a calculation that you would
like to make, the version number must be updated.

• Each version of the program (actually used in practice) must be saved to disk so
that it is always possible to rerun an application with a given version number.

• Parameters which are used and which vary from run to run within the same version
of the program must be printed to a file along with the result of the run.

If we keep to these rules, we will always be able to return and reproduce the
results obtained in the past. It is assumed here that the results are independent of the
computer used for the calculations. If we suspect that a compiler or an underlying
program or an operating system might malfunction, it may be appropriate to provide
additional information about this along with the results (in a result file).

In the specimen programs given in this book, the lines needed for documentation
of parameters and version number are, for themost part, not included in the code. The
reason is that the program pieces provided here are intended primarily for showing
how the calculations can be performed.

4.10 Some Hints on the Use of Numerical Methods

In our context, it is often necessary to create relatively small computer programs to
get a specific type of calculation. There is usually no need to have the fancy interface
to select parameters and fancy presentations of the results as it is for commercial
programs. We need to do a specific task, and the program is usually not used by
many, or very often. This is the starting point for the tips that follow.

Many of the issues we encounter in this book are related to the integration of
differential equations that describe the processes we are interested in. The following
hints are partly influenced by this preoccupation.

Planning

Before we get to the computer, we should have a clear notion of what we want to
achieve.Wemust have already established the differential equation that describes the
process of our interest and have pondered over the parameters that are to be included
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in the calculations. Current parameter values and initial values need to be looked up
or chosen by ourselves.

It may be useful to outline how we can partition the program into main compo-
nents, each of which has its separate function. We also have to decide the order in
which we will work through the various parts of the program and have thoughts of
how we can test the different parts individually and together.

It is also natural to ask: Do we want to provide parameters while the program is
running or is it sufficient to insert them into the program code before the program
starts? How will we take care of the results? Should it be in the form of plots or
animations or numbers are printed on screen, or should the final results be written to
file(s) for later processing?

Writing of Code

There should be a one-to-one correspondence between the mathematical description
of a problem (algorithm) and the code. It applies to variables, formulas, etc.

It is recommended to adhere to the programming language guidelines, such as
“PEP 8—Style Guide for Python Code” or “MATLAB Style Guidelines 2.0”.

Try to collect the code lines where parameters are given special values already
as part of the code. This makes it easier to change parameters for later runs. Reset
arrays or give arrays values.

Put together all expressions of fixed constants which will be used in that part of
the program that is most frequently run, in order to avoid more calculation operations
than necessary in a loop. For example, it is a good idea to create a parameter

coeff = 4.0*3.141926*epsilon0*epsilonR*mu0*muR

and use this coefficient in a loop that is recalled many times, instead of having to
repeat all these multiplications each time the loop is run (the parameters in this
example have been selected randomly).

A code should be broken up into logical functions. In Python, multiple functions
can be added to one and the same file. InMatlab, various functions are often allocated
to separate files (although it is actually possible to use a similar layout in Matlab as
in Python).

Generalize when you are writing a program, unless it seems inadvisable. For
example, when integrating an expression, a general integral of f (x) is programmed
and then a special f is chosen as its argument. This requires frequent use of functions.
Do not overdo it though, because it obstructs a survey and the readability of the
program.

Testing and Debugging

Make an effort to construct test problems for checking that the implementation is
correct. Functions should be tested as they are written. Do not postpone testing until
code writing is finished!

There are several types of errors that may occur. Some errors are detected by the
compiler. Read the error message carefully to see how such errors can be corrected.
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Other errors appear when running the program. For example, we can end up in an
infinite loop and must terminate the program manually. It is not always easy to find
out where in the program code such a fault is located. It is then useful to add dummy
print-to-screen here and there in the code so we can locate that line in the code where
the problem occurs.

While we are going through program development and testing, it is important to
save the program several times along the way, and preferably change names some-
times, in order to avoid a potential catastrophe. Then we will not have to start all
over again if you lose everything in a file.

Check that the program provides the correct result for a simplified version of the
problem, where there is also an analytical solution. This is crucial!

Repeat the calculations using different resolutions (often given by �t) to see how
many points are needed to get a good match with the analytical answer or to verify
that the result depends only to a small extent on moderate changes in resolution.

Forms of Presentation

Plot the results or present them in some other form. Save data to file if desired.
Simple plots are often sufficient, but we can rarely read precise details from a

plot, at least not without having chosen a very special plot that displays just what we
want to show. Sometimes, the choice of linear or logarithmic axes in a plot is crucial
for whether we discover interesting relationships or not.

Make sure that the axes in the plot are labelled properly that symbol sizes and line
thicknesses and other details in the presentation meet the expected requirements.

In reports, articles and theses, one is a requirement that numbers and text along
the axes of the plots must be readable without the use of magnifying glass (!) in the
final size the characters have in a document. This means that numbers and letters
should have a size between 9 and 12pt in final size, and indexes may be even a bit
smaller).

When using Matlab, it is a good idea to save figures which do not fill the entire
screen (use default display of figures on screen). Then the font sizewill be sufficiently
large even if the figure is reduced to approximately the same format as used in this
book. However, if the image size is reduced too much, the font size in the final
document will become too small. You can choose, for example, line thickness and
font size in plots generated byMatlab and Python. The following code piece indicates
some of the possibilities that exist (the example is in Matlab, but there are similar
solutions in Python):

...

axes(’LineWidth’,1,’FontSize’,14,’FontName’,’Arial’);

plot(t,z,’-r’,’LineWidth’,1);

xlabel(’Time (s)’,’FontSize’,16,’FontName’,’Arial’);

...

Learn good habits as early as possible—it will pay off in the long run!
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Reproducibility

Whenwe believe that the program as whole works as it should, we can finally embark
upon the calculations for the particular project we are occupied with. Reproducibility
requirements must be adhered to when the program now receives a solemn version
number, and the program code must be saved and not changed without a new version
number.

Files that document later runsmust be preserved in amanner similar to a laboratory
record.

4.11 Summary and Program Codes

Summary of the Chapter

Let us try to summarize the key points in our chapter:

• A second-order differential equation can be considered equivalent to two
coupled first-order differential equations.

• In a single differential equation, we replace the derivative d f/dt with the
differential quotient � f/�t . Starting from this approximate equation and
initial conditions, we can successively calculate all subsequent values of
f (t). This method is called Euler’s method. The method often gives large
errors, especially when we are dealing with oscillations!

• There are better methods for estimating the average slope of the function
during the step �t than just using, as we in Euler’s method, the derivative
at the beginning of the interval. One of the most practical and robust meth-
ods is called fourth-order Runge–Kutta method. In this method, a weighted
average of four different calculated increments in the interval �t is used
as the starting point for the calculations. The method often provides good
consistency with analytical solutions where these exist, also for oscillatory
phenomena. However, we must be aware that this method is not exempt
from error, and for some systems it will not work properly.

• For second-order ordinary differential equations, such as the equation for
oscillation, we can find the solution if we know the differential equation and
the initial conditions. For the second-order partial differential equations, for
example, a wave equation, wemust in addition know the so-called boundary
conditions not only at the start but also throughout the calculations. This
makes it often far more difficult to solve partial differential equations than
ordinary other order diffusions.

• It is valuable to compare numerical calculations and analytical calculations
(where these exist) to detect errors in our programming. However, even if
the conformity is good in such special cases, there is no guarantee that the
numerical solutions will be correct also for other parameter values (where
analytical solutions are not available).
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• The program code is divided into an appropriate number of separate func-
tions that have their own task. In thisway, the logical structure of the program
will clarify. Some features can be made so general that they can be reused
in many different contexts. For example, we can create one general Runge–
Kutta function that calls for a more specialized function that contains the
appropriate differential equation (where only the last small function will
vary from problem to problem).

• Since we can easily change programs and parameters, it is a big challenge
to keep track of how the computer program looked and what parameters
we used when we made calculations and arrived at results we would use.
Some systematic formof documentation is imperative,where program, input
parameters and results can be linked to each other in a clear way.

Pseudocode for Runge–Kutta Method *

The input to this function is x[n-1], v[n-1] and t[n-1] and

returns x[n] and v[n].

1. Use the input parameters in order to find the

acceleration, a1, in the start of the interval.

The speed in the start of the interval, v1, is given as

an input parameter.

x1 = x[n-1]

v1 = v[n-1]

a1 = ...

2. Use this acceleration and speed to find an estimate for

the speed (v2) and position in the middle of the interval.

x2 = ...

v2 = ...

3. Use the new position and speed to find an estimate for

the acceleration, a2, in the middle of the interval.

a2 = ...

4. Use this new acceleration and speed (a2 and v2) to find

a new estimate for position and speed (v3) in the middle

of the interval.

x3 = ...

v3 = ...

5. Use the new position, speed and time in the middle of

the interval to find a new estimate for the acceleration,

a3, in the middle of the interval.

a3 = ...
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6. Use the last estimate for the acceleration and speed in

the middle of the interval to find a new estimate for the

position and speed (v4) in the END of the interval.

x4 = ...

v4 = ...

7. Use the last estimate for position and speed to find an

estimate for the acceleration in the END of the interval, a4.

a4 = ...

8. A mean value for speed and acceleration in the interval

is calculated by a weighted, normalized sum:

vMiddle = 1.0/6.0 * (v1 + 2*v2 + 2*v3 + v4)

aMmiddle = 1.0/6.0 * (a1 + 2*a2 + 2*a3 + a4)

9. Finally, use these weighted mean values for speed and

acceleration in the interval to calculate the position

and speed in the end of the interval.

The function return this position and speed.

x[n] = ...

v[n] = ...

return x[n], v[n]

Matlab Code for Runge–Kutta Method

Important

The code of most of the example programs in this book is available (both for Mat-
lab and Python) at a “Supplementary material” web page. At the same web page,
files required for solving some of the problems are available as well as a list of
reported errors, etc. The address for the “Supplementary material” web page is
http://www.physics.uio.no/pow.

function [xp,vp,tp] = rk4x(xn,vn,tn,delta_t,param)

% Runge-Kutta integrator (4th order)

%************************************************************

% This version of a 4th order Runge-Kutta function for Matlab

% is written by AIV. Versjon 09282017.

% This function can be used for the case where we have two

% coupled difference equations

% dv/dt = ffa(x,v,t,param)

% dx/dt = v NOTE: This part is taken care of automatically

% in this fuction.

% Input parameters: x,v,t can be position, speed and time,

% respectively. delta_t is the step length in time.

% param is a structure in Matlab (in Python it is called a

http://www.physics.uio.no/pow
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% class). It contains various parameters that is used to

% describe the actual second order differential equation.

% It MUST contain the name of the function that contains

% the differential equation. The class "param" the user has

% to define.

% Input argumentents (n: "now")

% [xn,vn,tn,delta_t,param] = values for x, v and t "now".

% Output argumentets (p : "n plus 1")

% [xp,vp,tp] = new values for x, v and t after one step in

% delta_t.

%************************************************************

ffa = eval([’@’ param.fn]); % Picks up the name of the

% Matlab-code for the second derivative. Given as a text

% string in a structure param.

half_delta_t = 0.5*delta_t;

t_p_half = tn + half_delta_t;

x1 = xn;

v1 = vn;

a1 = ffa(x1,v1,tn,param);

x2 = x1 + v1*half_delta_t;

v2 = v1 + a1*half_delta_t;

a2 = ffa(x2,v2,t_p_half,param);

x3 = x1 + v2*half_delta_t;

v3 = v1 + a2*half_delta_t;

a3 = ffa(x3,v3,t_p_half,param);

tp = tn + delta_t;

x4 = x1 + v3*delta_t;

v4 = v1 + a3*delta_t;

a4 = ffa(x4,v4,tp,param);

% Returns (estimated) (x,v,t) in the end of the interval.

delta_t6 = delta_t/6.0;

xp = xn + delta_t6*(v1 + 2.0*(v2+v3) + v4);

vp = vn + delta_t6*(a1 + 2.0*(a2+a3) + a4);

tp = tn + delta_t;

return;
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The Function that Contains the Differential Equation

function dvdt = forced(y,v,t,param)

%*********************************************************

% This function is calculating the accelleration of a

% mass-spring oscillator that is influenced by an external

% periodic force that last only for a limited time interval.

% The trivial first order diff.eq. dx/dt = v is taken care

% of automatically in rk4x. The function "forced" is used

% by a RK4 function, but the necessary parameters are

% defined by the main program (given separately).

% Written by AIV. Versjon 09282017.

% Input parameters:

% y = position

% v = speed

% t = time

% Output parameters:

% dvdt = Left side of an equation in a difference equation

% for v.

%*********************************************************

% The external periodic force last from the start of

% calculation until the time is param.end. See the main

% program for explanations of the other param items.

if (t < param.end)

dvdt = - param.A*v - param.B*y + param.C*cos(param.D*t);

else

dvdt = - param.A*v - param.B*y;

end;

return;

Example:
Matlab Program that Uses the Runge–Kutta Method

A program for calculating forced mechanical oscillations (spring pendulum) is
given below. It shows how Runge–Kutta method is used in practice if we program
the Runge–Kutta routine itself.

function forcedOscillations17

% An example program to study how forced oscillations which

% start with a mass-spring oscillator with no motions. The

% external force is removed after a while. The program calls

% the functions rk4r.m which is also using the function

% forced.m.
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global param;

% Constants etc (see theory in previous chapters) in SI units

omega = 100;

Q = 25;

m = 1.0e-2;

k = m*omega*omega;

b = m*omega/Q;

F = 40;

time = 6.0; % Force only present halv of this time, see later

% Parameters used in the calculations (rk4.m, tvungen.m)

param.A = b/m;

param.B = omega*omega;

param.C = F/m;

param.D = omega*1.0; % If this value is 1.0, the angular

% frequency of the force equals the

% angular frequency for the system.

param.end = time/2.0;

param.fn = ’forced’; % Name of Matlab file for 2. derivative

% Choose number steps and step size in the calculations

N = 2e4; % Number calculation points

delta_t = time/N; % Time step in the calculations

% Allocate arrays, set initial conditions

y = zeros(1,N);

v = zeros(1,N);

t = zeros(1,N);

y(1) = 0.0;

v(1) = 0.0;

t(1) = 0.0;

% The loop where the calculations actually are done

for j = 1:N-1

[y(j+1), v(j+1), t(j+1)]=rk4x(y(j),v(j),t(j),delta_t,param);

end;

% Plot the results

plot(t,y,’-b’);

maxy = max(y);

xlabel(’Time (rel units)’);

ylabel(’Position of the mass (rel. units)’);

axis([-0.2 time -maxy*1.2 maxy*1.2]); % want some

% open space arround the calculated results

% We should also have compared our results with the analytical

% solution of the differential equation in order to verify

% that our program works fine. Not implementet in this

% version of the program.
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Using Matlab’s Built-in Runge–Kutta Function *

Finally, here is a specimen program for calculating damped oscillations, if we use
Matlab’s built-in solver of ordinary equations (ode) using the fourth-order Runge–
Kutta method. First, we enter themain programwe called dampedOscill.m (the name
is insignificant here) and then follows a small application snap ourDiffEq.m that the
main application calls. Matlab’s equation solver requires a small additional function
that specifies the current differential equation as such and that is the one given in
vaarDiffLign.m.

function dampedOscill

% Program for simulation of damped oscillations.

% Written by FN. Version 09282017

% Solves two copuled differential equations

% dz/dt = v

% dv/dt = - coef1 v - coef2 z

clear all;

% Defines the physical properties for the oscillator

% (in SI units).

b = 3.0; % Friction coefficient

m = 7.0; % Mass

k = 73.0; % Spring constant

% Reminder:

% Overcritical damping : b > 2 sqrt(k m)

% Critical damping : b = 2 sqrt(k m)

% Undercritical damping: b < 2 sqrt(k m)

coef1 = b/m;

coef2 = k/m;

% Initialconditions (in SI-units)

z0 = 0.40; % Position rel. equilibrium point

v0 = 2.50; % Velocity

% Time we want to follow the system [start, end]

TIME = [0,20];

% Initial values

INITIAL=[z0,v0];

% We let Matlab perform a full 4th order Runge-Kutta

% integration of the differential equation. Our chosen

% differential equation is specified by the function

% ourDiffEq.

% T is time, F is the solutions [z v], corresponding to the
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% running variable t (time) and f is the running variable

% [z(t) v(t)] that Matlab use through the calculations.

% Matlab chooses itself the step lengths in order to give

% proper accuracy. Thus, the calculated points are not

% equidistant in time!

[T F] = ode45(@(t,f) ourDiffEq(t,f,coef1,coef2),TIME, INITIAL);

% Plot the results, we choose to only plot position vs time.

plot(T,F(:,1));

% length(T) % Option: Write to sceen how many points Matlab

% actually used in the calculation. Can be useful

% when we compare with our calculations with our

% own Runge-Kutta function.

% We should also compare our results with the analytical

% solution of the differential equation in order to verify

% that our program works fine. Not implementet so far...

Our Own Differential Equation

Here comes the small function that gives the actual differential equation (in the
form of two coupled difference equations):

function df = ourDiffEq(˜,f,coef1,coef2)

% This function evaluate the functions f, where f(1) = z and

% f(2) = v. As the first variable in our input parameters we

% have written ˜ since time does not enter explicitely in our

% expressions.

df = zeros(2,1);

%The important part: The first differential equation: dz/dt = v

df(1) = f(2);

% The second differential equation: dv/dt = -coef1 v - coef2 z

df(2) = -coef1*f(2)-coef2*f(1);
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4.11.1 Suggestions for Further Reading

The following sources may be useful for those who want to go a little deeper into
this material:

• Hans Petter Langtangen: A Primer on Scientific Programming with Python. 5th
Ed. Springer, 2016.

• http://en.wikipedia.org/wiki/Semi-implicit_Euler_method (accessed 01.10.2017)
• http://en.wikipedia.org/wiki/

Numerical_partial_differential_equations

4.12 Learning Objectives

After working through this chapter, you should be able to:
• Know that a second-order differential equation can be considered equivalent
to two coupled first-order differential equations.

• Solve a second-order differential equation numerically using the fourth-
order Runge–Kutta method.

• Explain why numerical methods can handle, more frequently than analytical
methods, complex physical situations, such as nonlinear friction.

• Point to some factors that could cause numerical calculations to fail.
• Explain in detail why the fourth-order Runge–Kutta method usually works
better than Euler’s method.

• Make a reasonably good test that a computer program that uses numerical
solution methods works as it should.

• Put into practice your practical experience in using numerical methods to
integrate an ordinary differential equation or a partial differential equation.

• Know and have some practical experience working out a computer program
with several functions that interact with each other and could explain the
purpose of such a partitioning of code.

• Know and have some experience with troubleshooting and know some prin-
ciples that should be used to avoid postponing comprehensive troubleshoot-
ing until most of the code is written.

• Know how we can proceed to consolidate documentation of programs and
parameters associated with the calculated values.

• Know why it is a good idea to save a computer program under a new name
just as it is, while one is going through modifications to the program.

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
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4.13 Exercises

Suggested concepts for student active learning activities: Discretizing, algorithm,
numerical method, Euler’s method, Runge–Kutta’s method, accuracy, coupled dif-
ferential equations, partial differential equation, documentation for programming
activities.

Comprehension/discussion questions

1. Why does the fourth-order Runge–Kuttamethod usuallywork better than Euler’s
method?

2. Figure4.7 shows the result of calculations of a pendulummotion for the case that
there is some friction present. The figure shows position (angle) as a function of
time (left part) and angular velocity as a function of position (angle) in the right
part (also called a phase plane plot). The two upper figures result from an initial
condition where the pendulum at time t = 0 hangs straight down, but at the
same time has a small angular velocity. The lower figures result from an initial
condition which is the same as for the upper part, but that the initial angular
velocity is a good deal greater than in the first case.
Explain what the figures say about the motion (try to bring as many interesting
details as possible). Howwould the figure look if we increased the initial angular
velocity even more than the one we have in the lower part of the figure?

3. Try to outline the working steps involved in analytical calculations of an oblique
projectile throw with or without friction (or planetary motion around the sun).
What do we spend most of the time on, and what do we concentrate on when
we inspect the calculation afterwards? Attempt to outline the work plan for a
numerical calculation and how we examine the result of such a calculation.
What are the pros and cons of each method? Also try to incorporate physical
understanding of the mechanisms of motion.

Problems

Remember: A “Supplementary material” web page for this book is available at
http://www.physics.uio.no/pow.

4 The purpose of this composite task is to create your own program to solve
different order differential equations using the fourth-orderRunge–Kuttamethod
(RK4) and to modify the program to cope with new challenges. Feel free to get
extra help to get started! Specific assignments are as follows:
(a) Write a computer program in Matlab or Python that uses RK4 to calculate
the damped harmonic motion of a spring pendulum. The program should consist
of at least three different parts/functions following a similar scheme outlined
in Sect. 4.7. You should not use Matlab’s built-in Runge–Kutta function. The
program should be tested for the case: m = 100g, k = 10N/m, and the friction

http://www.physics.uio.no/pow
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Fig. 4.7 Motion of a simple pendulum. Position vs time is shown to the left and phase space
presentation of the motion to the right. See the text for a detailed description

is assumed to be linear with the coefficient of friction b = 0.10kg/s. Initial terms
are z(0) = 10cm and [dz/dt]t=0 = 0m/s. Conduct a test of which time steps
are acceptable and check if there is agreement between numerical calculations
and analytical solution. Put correct numbers, text and units along the axes of the
plots. Add a copy of your code.
(b) Modify the program a little and change some parameters so that you can
create a figure similar to Fig. 2.5 that shows the time course of the oscillation
when we have subcritical, critical and supercritical damping. Explain how you
chose the parameters. [We assume that the tests you did in (a) with respect to time
resolution and comparison with analytical solutions do not need to be repeated
here.]
(c) Modify the program so that it can also handle forced vibration (may last for
the entire calculation period). Use m = 100g, k = 10N/m, b = 0.040kg/s and
F = 0.10N in Eq. (3.1). Try to get a plot that corresponds to the initial part of
each of the time courses we find in Fig. 3.7.
(d) Use this last version of the program to check that the “frequency response”
of the system (à la Fig. 3.8) comes out to be correct, and that you can actually
read the approximate Q value of the system from a plot made by you.
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5. Write your ownprogram to calculate the timedevelopment of a dampedoscillator
using the fourth-order Runge–Kutta method. Test that it works by comparing the
results for analytical solution and numerical solution for a case in which they
should be identical. How large is the error in the numerical solution for the
position (relative to maximum amplitude)? If you choose the time step �t , we
ask you to test at least two to three different options for �t to see how much this
choice means for accuracy.

6. Carry out calculations of forced oscillations for a variety of different applied
frequencies and check that the quality factor expression in Chap. 2 corresponds
to the frequency curve and the alternative calculation of Q based on the half-value
and centre frequency.

7. Study how fast the amplitude grows by forced oscillations when the applied
frequency is slightly different from the resonant frequency. Compare with the
time course at the resonance frequency. Initial conditions: the system starts at
rest from the equilibrium point.

8. Find out how the calculations in the previous tasks have to be modified if, for
example, wanted to incorporate an additional term−cv2 × (�v/v) for the friction.
Feel free to comment on why numerical methods have a certain advantage over
analytical mathematical methods alone.

9. This task is to check if the superposition principles apply to a swinging spring
pendulum with damping, first in the case that the friction can be described only
with a −bv, that the friction must be described by −bv − sv2, or rather: −bv −
s|v|v to take account of the direction (seeChap. 2where this detail ismentioned).
In practice, the task involves making calculations for one swing mode, then for
another, and then checking if the sum of solutions is equal to the solution of the
sum of states.
The physical properties of the spring pendulum are characterized by b = 2.0,
s = 4.0, m = 8.0 and k = 73.0, all in SI units. Make calculations first with
the initial conditions z0 = 0.40 and v0 = 2.50, and then the initial conditions
z0 = 0.40 and v0 = −2.50. Add the two solutions. Compare this sum with the
solution of differential equation when the initial conditions are equal to the sum
of the initial conditions we used in the first two runs. Remember to check the
superposition principle both for runs where −s|v|v is present and where it is
absent. Can you draw a preliminary conclusion and put forward a hypothesis
about the validity of the superposition principle based on the results you have
achieved?

Note: In case you use Matlab’s built-in solver, the times will not match the two runs. You must
then take into account the time series corresponding to one run and use interpolation when the
addition of the result for the second run is to be performed. Below is an example of how such
an addition can be made. Ask for help if you do not understand the code well enough to use it
or something similar in your own program.

% Addition of two functions Z1(t) and Z2(t’), where t is

% elements in T1 and t’ in T2. The two series have the same

% start value (and end value), but is different elsewhere.

% n1 = length(T1) and n2 = length(T2). The function only
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% works for n2>=n1. Modify the code if that is not the case.

% Use T1 as basis for for the summation

Z12(1)=Z1(1)+Z2(1);

for i = 2:n1

% Find index to the last point in T2 less than T1(i)

j = 1;

kL = -1;

while kL<0

if (T2(j)<T1(i)) j=j+1;

else;

kL=j-1;

end;

end;

% The first point in T2 is then larger or equal the

% T1(i) index:

kH = kL+1;

% Summation of the two solutions (linear interpolation)

Z12(i) = Z1(i)+Z2(kL) + (Z2(kH)-Z2(kL))...

*(T1(i)-T2(kL))/(T2(kH)-T2(kL));

end;

4.13.1 An Exciting Motion (Chaotic)

11. Let us look at a nonharmonic “swing” that is beyond analytical mathematics. We
consider a ball that is bouncing vertically up and down influenced by gravity, and
we assume, for the sake of simplicity, that there is no loss. The special aspect
here is that the floor oscillates vertically and has much greater mass than the
bouncing ball so that the motion of the floor is not affected by the ball.
The velocity of the floor is described as u(t) = A cos(ωt) = A cos(φ(t)). The
ball has a speed of vi down just before it hits the floor, but according tomechanics,
the speed vi+1 = vi + 2u(t) will rise soon after the ball has hit the floor. We
assume that the ball bounces so high in relation to the amplitude of the floor
that we can make the approximation that the time the ball uses from leaving the
floor until it hits the floor again is independent of the position of the floor and
depends only on the speed the ball had when it last left the floor. This time is
�ti = 2vi/g where g is the acceleration due to gravity. Note that�t varies from
bounce to bounce.
With these approximations, the phase difference between the floor oscillation
and the oscillations of the ball until their next encounter is:

�φi = �ti ω = 2ω

g
vi ≡ γi (4.13)
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where γ is a “normalized velocity” that depends on the constants g and ω and
varies as vi . The term “velocity” is a little misleading, but since g and ω are
both constant in our context, γ varies linearly with the velocity of the floor at the
instant the ball hits it. When γi = 2π , the bounce will equal exactly one period
in the oscillation of the floor.
We can then set up the following algorithm to calculate a new bounce based on
the knowledge of the previous bounce in the following way:

φ(n + 1) = [modulo 2π ] (φ(n) + γ (n)) (4.14)

where [modulo 2π ] means that we take the modulo of what we calculate (to
ensure that φ is in the range of [0, 2π >). And further:

γ (n + 1) = γ (n) + α cos(φ(n + 1)) (4.15)

where α ∝ A.
In this description, we operate with “normalized velocity” γ (n), which is pro-
portional to the initial velocity of each bounce, and with φ(n), which is the phase
of the floor motion just as nth bounce begins. The quantity α is proportional to
the amplitude of the floor, and for simplicity we will choose an amplitude cor-
responding to α = 1.0.
We will plot the results in a form of phase plot, but not quite. We let the phase of
the oscillation φ(n) lie along the x-axis and “normalized velocity” γ (n) along
the y-axis.
Create a plot showing points (φ(n), γ (n)) for N number of bounces. During the
test you can, for example, take N = 2 × 103, but when the program works with-
out errors, you may want to expand this to e.g. N = 2 × 106 if the calculation
time is still acceptable.
Remember to allocate space to the “phi” and “gamma” array before you enter
the loop using the algorithm in Eqs. (4.14) and (4.15).
Note: Do not connect the points with lines! Plotting of the points can be done in
Matlab, for example, as follows:

plot(phi,gamma,’r’,’MarkerSize’,2);

Try the following initial conditions for (phi, gamma): (0.0, 1.0), (π/2, 0.0), (1.4,
1.71), (1.4, 1.75). Also try other initial values to create a picture of various
movements that may occur. Try to describe in words different forms of motion.



Chapter 5
Fourier Analysis

Abstract In this chapter, the first major challenge is to understand the difference
between two descriptions of a signal: one in the time domain and another in the
frequency domain. We initially use a gradual increase in complexity to help the
reader grasp the difference. We then use phasors in order to introduce positive and
negative frequencies, a detail that is encountered later. The formal mathematical
Fourier transform and inverse transform are then introduced as well as Fourier series.
The remainder of the chapter is devoted to discrete Fourier transform in the form of
fast Fourier transform (FFT). All exact details on intervals in time and frequency are
stated with great care. Important details like aliasing/folding and sampling theorem
are given.We also analyse a time-limited oscillating signal and get our first encounter
with the bandwidth theorem, and a theme we will recur to in several later chapters
of this book.

5.1 Introductory Examples

5.1.1 A Historical Remark

Fourier transformation and Fourier analysis bear close resemblance to the medieval
use of epicycles for calculating how planets and the sun moved relative to each other.
That gives us an inkling of how powerful Fourier analysis is, but at the same time
it reminds us that Fourier analysis can sometimes hinder a deeper understanding of
the phenomena around us. Several later chapters in this book are based on a good
understanding of Fourier transformation, including the awareness of the danger to
think and argue almost in the same manner as in the Middle Ages.

5.1.2 A Harmonic Function

Before delving into the details about Fourier transformation, it will be useful to take
a look at Chap. 2. We saw that a harmonic function can be written in several different
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Fig. 5.1 Section of a harmonic function plotted, in the left part, as a function of time (“time
domain”) and, in the right part, as a function of frequency (“frequency domain”). See text for other
details

ways:
z(t) = C cos(ωt + φ) = A cos(ωt) + B sin(ωt) = � {

Deiωt
}
. (5.1)

� {} means that we take the real part of the complex expression within the braces,
and D is a complex number.

In the left part of Fig. 5.1, we have plotted a section of an arbitrary harmonic
function of time. Amplitude C is 2.2 in some unspecified units and the frequency
f = 440Hz, which corresponds to the period T ≈ 2.27ms ≈ 1/440 s. We chose the
phase shift Φ = 110◦. This means that the value of the function is neither zero nor
at the maximum at time t = 0.

The three parameters C , ω = 2π f and φ specify the function z(t) = C cos(ωt +
φ) unambiguously. Using the identities in Chap. 2, this function can also be expressed
as A cos(ωt) + B sin(ωt). In that case, A = C cosφ ≈ −0.76 and B = −C sin φ ≈
2.06. The three parameters that specify the function completely are A, B and ω.

Usually we plot a function of time as has been done in the left part of Fig. 5.1.
However, we can also display the function graphically in an altogether different
way, which is done in the right part of the figure. Here we have frequency along
the x-axis and the coefficients A and B along the y-axis, and colour coding has
been used to distinguish A from B. Since we have time along the x-axis in the left
part of Fig. 5.1, we call this a “time-domain” representation of the function. For the
right part, the frequency is along the x-axis, and we therefore call this a “frequency-
domain” representation. Both representations contain (under certain assumptions)
the same information.

In the frequency-domain picture, we have also displayed C . Occasionally we are
interested only in amplitudes and not phases. Then C = √

A2 + B2 is useful, and C
is always positive (or zero). However, C and ω alone are not sufficient to determine
the function unambiguously—phase information is missing.

If we use the last expression in Eq. (5.1), we can also specify the function as
follows:
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Fig. 5.2 A segment of a function that is a sum of two harmonic functions with frequencies 440
and 610Hz plotted, one the left, as a function of time (“time-domain picture”) and on the right
as a function of frequency (“frequency-domain picture”). The colour coding is the same as in the
previous figure. See text for other details

z(t) = � {
Deiωt

}
. (5.2)

It is important to remember that D is a complex number, and that D = A − iB so
that D is the detail in Eq. (5.2) that contains the information about the phase of the
harmonic function. The amplitudeC is the absolute value of the complex numberD .

If you do not remember all the details in Chap. 2 which are used in transforming
one version to another in Eq. (5.1), it is recommended that you revise that section
now. In the rest of this chapter, we will use the rendering given in Eq. (5.2), and it is
very important to fully understand this expression.

At present we need to refer only to the mathematics in Chap. 2.We will show that,
by using a so-called Fourier transform, we can generate the plot in the right part of
Fig. 5.1 completely automatically. The prime purpose of this introductory part is to
find out what are meant by the terms “time-domain picture” and “frequency-domain
picture”.

5.1.3 Two Harmonic Functions

Let us see now what happens when we have a sum of two harmonic functions. The
time-domain picture is given in the left part of Fig. 5.2. Since we have generated this
function ourselves, we know that it is described by

z(t) = C1 cos(ω1t + φ1) + C2 cos(ω2t + φ2) (5.3)

where all the six parameters appearing above are known.
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We can also use the alternative form:

z(t) = A1 cos(ω1t) + B1 sin(ω1t) + A2 cos(ω2t) + B2 sin(ω2t) (5.4)

where A1, A2, B1 are B2 are to be found by using C1,φ1,C2 and φ2, and, since the
frequencies ω1 and ω1 are known, we can make a frequency plot corresponding to
this function. Such a plot is shown in the right part of the figure.

Someone who did not know how the function was generated, and obliged to
evaluate it only from the time plot in the left part of Fig. 5.2, would find it difficult
to say with certainty that this a sum of only two harmonic signals. It would be quite
a challenge to determine the amplitudes and phases.

However, with the help of Fourier transformation, which is the subject of this
chapter, we can use the time plot to calculate, automatically, A1, A2, B1, B2, ω1, and
ω2 and we can confirm that there are no other contributions to the signal. You may
now appreciate how useful Fourier analysis can be!

We recall the rendering based on Euler’s formula and complex coefficients. For
two harmonic functions, this takes the form:

z(t) = � {
D1e

iω1t + D2e
iω2t

}
. (5.5)

It is important to realize that all three form of writing in Eqs. (5.3), (5.4) and (5.5)
are equivalent.

Since the coefficients D1 and D2 can be determined by Fourier transformation,
they are commonly called Fourier coefficients of the z(t) function.

5.1.4 Periodic, Nonharmonic Functions

In the last example, the signal was nonperiodic. In many parts of physics, we deal
with periodic functions. An example is shown in Fig. 5.3. Looking at this feature in
the time-domain picture, it is hard to understand that such a signal can be described
in a relatively simple way.

Since we have generated the signal ourselves, we know how it was constructed.
The signal is made as a sum of six harmonic functions, each of which is described
by a set of [Ai , Bi , ωi ]-values. In order to get a periodic signal, each ωi was taken as
nω0, an integral multiple of the lowest value ω0, called “the fundamental frequency”.
In our case, ω0 = 610Hz and n = 1, 2, . . . 6. The right part of Fig. 5.3 shows how
the frequency-domain picture in this case looks like.

It is pleasing to note that even in this case we succeeded, thanks to a Fourier
transformation, in analysing the z(t) signal directly, and in finding how the signal
was composed. It would be almost impossible to extract these details without Fourier
transformation, as there are 18 different parameters to be determined. We will come
back to the details later.
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Fig. 5.3 Time-domain picture on the left shows a section of a periodic, nonharmonic function and
on the right is shown the corresponding frequency-domain picture. See text for other details

It turns out that the more a periodic signal differs from a pure sinusoid, the more
harmonic functions (higher n values) are needed for describing it.

We remind the reader that if we choose Euler’s formula and complex coefficients,
a periodic function would look like this:

z(t) = �
{

N∑

n=1

Dne
inω0t

}

.

In our case N = 6.

5.1.5 Nonharmonic, Nonperiodic Functions

In the end, we look at something rather odd. We have seen in the three previous
examples that it is possible to make many different signals by combining harmonic
functions with different amplitudes and phases. As we shall see immediately, an
arbitrary function, including nonharmonic and nonperiodic functions, can be written
as a sum of harmonic functions as follows:

z(t) =
N∑

n=1

Cn cos(ωnt + φn) = �
{

N∑

n=1

Dne
iωn t

}

(5.6)

for some large N . Occasionally, we have to use a very large number of frequencies
in the description of a function. We can then replace the summation by an integral
with a continuous function D(ω) that specifies the coefficients:

z(t) = �
{∫ +∞

ω=0
D(ω)eiωt

}
(5.7)
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Fig. 5.4 Left part is a “time-domain picture” of a nonperiodic, nonharmonic function, and on the
right is the “frequency-domain picture” of the same function. See text for other details

In Fig. 5.4, we have created a signal that is built by adding more than 3000 har-
monic functions with frequencies lying in a wide band centred around 610Hz. The
amplitude varies randomly, but the largest amplitudes occur only for frequencies in
the broad region near 610Hz. The phases are random. The sum signal is then both
nonharmonic and nonperiodic, as indicated in the time plot on the left. An analysis
similar to that we have done in the previous examples gives the coefficients (and
amplitudes) indicated in the right part of the figure.

5.2 Real Values, Negative Frequencies

It is a little tiresome that when we use the functional form given in Eq. (5.2), we
always have to find the real value � of the complex expression inside the braces on
the right. There is a useful trick to get around this problem.

The basic element is this equation is the exponential term eiωt and Euler’s formula
eiωt = cos(ωt) + i sin(ωt). This relation is often illustrated through phasors.

The function z(t) = C cos(ωt + φ) can be described by a phasor which at time
t has an orientation as shown in Fig. 5.5. The phasor rotates in a positive direction
(anticlockwise) with the angular frequency ω, and it is always the component along
the x-axis (the real axis) that indicates the value of z(t).

If we now create a vector of the same length C , but always reflected about the
x-axis relative to the previous one, rotating in the negative direction (clockwise), the
sum of this phasor and the previous will always be along the x-axis. There will be
no imaginary contribution!

The maximum value of the sum of the two vectors will be equal to 2C , so we need
to enter a factor of 1/2 to correct for this. The maximum of the sum vector occurs
every time ωt + φ is an integer multiple of 2π.
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Fig. 5.5 Common phasor description (in red) of a harmonic function C cos(ωt + φ) at time t . A
second phasor is also drawn (in green), which is the reflection of the original phasor about the
x-axis, and rotates therefore the opposite way. Adding the two vectors, we get a resultant (blue)
that always lies along the real axis, but has twice the length we are interested in

Wehave nowput sufficient pictorial flesh on algebraic bones tomake the following
formula palatable:

C cos(ωt + φ) = 1

2

{
Deiωt + D∗e−iωt

} = 1

2

{
Deiωt + c.c.

}
(5.8)

where the asterisk in D∗ and “c.c.” stands for “complex conjugate”.
We see that by introducing “negative frequencies”, we can avoid having to take

the real value of the complex function Deiωt .
Fourier analysis uses the connection given in Eq. (5.8), which means that what

was said in the introductory examples was not the whole truth. If we actually do a
Fourier analysis of the first harmonic function we examined, the frequency-domain
picture will have the appearance shown in the right part of Fig. 5.6. We receive
contributions from−440 to+440Hz. The coefficients in front of the cosine termhave
the same value for positive and negative frequency, but only half of the coefficient
A in Eq. (5.1). However, the coefficients in the sine term, which correspond to the
imaginary axis of the phasor diagrams, have changed sign when we go from positive
to negative frequency. Here too the factor 1/2 comes in. The same also applies to the
C’s since C = √

A2 + B2.
All Fourier analysers of real signals have in principle this positive and negative

division, where the coefficients are complex conjugate of each other. A little later,
under the heading “folding”, we will see that the negative frequencies appear in a
rather odd way in the so-called fast Fourier transform (FFT).
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Fig. 5.6 Frequency-domain picture obtained when we work with only the positive frequencies
on the left. In that case, we must ourselves extract the real part of the expression in Eq. (5.5) if
we use this representation. With normal Fourier transform of real signals, half of the coefficients
D(ω) are apportioned to the frequency ω and the other half to the frequency −ω; furthermore,
the coefficient at a negative frequency is the complex conjugate of the corresponding coefficient at
positive frequency

5.3 Fourier Transformation in Mathematics

So far in this chapter, we have seen several examples of how a continuous signal or
function of time can be written as a sum (or integral) of harmonic functions. This
actually applies in general, as was shown by the French mathematician and physicist
Joseph Fourier (1768–1830).1

We would like to write Fourier’s relation in the following manner:

Let f (t) be an integrable function of t (usually time) as a continuous parameter.
In physics, f (t) is often a real function, but mathematically it may be complex.
The function f (t) can then be described as an integral of harmonic functions
as the limiting value of a sum:

f (t) =
∫ ∞

−∞
F(ω)eiωt dω. (5.9)

Here F(ω) corresponds to Fourier coefficients and is called the “Fourier trans-
formof f ”. F(ω) forms the so-called frequency-domainpicture of the function,
while f (t) represents the time-domain picture.

On comparing with Eqs. (5.6), (5.7) and (5.8), we see that we have now changed
the notation to z(t) → f (T ) and D(ω) → F(ω) and we have availed ourselves of
negative frequencies by allowing the integration to go from minus infinity to plus
infinity. If f (t) is a real function, F(ω) = F∗(−ω).

1Fourier is also known to have demonstrated/explained the global warming effect in 1824.
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The challengenow is tofind F(ω), and this iswhereFourier lends us a helpinghand
of giant proportions.He introducedFourier transformation in analyticalmathematics:

Given f (t), a new function F(ω) (the Fourier transform of f ) can be calculated
as follows:

F(ω) = 1

2π

∫ ∞

−∞
f (t)e−iωt dt. (5.10)

The parameter ω is the angular frequency if t represents time. Both t and ω
are continuously variables.

You may have come across Fourier transformation in an earlier course in mathematics. In
mathematics, the transformation is often linked to the inner product between two functions, and
one defines a basis of sine and cosine functions and uses Gram–Schmidt process on a function to
find its Fourier transform. Here, we choose a more practical approach in our context.

It may seem difficult to understand that Eq. (5.10) will work as we would like it
to, but let us look at some basic properties in analytical mathematics.

The harmonic functions sin(ωt) and cos(ωt) together form a complete set of
integrable functions that can describe any other integrable function. The functions
sin(ω1t) are orthogonal to sin(ωt) when ω 	= ω1, all sin(ωt) are orthogonal to all
cos(ωt). This is embodied in the familiar expression of the delta function:

δ(ω1 − ω) = 1

2π

∫ ∞

−∞
e−i(ω1−ω)t dt. (5.11)

As an example, we now allow f (t) to be the simple harmonic function in Eq. (5.1),
but for the sake of simplicity, skip the details of finding the real value. We then write:

f (t) = Deiω1t .

Substitution in Eq. (5.10) gives:

F(ω) = 1

2π

∫ ∞

−∞
Deiω1te−iωt dt,

F(ω) = D × 1

2π

∫ ∞

−∞
ei(ω1−ω)t dt.

We recognize the last part as the delta function, and the result is that F(ω) is zero
everywhere except when ω1 = ω where F(ω1) = D . We therefore see that, in this
case, Eq. (5.10) does indeed work as desired.
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Equation (5.10) gives what we call the Fourier transform of the function f (t).
In our context, it amounts to exchanging the time-domain description of a
function with one in the frequency domain.

Equation (5.9) gives what we call an inverse Fourier transformation. It takes
us from the frequency-domain representation of a function to a picture in the
time domain.

Note that in a Fourier transform we integrate over time and the exponent
has a minus sign in front. In the inverse transformation, we integrate over
frequency and the exponent has a plus sign in front. Also note that the factor
1/(2π) is only used in one transformation, as we have chosen to express the
two equations that, in part, belong together. Another choice is to use a 1/

√
2π

in both Eqs. (5.10) and (5.11).

Remarks: Several reasons account for why Fourier transformation became popular
in mathematics and physics. There are many simple mathematical relationships for
harmonic functions. This means that if we have to deal with a troublesome function
f (t) and do not know how to handle it directly, we can use Fourier transforma-
tion as an intermediate step in the calculation. By Fourier transforming the awkward
function, we obtain a linear sum (or integral) of harmonic functions.We can then per-
form mathematical operations on this alternative expression and use inverse Fourier
transformation on the result to retrieve the result we actually wanted. Fourier trans-
formation is therefore used extensively in analytical mathematics for, among other
purposes, solving differential equations.

We know from mathematics that there are several complete sets of functions (e.g.
polynomials), and in different parts of physics, we prefer to choose a basis set that
is best adapted for the particular system under consideration. Fourier transformation
utilizes probably the most widely used basis set of functions; unfortunately, it is also
applied in situations where it is not particularly beneficial.

5.3.1 Fourier Series

A special case in Fourier transformation is of particular interest, especially when
we study Chap. 7 to analyse sound from musical instruments. If f (t) is a periodic
function with period T , Fourier transformation can be made more efficient than
through the general transformation in Eq. (5.10). The transformation can be specified
by an infinite but discrete set of numbers, called Fourier coefficients, {ck}, the index
k being a natural number between minus and plus infinity(!).
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The Fourier coefficients are calculated by integrating over a single period T :

ck = 1

T

∫ t0+T

t0

f (t)e−ikω1t dt (5.12)

where ω1 = (2π/T ), that is to say, the angular frequency corresponding to a
function that has exactly one period in the time interval T , and k is an integer.

Since in this case f (t) is periodic, the lower limit for integration (t0) can be chosen
freely in principle. It is supposed that f (t) is piecewise smooth and continuous, and
that

∫ | f (t)|2dt < +∞ when the integration is over an interval of length T .

The inverse transformation is then given by the relation:

f (t) =
+∞∑

k=−∞
cke

ikω1t (5.13)

where, once again, ω1 ≡ 2π/T corresponds to a frequency that has precisely
one sine period within the interval T .

Should f (t) be real, it is easy to see that the symmetry properties of the sine and
cosine functions lead to the relation

f (t) = a0 +
∞∑

k=1

{ak cos(kω1t) + bk sin(kω1t)} (5.14)

where

ak = ck + c−k = 2

T

∫ t0+T

t0

f (t) cos(kω1t)dt, (5.15)

bk = i(ck − c−k) = 2

T

∫ t0+T

t0

f (t) sin(kω1t)dt. (5.16)

Take note of the factor 2 in the last two expressions! The reason for this factor
is the simple recognition that the mean of both sin2 and cos2 is 1/2 and another
factor of 2 that was explained above when we mentioned the inclusion of negative
frequencies.

Equation (5.14) along with the expressions (5.15) and (5.16) are as precious as
gold! They show that any periodic signal with period T can be written as a sum of
harmonic signals having exactly integral number of cycles within the period T .
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5.4 Frequency Analysis

Hitherto there has been a lot of mathematics and little physics in this chapter. It is
therefore high time to give a few examples of the practical use of Fourier transfor-
mation.

Fourier transformation is widely used for so-called frequency analysis where
we determine which frequency components are present in a signal. We often call
the frequency-domain picture a “frequency spectrum”. The frequency spectrum is
useful because it often gives a “fingerprint” of the physical processes that lie behind
the signal under consideration.

The number of sunspots increases and decreases over time regularly with an
approximately 11-year cycle, we are often told. What is the basis for such an asser-
tion? We can plot the number of sunspots per year over a number of years. We then
get a curve like the left part of Fig. 5.7 where the curve corresponds to the f (t)
function in the theory above. This is the so-called time picture.

In the right part of Fig. 5.7, an extract of the results is shown after a Fourier trans-
formation of the data in the left part. Actually, the results after a Fourier transfor-
mation are complex numbers. However, if we are not interested in getting A cos(ωt)
and B sin(ωt) separately for the different frequencies, but are rather interested in
the amplitude C = √

A2 + B2, we choose to plot the absolute value of the complex
numbers. It is the absolute values that are plotted in the right part of Fig. 5.7.

The peaks near the middle of the figure correspond to a harmonic function with
a frequency of 0.09 or 0.10 per year. Since a frequency of 0.09–0.10 per year corre-
sponds to a period of approximately 10–11years, we get a satisfactory confirmation
that the sunspots in the 300years analysed have a considerable periodicity at 10–
11years. At the same time, the noise in the plot shows that the indicated time period
is more poorly defined than what we find for example in the movement of a shuttle!
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Fig. 5.7 Left part shows the number of sunspots that appeared annually over the past three hun-
dred years. The right part shows an excerpt from the corresponding Fourier transformed functions
(absolute values of {ck}-s in Eq. (5.12)). The sunspots data were accessed on 30.1.2012 from http://
sidc.be/silso/datafiles

http://sidc.be/silso/datafiles
http://sidc.be/silso/datafiles
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Fig. 5.8 An example of sound from aflute displayed both in the time domain and frequency domain.
Amplitudes in the frequency domain are given as absolute values of {ck}-s in Eq. (5.12))

In this book, we often use Fourier transformation to analyse sound. For example,
Fig. 5.8 shows a time-domain picture and a frequency-domain picture for a audio
signal from a transverse flute. The figure also shows relative amplitudes in the fre-
quency spectrum. We then lose the phase information, but the “strength” of the
different frequency components shows up well.

The spectrum consists mainly of a number of peaks with different heights. The
peak positions have a certain regularity. There is a frequency f0 (might have been
called f1), the so-called fundamental tone, such that the other members of a group
of lines have approximately the frequencies k f0, where k is an integer. We say that
the frequencies k f0 for k > 1 are harmonics of the fundamental tone and we refer to
them as “overtones”.

The frequency spectrum shows that when we play a flute, the air will not vibrate
in a harmonic manner (like a pure sine). The signal is periodic, but has a different
time course (shape) than a pure sinusoid. A periodic signal that is not sinusoidal
(harmonic) will automatically lead to overtones in the frequency range. It is a result
of pure mathematics.

The reason that it does not become a pure sinusoid is that the physical process
involved in the production of the sound is complicated and turbulence is involved.
There is no reason why this process should end up in a mathematically perfect
harmonic audio signal. For periodic fluctuations with a time course very different
from a pure sinusoid, there are many overtones. The ear will perceive the vibrations
as sound different from that which has fewer harmonics.

Different instruments can be characterized by the frequency spectrumof the sound
they generate. Some instruments provide fewer overtones/harmonics, while others
(e.g. oboe) provide many!

The frequency spectrum can be used as a starting point also for synthesis of sound:
Since we know the intensity distribution in the frequency spectrum, we can start with
this distribution and make an inverse Fourier transform to generate vibrations that
sound like a flute.
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It must be noted, however, that our sound impression is determined not only by the
frequency spectrum of a sustained audio signal, but also by how the sound starts and
fades. In this context, Fourier transformation is of little help. Wavelet transformation
of this type of sound discussed later in the book is much more suitable for such an
analysis.

A tiny detail at the end: In Fig. 5.8, we also see a peak at a frequency near zero.
It is located at 50Hz, which is the frequency of the mains supply. This signal has
somehow sneaked in with the sound of the flute, perhaps because the electronics
have picked up electrical or magnetic fields somewhere in the signal path.

It is important to be able to identify peaks in a frequency spectrum that corresponds
to the fundamental frequency and its harmonics, and features which do not fit into
such a line-up.

5.5 Discrete Fourier Transformation

A general Fourier transformation within analytical mathematics given by Eq. (5.10)
is based on a continuous function f (t) and a continuous Fourier coefficient function
F(ω).

In our modern age, experimental and computer-generated data are only quasi-
continuous. We sample a continuous function and end up with a function described
only through a finite number of data points. Both the sunspot data and the audio
data we just processed were based on a finite number of data points. Assume that
N data points are registered (“sampled”) sequentially with a fixed time difference
�t . The total time for data sampling is T , and the sampling rate is fs = 1/�t . Data
points have values xn where n = 0, . . . , N − 1. The times corresponding to these
data points are then given as:

tn = T

N
n for n = 0, 1, . . . (N − 1).

Based on the N numbers we started with, we cannot generate more than N indepen-
dent numbers through a Fourier transformation. The integral of Eqs. (5.10) and (5.9)
must then be replaced by summation sign and the sum extends over a finite number
of data points in both the time domain and the frequency domain.

A side effect of discrete Fourier transformation is that when we Fourier trans-
form N data points xn taken at times t0, t1, . . . , tN−1, the result in practice is
the same as if we had one periodic signal which was defined from minus to
plus infinity, with period T .

We have seen in the theory of Fourier series that for periodic signals only discrete
frequencies are included in the description. These are:
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ωk = 2π

T
k for k = . . . ,−2,−1, 0, 1, 2, . . . .

When we record the function at only N instants, as mentioned above, the data
cannot encompass a frequency range with infinitely many discrete frequencies. It is
only possible to operate with N frequencies, namely

ωk = 2π

T
k for k = − N − 1

2
,− N − 1

2
+ 1, . . . ,−2,−1, 0, 1, 2, . . . ,

N − 1

2
− 1,

N − 1

2
.

Note that the highest frequency included is

fmax = ωmax

2π
= 1

2

N − 1

T
= 1

2

N − 1

N
fs ≈ fs

2

for a sufficiently large N . Here fs is the sampling frequency.
In the original Fourier transformation, e−iωt entered as a factor in the integrand.

For N discrete data points, this is replaced by the following expressions:

− iωt → −iωk tn = −i
2π

T
k × n

N
T = −i

2πkn

N
. (5.17)

The discrete Fourier transformation is thus given by the formula:

Xk = 1

N

N−1∑

n=0

xne
−i 2πN kn (5.18)

for k = 0, . . . , N − 1. If the set xn consists of values given in the time domain,
Xk will be the corresponding set of values in the frequency domain.

Note that here we indicate that k runs from 0 to N − 1, which corresponds to
frequencies from 0 to N−1

N fs ≈ fs , while earlier we let k be between −(N − 1)/2
and+(N − 1)/2, corresponding to frequencies from≈ − fs/2 to≈ + fs/2. Sincewe
only operate with sine and cosine functions with an integral number of wavelengths,
it does not matter whether we use one set or the other. We come back to this page
when we mention folding or aliasing.

Further, take note of the factor 1/N in this expression. This factor is advanta-
geous for the variant of Fourier transformation we will use, because then we get a
simple correlation between Fourier coefficients and amplitudes, as in the introductory
sections of the chapter.

Through the expression in Eq. (5.17), we have shown that the expression for the
discrete Fourier transform in Eq. (5.18) is based squarely on the same expression as
we had in the original Fourier transformation. The difference is that in the discrete
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case we operate with a function described at N points and that only N frequencies
are included in the description.

The inverse discrete Fourier transformation naturally looks like this:

xn =
N−1∑

k=0

Xke
i 2πN kn (5.19)

for n = 0, . . . , N − 1.

5.5.1 Fast Fourier Transform (FFT)

Discrete Fourier transformation will be our choice when we use Fourier transfor-
mation in this book. We could have written a program ourselves to complete the
procedure given in Eqs. (5.18) and (5.19), but we will not do that. It would not be a
particularly effective program if we used the expressions directly. There exists nowa-
days a highly effective algorithm for discrete Fourier transformation that utilizes the
symmetry of the sine and cosine functions in a highly effective way to reduce the
number of computational operations. Efficiency has contributed greatly to the fact
that Fourier transformation is widely used in many subjects, not least physics.

The algorithmwas apparently discovered already in 1805 byCarl FriedrichGauss,
but fell into oblivion (it was of little interest as long as we did not have computers).
The algorithm was launched in 1965 by J. W. Cooley and J. Tukey, who worked at
Princeton University. Their four-page article “An algorithm for the machine calcu-
lation of complex Fourier series” in Math. Comput. 19 (1965) 297–301, belongs to
the “classic” articles that changed physics.

In Matlab and Python, we make use of Cooley and Tukey’s algorithm when
we apply FFT (“fast Fourier transform”) or IFFT (“inverse fast Fourier trans-
form”). With this method, it is advantageous that the number of points N is
exactly one of the numbers 2n where n is an integer. Then we will fully utilize
the symmetry of the sine and cosine functions.

5.5.2 Aliasing/Folding

When using FFT, we need to take care of a particular detail. We previously saw
that it was beneficial to introduce negative frequencies in Fourier transformation.
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Fig. 5.9 Left part: A spectrum obtained by a continuous Fourier transformation of an infinite
signal contains all frequencies between −∞ and +∞, but it is, in fact, a reflection and complex
conjugation about the zero frequency (provided that the original signal was real). The real part of
the Fourier transformed function is marked in red, the imaginary in blue (We have shifted the real
ones relative to the imaginary points in the left part so that the sticks became distinct.). Right part:
By discrete Fourier transformation of a signal, the information for negative frequencies (left part
of the figure) is moved to the range above half the sampling frequency. Due to symmetries in sine
and cosine functions, this also actually corresponds to signals with the frequencies fs − | fnegative|.
For this reason, FFT also receives a reflection/folding and complex conjugation in the analysis of
real signals, but this time around half the sampling rate fs/2. The part of the plots that have a light
background colour contains all the information in the Fourier transformed signal of a real function
since the other half is just the complex conjugate of the first

For a continuous Fourier transform of a real function f (t), we saw that F(ω0) =
F∗(−ω0), that is, the Fourier transform at an angular frequency is the complex
conjugate of the Fourier transform at the negative angular frequency. The same also
applies to FFT. The data points after a Fourier transform with FFT are nevertheless
arranged differently. The lower half of the frequency axis, which represents negative
frequencies, is simply moved so that it is above (to the right of) the positive points
along the frequency axis (see Fig. 5.9).

When we perform inverse Fourier transformation with IFFT, it is expected that
the negative frequencies are positioned in the same way as they are after a simple
FFT.

5.6 Important Concrete Details

5.6.1 Each Single Point

In Eq. (5.18), mathematically speaking, only a set of {xn} with N numbers can be
transformed into a new set Xk with N numbers and back again. All the numbers are
unlabelled.
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Fig. 5.10 A function sampled N = 8 times (left) along with the Fourier transform of the function
(right) consisting of N = 8 complex numbers. The real values are given by red circles and the
imaginary values by blue. Each point corresponds to a small time and frequency range (left and
right, respectively). Note the relationship between the sampling rate fs and �t and in particular
the relationship between T and � f . In order to get a high resolution in the frequency range in the
frequency range, we have to sample a signal for a sufficiently long time T

We, the users, must connect physics with the numbers. Let us explore what the
indexes k, n and the number N represent.

We imagine that we make N observations of a physical quantity xn over a limited
time interval T (a single example is given in the left part of Fig. 5.10). If the obser-
vations are made at instants separated by an interval �t , we say that sampling rate
(or sampling frequency) is fs = 1/�t . The relationship between the quantities is as
follows:

N = T fs = T/�t .

This is an important relationship that we should know by heart!
Note that each sampling corresponds to a very small time interval �t . In our

figure, the signal in the beginning of each time interval is recorded.
Fourier transformation in Eq. (5.18) gives us the frequency-domain picture (right

part of Fig. 5.10). The frequency-domain picture consists of N complex numbers, and
wemust knowwhat they represent in order to properly utilize Fourier transformation!
Here are the important details:

• The first frequency component specifies themean of all measurements (cor-
responding to frequency 0). The imaginary value is always zero (if f is real).
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• The second frequency component indicates how much we have of a har-
monic wave with a period of time T equal to the entire sampling time. The
component is complex, which allows us to find amplitude and phase for this
frequency component.

• Amplitudes calculated by using only the lower half of the frequency spec-
trum must be multiplied by 2 (due to the folding) to get the correct result.
This does not apply to the first component (mean value, frequency zero).

• Thenext frequency components indicate contributions fromharmonicwaves
with exactly 2, 3, 4,…periods within the total sampling time T .

• The previous points tell us that the difference in frequency from one point
in a frequency spectrum to the neighbouring point is � f = 1/T .

• Assuming that the number of samples N is even, the first component after
the centre of all the components will be purely real. This is the component
that corresponds to a harmonic oscillation of N/2 complete periods during
the total sampling time T . This corresponds to a frequency equal to half of
the sampling rate fs mentioned above.

• All the remaining frequency components are complex conjugates of the
lower frequency components (assuming that f (t) is real). There is a “mir-
roring” around the point just above the middle of the numbers (mirroring
about half the sampling rate). We do not get any new information from these
numbers, and therefore we often drop them from the frequency spectrum.

• Since the mirroring occurs around the first point after the middle, the first
point will not be mirrored (the point corresponding to the average value, the
frequency 0).

• The last frequency in a frequency spectrum is fs(N − 1)/N since the fre-
quency ranges are half open.

Why, one may wonder, do we calculate the top N/2 − 1 frequency components when these
correspond to “negative frequencies” in the original formalism (Eq. (5.10)). As long as f is real,
these components are of little/no worth to us.

However, if f happens to be complex, as some users of Fourier transformation take it to be,
these last, almost half of the components, are as significant as the others.

This is related to Euler’s formula and phases. As long as we look at the real value of a phasor,
it corresponds to the cos(ωt + φ) term, and it is identical regardless of whether ω is positive or
negative. We can distinguish between positive and negative rotational speed of a phasor only if we
take into account both the real and imaginary part of a complex number.

5.6.2 Sampling Theorem

As mentioned above, the top half of Fourier coefficients correspond to negative
frequencies in the original formalism. However, we suggested that because of the
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Fig. 5.11 Harmonic functions with frequencies fk and fN−k (here k = 1) have exactly the same
value at the times for which the original function was defined (assuming that k = 0, 1, . . . , N − 1).
Therefore, we cannot distinguish between the two for the sampling rate used. In order to distinguish
functions with different frequencies, the rate must be at least twice as high as the highest frequency
component. If you carefully consider the curves with the highest frequency in the figure, you will
see that there are fewer than two samples per period for these

symmetry of the sine and cosine functions, it is also possible to consider these upper
coefficients as coefficients of frequencies above half the sampling frequency (except
that we get problems with the factor 1/2 mentioned earlier).

We can illustrate this by picking out two sets of Fourier coefficients from a Fourier
transform of an arbitrary signal. We have chosen to include the relative coefficients
for k = 1 (red curves) alongwith k = N − 1 and the imaginary coefficients for k = 1
and k = N − 1 (blue curves). The result is shown in Fig. 5.11.

The functions are drawn at “all” instants, but the times where the original function
is actually defined is marked with vertical dotted lines.We then see that the functions
of very different frequencies still have the exact same value at these times, although
thevalues beyond these times arewidely different. This is in accordancewith equation

ei
2π
N kn = e−i 2πN k(N−n) (5.20)

for k and n = 1, . . . , N − 1 in the event that these indices generally range from 0 to
N − 1.

The two functions cos(ω1t) and cos[(N − 1)ω1t] are thus identical at the discrete
times t ∈ {tn} our description is valid (ω1 corresponds to one period during the time
we have sampled the signal.). Similarly, for cos(2ω1t) and cos[(N − 2)ω1t] and
beyond for cos(3ω1t) and cos[(N − 3)ω1t], etc. Then there is really no point in
including the upper part of a Fourier spectrum, since all the information is actually
in the lower half (Remember, this only applies when we transform a real function.).

Looking at the argument we see that at the given sampling rate, we would get
exactly the same result when sampling continuous signal cos[(N − m)ω1t] as if the
continuous signal was cos(mω1t) (m is an integer). After the sampling, we cannot
determine if the original signal was one or the other of these two possibilities—unless
we have some additional information.
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The additional information we need, we must supply ourselves through experi-
mental design! We must simply ensure that there are no contributions with frequen-
cies above half the sampling frequency of the signal we sampled. If so, we can be sure
that the signal we sampled was cos(mω1t) and not cos[(N − m)ω1t]. This means
that we must sample at least twice per period for the highest frequency that is present
in the signal (see Fig. 5.11).

This is an example of a general principle:

If we want to represent a harmonic function in an unambiguous manner by a
limited number of measurements, the target density (measurement frequency,
sampling frequency) must be so large that we get at least two measurements
within each period of the harmonic signal. The “Nyquist–Shannon Sampling
Theorem” says this more succinctly:

The sampling frequency must be at least twice as high as the highest fre-
quency component in a signal for the sampled signal to provide an unambigu-
ous picture of the signal.

If the original signal happens to contain higher frequencies, these must be
filtered by a low-pass filter before sampling to make the result unambiguous.

It is strongly recommended that you complete the second problem at the back of
the chapter. Then you can explore how folding arises in practice, and how we can be
utterly deceived if we are not sufficiently wary.

5.7 Fourier Transformation of Time-Limited Signals

It follows from Eq. (5.10) that a Fourier transform can be viewed as a sum (integral)
of the product of the signal to be transformed with a pure sine or cosine:

F(ω) = 1

2π

∫ ∞

−∞
f (t)e−iωt dt.

F(ω) = 1

2π

∫ ∞

−∞
f (t) cos(ωt)dt − i × 1

2π

∫ ∞

−∞
f (t) sin(ωt)dt.

We assumed, without stating explicitly, that the signal we analysed lasted forever.
Such signals do not exist in physics. It is therefore necessary to explore characteristic
features of Fourier transformation when a signal lasts for a limited time.

We choose a signal that gradually becomes stronger, reaches amaximumvalue and
then dies out again. Specifically, we choose that the amplitude change follows a so-
called Gaussian envelope. Figure5.12 shows two different signals (red curves), one
lasting a very short time, and another that lasts considerably longer. Mathematically,



114 5 Fourier Analysis

10

6

2

-2

-6

-10

A
m

pl
itu

de
 (a

u)

-4                -2                0                 2                4

Position or Time (au)

400

300

200

100

0
0              10              20               30              400              10              20               30              40

Frequency (au)

80

60

40

20

0

b c

d

10

6

2

-2

-6

-10

A
m

pl
itu

de
 (a

u)

-4                -2                0                 2                4
Position or Time (au)

10

6

2

-2

-6

-10

A
m

pl
itu

de
 (a

u)

-4                -2                0                 2                4
Position or Time (au)

10

6

2

-2

-6

-10

A
m

pl
itu

de
 (a

u)

-4                -2                0                 2                4
Position or Time (au)

Frequency (au)

(a) (b)

(c) (d)

(e) (f)

Fig. 5.12 Fourier transformation of a cosine signal multiplied with a Gaussian function. Only a
small part of the total frequency range is shown. See the text for details

the signal is given as:

f (t) = C cos[ω(t − t0)]e−[(t−t0)/σ]2

where σ gives the duration of the signal (the time after which the amplitude has
decreased to 1/e of its maximum). ω is the angular frequency of the underlying
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cosine function, and t0 is the time at which the signal has maximum amplitude (the
peak of the signal occurs at time t0).

In panels a and b, in Fig. 5.12 the signal is of short duration (small σ), but in
panels c and d it lasts a little longer (σ five times as large as in a and b).

Panels a and c show, in addition to the signal pulse (in red), the cosine signal with
a frequency equal to ω/2π (thinner blue line). In panels b and d, the cosine signal
has 10% higher frequency, which explains why we will calculate Xk at two adjacent
frequencies.

We see that the integral (sum) of the product between the red and blue curves in
a and b will be about the same. On the other hand, we see that the corresponding
integral of d must be significantly smaller than the integral of c since the signal we
analyse and the cosine signal get out of phase a little bit away from the centre of
the pulse in d. When the phases are opposite, the product becomes negative and the
calculated integral (the Fourier coefficient) becomes smaller.

If we make a Fourier transform (“all frequencies”) of the red curve itself in a
(the short-duration signal) and take the absolute value of the Fourier coefficients,
we get the result shown in e. The Fourier transform of the signal in c (the longer
lasting signal) is displayed in the lower right corner of f. We can see that Fourier
transformation captures the predictions we could make from visual examinations of
a–b.

Note that the short-duration signal yielded a broad frequency spectrum, while
the signal with several periods in the underlying cosine function gave a nar-
rower frequency range. This is again a manifestation of the principle we have
observed in the past, which has a clear resemblance to Heisenberg’s uncer-
tainty relationship. In classical physics, this is called time-bandwidth theorem
or time-bandwidth product: The product of the width (duration) of a signal in
the time domain and the width of the same signal in the frequency domain is
a constant, whose precise value depends on the shape of the envelope of the
signal.

�t � f ≥ 1.

The actual magnitude of the number on the right-hand side depends on how
we define the widths �t and � f . We will later find in the chapter the same
relationship with the number 1 replaced by 1/2, but then we use a different
definition for the �’s.

Figure5.12 illustrates important features of Fourier analysis of a signal.
More precisely, the following applies:

In a frequency analysis,we candistinguish between two signal contributions
with frequencies f1 and f2 only if the signals last longer than the time T =
1/(| f1 − f2|).
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Even for signals that last a very long time, in experimental situations, we
will have to limit the observation of signal for a time T . If we undertake an
analysis of this signal, we will only be able to distinguish between frequency
components that have a difference in frequency of at least 1/T .

The difference we talk about means in both cases that there must be a
difference of at least one period within the time we analyse (or the time the
signal itself lasts) so that we can capture two different signal contributions in
a Fourier transform. Suppose we have N1 periods of one signal in time T and
N2 periods of the second signal. In order to be able to distinguish between the
frequencies of the two signals, we must have |N1 − N2| ≥ 1. [Easily derived
from the relationship T = 1/(| f1 − f2|).]

5.8 Food for Thought

The relationships in the time and frequency domains we see in Fig. 5.12 can easily
lead to serious misinterpretations. In a, we see that the oscillation lasts only a very
short time (a few periods). The rest of the time the amplitude is simply zero (or we
could set it exactly to zero with no notable difference in the frequency spectrum).

What does Fourier transformation show? From the panel e, we can see that there
are about 30 frequency components that are clearly different from zero. This means
that we must have of the order of 30 different sine and cosine functions which last all
the time (even when the signal is zero) to describe the original signal. We see this by
writing the inverse Fourier transform in a way that should be familiar to us by now:

xn =
N−1∑

k=0

[�(Xk) cos(ωk tn) − (Xk) sin(ωk tn)
]

(5.21)

for n = 0, . . . , N − 1. � and  stand, as before, for the real and imaginary parts,
respectively.

There are some who conclude that the oscillation, when it appears to be zero, is
not really zero but simply the sum of about 30 different sine and 30 different cosine
functions throughout. This is nonsense!

It is true that we can describe the time-limited oscillation in panel a using all of
these sine and cosine functions, but this is a pure mathematical view that has little to
do with physics. Notwithstanding that, there is a good deal of physics and physical
reality that goes hand in hand with the width of the frequency spectrum. However,
there are other ways to make this point without invoking the presence of something
physical when the amplitude is actually equal to zero. In Chap. 14, we will acquaint
ourselves with the so-called wavelet transformation, and then this will become much
clearer.
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In my own field of research, quantum optics, we see how unfortunate this type of short circuit
is. Some say that we must “use many different photons” to create a light pulse and that each photon
must have the energy E = h f where h is Planck’s constant and f frequency. Then a layer of physical
reality is added to each Fourier coefficient, but one should focus more on what is physics and what
is mathematics.

An important point here is that all time information about a signal disappears
as soon as we take the absolute value of Fourier coefficients. As long as we
retain complex Fourier coefficients, the time information remains intact, but
is often very well hidden. The time information is scattered throughout the
Fourier spectrum. Only a full inverse transformation (with complex Fourier
coefficients!) from the frequency domain to the time domain can retrieve the
temporal information. Fourier transformation, and in particular a frequency
spectrum, has therefore limited value for signals that are zero during certain
periods or completely change character otherwise during the sampling time.

Also in another context, a Fourier analysis can lead to unfortunate conclusions.
Figure5.13 shows the Fourier transform of a periodic motion. In essence, this figure
resembles Fig. 5.8, which shows the frequency spectrum of sound from a transverse
flute, with fundamental tone and harmonics. On that occasion, we said that the reason
we get overtones is that the signal, though periodic, is not a pure sinusoid.

Some persons speak of the higher harmonics in anotherway. For example, they say
“whenwe play a flute, air vibrates not only at one particular frequency, but at multiple
frequencies simultaneously”. Though common, such phraseology is problematic.

If we say that “several frequencies are present simultaneously” in the motion that
lies at the back of the Fourier spectrum in Fig. 5.13, the statement accords poorly with
the underlying physics! The figure was made this way: we first calculated a planet’s
path around the sun. The path was described by a set of coordinate as a function of

Fig. 5.13 Fourier
transformation of a periodic
motion. See the text for
explanation
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time [xi (t), yi (t)]. Figure5.13 is simply the Fourier transform of {xi (t)} for a time
that is much longer than the solar orbital period of the planet under consideration.

The reason we get a series of “harmonics” in this case is that planetary motion is
periodic but not a pure sinusoid. We know that Fourier transformation is based on
harmonic basis functions, and these correspond to circular motion. But if we think
in terms of “several frequencies existing at the same time”, it is tantamount to saying
that the movement of the planet must be described with multiple circular movements
occurring at the same time! In that case, we are back to the Middle Ages!

Some vicious tongues say that if computers, equipped with an arsenal of Fourier
transform tools, had been around in Kepler’s time, we would still have been working
with themedieval epicycles (see Fig. 5.16). Fromour Fourier analysis in Fig. 5.13, we
see that we can replace the ellipse with a series of circles with appropriate amplitudes
(and phases). However, most people would agree that it makes more sense to use
a description of planetary motion based on ellipses and not circles. I wish we were
equally open to dropping mathematical formalism based on Fourier analysis also in
some other contexts.

Fourier analysis can be performed for virtually all physical time variables, since
the sine and cosine functions included in the analysis form a complete set of basis
functions. Make sure you that you do not draw the conclusion that “when something
is feasible, it is also beneficial”. In the chapter on wavelet transformation, we will
come back to this issue, since in wavelet analysis we can choose a set of basis
functions totally different from everlasting sines and cosines. We can sum up in the
following words:

Fourier transformation is a very good tool, but it hasmore or less the samebasis
as the medieval description of planetary movements. It is perfectly possible
to describe planetary paths in terms of epicycles, but such an approach is not
particularly fruitful. Similarly, a number of physical phenomena are described
today by Fourier analysis where this formalism is not very suitable. It can lead
to physical pictures that mislead more than they help us. Examples may be
found in fields which include quantum optics.

5.9 Programming Hints

5.9.1 Indices; Differences Between Matlab and Python

Strings such as {xn} and {Xk} are described as arrays in the parlance of numerical
analysis. It is important to remember that in Python, the indexes start with 0, while
in Matlab they start with 1. In {Xk}, k = 0 and 1 correspond, respectively, to the
frequency 0 (constant) and the frequency 1/T . In Matlab, their counterparts are
indices 1 and 2.
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The expression for a discreet Fourier transform in Python will then be as follows:

Xk = 1

N

N−1∑

n=0

xne
−i 2πN kn (5.22)

for k = 0, . . . , N − 1.
On the other hand, the expression for a discreet Fourier transform in Matlab takes

the following form:

Xk = 1

N

N∑

n=1

xne
−i 2πN (k−1)(n−1) (5.23)

for k = 1, . . . , N .
For the inverse discrete Fourier transformation, similar remarks apply.

5.9.2 Fourier Transformation; Example of a Computer
Program

% A simple example program which aim is to show how Fourier

% transform may be implemented in practice i Matlab. The

% example is a modification of an example program at a

% tutorial page at Matlab.

Fs = 1000; % Sampling frequency

delta_t = 1/Fs; % Time between each sampling

N = 1024; % Number of samples

t = (0:N-1)*delta_t; % Time description

% Create an artificial signal as a sum of a 50 Hz sine and a

% 120 Hz cosine signal, plus a random signal:

x = 0.7*sin(2*pi*50*t) + cos(2*pi*120*t);

x = x + 1.2*randn(size(t));

plot(Fs*t,x) % Plot the time domain representation

title(’The signal in time domain’)

xlabel(’time (millisec)’)

X = fft(x,N)/N; % Fast Fourier Transformation

freqv = (Fs/2)*linspace(0,1,N/2); % The frequency range

% Plot the absolute value of the frequency components in the
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% frequency domain representation. Plot only frequencies up to

% half the sampling frequency (drop the folded part).

figure; % Avoids overwriting the previous plot

plot(freqv,2*abs(X(1:N/2))) % Plots half the frequency spectrum

title(’Absolute value of the frequency domain representation’)

xlabel(’Frequency (Hz)’)

ylabel(’|X(freq)|’)

5.10 Appendix: A Useful Point of View

There are big differences between how we physicists use and read the contents of
mathematical expressions. In this appendix, I would like to give an example of a way
of thinking that has been useful to me whenever I have wondered why some Fourier
spectra look as they do.

We start with the mathematical expression shown below:

F(ω) = 1

2π

∫ ∞

−∞
f (t)e−iωt dt (5.24)

or the discrete variant of the same expression:

Xk = 1

N

N−1∑

n=0

xne
−i 2πN kn = 1

N

N−1∑

n=0

xn cos(ωk tn) − i × 1

N

N−1∑

n=0

xn sin(ωk tn) (5.25)

where ωk = 2π
T k, tn = T

N n, and T is the total sampling time. Then we simply have
a sum of single products xn cos(ωk tn) (or sines) with many n. The integral or the
sum we get by adding a lot of such numbers (with a scaling that we need not discuss
here).

If now {xn} is simply a cosine function with the same frequency and phase as
cos(ωk tn), the products of these two terms will always be equal to or greater than
zero, being a cos2 function. Then the sum will be big and positive.

If {xn} is a cosine function with a frequency different from that of cos(ωk tn), the
two cosine functions will sometimes be in phase, yielding a positive product, but at
other times with an opposite phase, resulting in a negative product.

Due to the factor 1
N , the sum of all product terms will be close to zero if we get

many periods of positive and negative contributions in all.
Based on this argument, we find that the Fourier transform of a single harmonic

function when we have integration with limits plus minus infinity is considered
a δ-function. But what will happen when the test function is simply zero every-
where except for a limited length of time T where the function is a simple harmonic
function?
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Fig. 5.14 Two functions
included in the integral in
Fourier integral Eq. (5.24).
The f function to be
analysed is shown in blue. It
is different from zero only
for a limited period of time.
gk(t), which corresponds to
�{e−iωk t }, is shown in red,
and the product of the two
functions in black. Three
different frequencies ωk are
selected. See text for
comments
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Figure5.14 shows a section of the function:

f (t) = cos(ωat) for t ∈ [0, T ] and 0 otherwise. (5.26)

In the figure T = 2/3 s.
The time interval T in the figure is just sufficient to cover the entire windowwhere

f (t) differs from zero. Also shown are plots g(t) = �{e−iωk t } = cos(ωk t) for three
different choices of the analysing frequency ωk , and the corresponding plots of the
product functions f (t)g(t).

The integral of the product function now receives contributions only in the time
interval where f is different from zero.We get full contribution from the entire range
when ωk = ωa . We see that the integral (sum of all values of product function) also
becomes positive in the middle case where the difference between ωk and ωa is so
small in relation to the length of time interval that the phase of f and the phase of
cos(ωk) is always less than π.

In the bottom case, we have chosen an analysing frequency of ωk which is such
that
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(ωk − ωa)T = 2π.

Because of the symmetry, we see that the integral here vanishes, but we realize that
we would get a certain positive or negative value if we had chosen the frequency
difference (in relation to T ) as we did in this case.

What has this example shown us? In the first part of the chapter, we explained
that when f (t) = cos(ωat) for all t , the Fourier integral will be null in abso-
lutely all cases where ωk 	= ±ωa . In Fig. 5.14, we see that when the function
we analyse lasts for a limited time T , the two frequencies may be slightly
different and yet we may receive contributions to the Fourier integral. The
contribution will be greatest when (ωk − ωa)T < π.

It should be noted thatwe can rename the quantities as follows: (ωk − ωa) ≡
2π� f and T ≡ �t . In that case, we get that the Fourier integral will have an
appreciable value so long as

� f �t < 1/2.

This is again a relation analogous to the Heisenberg uncertainty relation.

We can repeat the same type of calculations of the f g–product function for many
different ωk relative to ωa and add up positive and negative contributions over T ,
the interval we wish to integrate over. Examples of such calculations are shown in
Fig. 5.15. When the two frequencies are identical, the area below the middle curve
becomes the maximum, which corresponds to the peak value in the (real part) of the
Fourier spectrum. The area may be positive or negative depending on whether the
mean value of the f g–product function is above or below zero. Time intervals where
the f g–product is positive is marked with blue background colour and intervals with
negative product with red. The integral is just the sum of positive and negative areas
in these plots. In case of 3 and 5, the total area is equal to zero (as much positive as
negative), while in case of 4 the total area is negative.

Deeper red or blue colour is used to mark the areas that are not balanced by
corresponding area with the opposite sign. We see then that the deepest red-marked
area in case 4 is greater in absolute value than the deepest blue area in case6, reflecting
that the peak in the area near the 6 mark in the lower part of the figure is less than
the (absolute) value of the peak in the area near the 4 mark.

Figure5.15 indicates that the frequency spectrum of a portion of a harmonic
function has a broad and sharp peak in the middle, and characteristic oscillations
with smaller and smaller amplitude the farther away from the peak one moves.
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Fig. 5.15 Integrand (the f g–product) in the real part of Fourier calculations for different choices of
the analysing frequency. The real part of a section of the Fourier spectrum of the function appearing
in Eq. (5.26) is given at the bottom. See also the text for details

Remarks: In Chap. 13, we will see that the frequency spectrum in Fig. 5.15 appears again when
we consider the diffraction image that emerges when we transmit a laser beam with visible light
through a narrow gap. Within optics, there is a separate field called Fourier optics.

5.10.1 Program for Visualizing the Average of Sin–Cos
Products

function sincosdemo

% Program to visualize the average of sine/cosine product

N = 2000; % Number points in the description

T = 1.0; % The time we describe the signal (1 sec)

t = linspace(0,T*(N-1)/N,N); % Make the timeline t
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freq1 = 100.0; % One frequency is kept constant

freq2 = 100.0; % 1) Try to vary this from 102 to e.g. 270

% 2) Try also values where |freq2-freq1|< 2.0

omega1 = 2*pi*freq1; % Calculate angular frequencies

omega2 = 2*pi*freq2;

f = cos(omega1*t); % Try also sin( )

g = cos(omega2*t);

plot(t,f.*g,’-b’); % Plot the product of f and g

xlabel(’Time (s)’);

ylabel(’Signal (rel.units)’);

null = zeros(N,1);

hold on;

plot(t,null,’-r’); % Draw also the zero line

integral = sum(f.*g); % Drop the normalization 1/N

integral % Write the "integral" (sum) to screen.

5.10.2 Program Snippets for Use in the Problems

Snippet 1: Here is a piece of code that shows how to read data from an audio file in
Matlab:

s = ’piccoloHigh.wav’; % File name (the file must be in

% the same folder as your program)

N = 2ˆ16;

nstart = 1; % First element number you want to use in

% your audio file

nend = N; % last element number you want to use

[f,Fs] = audioread(s, [nstart nend]);

% sound(f,Fs); % Play back the sound if you want

% (then remove %) for control purposes

g = f(:,1); % Pick a mono signal out of the stereo

% signal f

X = (1.0/N)*fft(g); % FastFourierTransform of the

% audio signal

Xa = abs(X); % Calculate the absolute value out of the

% freqency domain representation
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Snippet 2: Recording a sound from the PC’s microphone.

T = 2.0; % Duration of sound track in seconds

Fs = 11025; % Chosen sampling frequency (must be

% supported by the system)

N = Fs*T;

t = linspace(0,T*(N-1)/N,N); % For x-axix in plot

recObj = audiorecorder(Fs, 24, 1);

deadtime = 0.13; % Delay. Trick due to Windows-problems

recordblocking(recObj, T+3*deadtime);

myRecording = getaudiodata(recObj);

stop(recObj);

Nstart = floor(Fs*deadtime);

Nend = Nstart + N -1;

y = myRecording(Nstart:Nend,1);

s = sum(y)/N; % Removes the mean value

y = y-s;

plot(t,y,’-k’);

title(’Time domain representation’);

xlabel(’Time (sec)’);

ylabel(’Microphone signal (rel units)’);

N.B. The code for sampling the sound does not work perfectly and sometimes leads to irrepro-
ducible results. This is because the sound card is also under control of Windows (or other operating
system), and the result depends on other processes in the computer. Those who are particularly
interested are referred to specially developed solutions via “PortAudio” (www.portaudio.com).

Snippet 3: One possible method to make an animation.

function waveanimation1

clear all;

k = 3;

omega = 8;

N = 1000;

x = linspace(0,20,N);

y = linspace(0,20,N);

p = plot(x,y,’-’,’EraseMode’,’xor’);

axis([0 20 -2.5 2.5])

for i=1:200

t = i*0.01;

y = 2.0*sin(k*x-omega*t);

set(p,’XData’,x,’YData’,y)

drawnow

pause(0.02); % This is to slow down the animation

end

www.portaudio.com
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Pieces of code will be transferred from the Problems in several chapters to the “Snip-
pet subsection” at the “Supplementary material” web page for this book available at
http://www.physics.uio.no/pow.

5.11 Learning Objectives

After working through this chapter, you should know that:
• An integrable time-dependent continuous function can be transformed
by continuous Fourier transformation into a “frequency-domain picture”,
which can then be uniquely transformed with an inverse Fourier transfor-
mation back to the starting point.

• Adiscrete function can be transformed by a discrete Fourier transform into a
“frequency-domain picture”, which can then be uniquely transformed with
a discrete inverse Fourier transform back to the starting point.

• Only integers are included in a mathematical/numerical implementation of
a Fourier transformation. We must manually keep track of the sampling
times and the frequencies of the elements in the Fourier spectrum. We must
also take account of normalization of the numerical values (e.g. whether or
not we should divide/multiply the numbers after transformation by N ), as
different systems handle this differently.

• The frequency-domain picture in a discrete Fourier transformation consists
of complex numbers, where the real part represents cosine contributions at
the different frequencies, while the imaginary part represents the sine con-
tributions. The absolute value of the complex numbers gives the amplitude
of the contribution at the relevant frequency. The arctan of the ratio between
imaginary and real parts indicates the phase of the frequency component
(relative to a cos(ωt + φ) description).

• For a real signal, the last half of the Fourier coefficients are complex con-
jugate of the first half, and “mirroring” occurs. Therefore, we usually use
only the first half of the frequency spectrum.

• In a discrete Fourier transform, the first element in the data string Xk cor-
responds to a constant (zero frequency), second element to the frequency
1/T , third to frequency 2/T , etc. Here T is the total time function/signal we
start with is described above (total sampling time). It is necessary to sample
for a long time if we are to get a high resolution in the frequency picture.

• If a signal is “sampled” with a sampling frequency fs , we will only be able
to process signals with frequencies below half the sampling frequency in an
unambiguous manner.

• In order to avoid “folding” problems, a low-pass filter must be used to
remove signal components that may have a frequency higher than half the
sampling frequency. For numerical calculations, we have to make sure that
the “sampling rate” is high enough for the signal we are processing.

http://www.physics.uio.no/pow
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• Fourier transformation is a great aid in studying stationary time-varying
phenomena in much of physics. For example, Fourier transformation is
extensively used in analysis and synthesis of sound.

• It is possible to implement Fourier transformation of (almost) any signal,
but it does not mean that Fourier transformation is useful in every situation!

• Fourier transformation is (almost) suitable only for analysing signals that
havemore or less the same character throughout the sampling time. For tran-
sient signals that change character greatly during sampling time, a Fourier
spectrum sometimes may be more misleading than useful.

• Normally when Fourier transformation is performed numerically, we use
ready-made functions within the programming package we use. If we create
the code ourselves, the calculations take an unduly long time (unless we
code the actual “fast Fourier transform” algorithm). Calculations are most
effective if the number of points in the description is 2n .

5.12 Exercises

Suggested concepts for student active learning activities: Periodic/nonperiodic
function, Fourier transformation, time domain, frequency domain, frequency anal-
ysis, fundamental frequency, harmonic frequencies, sampling, sampling frequency,
folding, aliasing, sampling theorem, time-bandwidth product, classical analogue to
Heisenberg’s uncertainty relationship, high-pass/low-pass filters, stationary signal.

Comprehension/discussion questions

1. In a historical remark first in this chapter, we claimed the Fourier transformation
and Fourier analysis bear close resemblance to the medieval use of epicycles for
calculating how planets and the sun moved relative to each other (see Fig. 5.16).
Discuss this claim and how Fourier analysis may lead to unwanted conclusions
if it is used in an uncritical manner.

2. How can we make a synthetic sound by starting from a frequency spectrum?
Would such sound simulate in a good way the output of a proper instrument?

3. For CD sound, the sampling rate is 44.1kHz. In the case of sound recording,
we must have a low-pass filter between the microphone amplifiers and sampling
circuits that remove all frequencies above 22kHz.What could happen to the sound
during playback if we did not take this rule seriously?

4. After a fast Fourier transform (FFT), we often plot only a part of all the data
produced. Mention examples of what may influence our choices.

5. Suppose that you Fourier analyse sound from a CD recording of an instrument
and find that the fundamental tone has a frequency of 440Hz. Where do you find
the folded frequency?
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Fig. 5.16 A drawing of epicycles in an old Arabic document written by Ibn_al-Shatir [1], Public
Domain

6. What are the resemblances between Fourier series and a discrete Fourier trans-
form? Discuss the difference between periodic and nonperiodic signals.

7. Describe in your own words why the Fourier transform of a cosine function that
lasts for a limited time T is different than if the cosine function had lasted from
minus to plus infinity.

8. Consider Fig. 5.17 and tell us what it means to you.

Problems

Remember: A “Supplementarymaterial” web page for this book is available at http://
www.physics.uio.no/pow.

9. Show both mathematically and in a separate programming example that the first
point in a digital Fourier transform of a signal is equal to the average value of
the signal we started with.

10. Use the computer programprovided in “computer software example”onpagexxx
to explore how folding works in practice. Let the signal be:

http://www.physics.uio.no/pow
http://www.physics.uio.no/pow
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Fig. 5.17 Use this figure in Problem 8

freq = 100.0; % Frequency in hertz
x = 0.8 * cos(2*pi*freq*t); % Signal is a simple cosine

and run the program. Be sure to zoom in so much that you can check that the
frequency in the frequency spectrum is correct.
Then run the program, setting the frequency (one by one) equal to 200, 400,
700, 950, 1300 (Hz). Do you find a pattern in where the peaks come out in the
frequency spectrum?

11. Some people claim that the moon phases influence everything from the weather
to the mood of us humans. Check if you can find indications that the temperature
(maximum and/or minimum daily temperature) varies slightly with the moon
phases (in addition to all other factors)?
The data for the place (and period) you are interested in can be downloaded from
api.met.no. Alternatively, you can use an already downloaded and slightly sim-
plified file tempblindern10aar.txt from the web pages providing supplementary
material for our book. The file gives the temperature of Blindern, Oslo, Norway
in the period 1 January 2003 through 31 December 2012. The fourth column
in the file provides minimum temperatures, while the fifth column provides the



130 5 Fourier Analysis

maximum values.
Explain carefully how you can draw a conclusion as to whether or not the moon
phase affects the temperature.
Below you will find some lines of Matlab code that shows how data may be read
from our file into a Matlab program (the data file has five columns, and we use
the last two of them):

filename = ’tempBlindern10years.txt’;

fileID = fopen(filename, ’r’);

A = fscanf(fileID, ’%d %d %f %f %f’,[5,inf]);

minT = A(4,:);

maxT = A(5,:);

plot(minT,’-r’);

hold on;

plot(maxT,’-b’);

12. Collect sunspot data from the Web and create an updated figure similar to our
Fig. 5.7. Pay particular attention to getting correct values along the axes of the
frequency-domain representation. Is there a correspondence between the peak
heights in the time-domain picture and the amplitude of the frequency spectrum?
Below are some lines ofMatlab code showing how data can be read into aMatlab
program (two columns):

filename=’sundata.txt’;

fileID = fopen(filename, ’r’);

A = fscanf(fileID,’%f %f’, [2,inf]);

plot(A(1,:),A(2,:),’-b’);

13. Pick up a short audio signal from a CD, a wav file or record sound from a
microphone (use, for example, one of the program snippets a few pages before
this one). The sampling rate is 44.1kHz. Save 214 = 16384 data points (pairs of
points if it is a stereo signal, but use only one of the channels). Perform a “fast
Fourier transformation” and end up with 16384 new data points representing the
frequency spectrum. How do you change your program from point number to
frequency in Hz along the x-axis when the frequency spectrum is to be plotted?

14. What is the resolution along the x-axis of the plot in the previous task? In other
words, how much change in frequency do we get by moving from one point in
the frequency range to the next? Would the resolution be the same even if we
had used only 1024 points as the starting point for Fourier transformation?

15. Write a program in Python or Matlab (or any other programming language)
that creates a harmonic signal with exactly 13 periods within 512 points. Use
the built-in FFT function to calculate a frequency range. Will this be what you
expected? Feel free to let the signal be a pure sinusoidal signal or a sum of sine
and cosine signals.

16. Modify the program so that the signal nowhas 13.2 periodswithin the 512 points.
How does the frequency spectrum look now? Describe as well as you can!
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17. Modify the program to get 16 full periods ofFIRKANTsignalwithin 214 = 16384
points. How does the frequency spectrum look now? Find on the Internet how
the amplitude of different frequency components should be for a square signal
and verify that you get nearly the same output from your numerical calculations.

18. Modify the program so that you get 16 full sagtenner (triangular signal) within
the 1024 points. Also describe this frequency spectrum!

19. In an example in Chap. 4, we calculated the angular amplitude of a physical
pendulum executing large displacements. Perform these calculations for 3–4
different angular amplitudes and carry out a Fourier analysis of the motion in
each case. Comment on the results.

20. AM radio (AM: Amplitude Modulated). Calculate how the signal sent from an
AM transmitter looks like and find the frequency spectrum of the signal. It is
easiest to do this for a radio signal on the long wave band (153–297kHz). Let
the carrier have the frequency fb = 200kHz and choose the speech signal to
be a simple sine with frequency (in turn) ft = 440Hz and 4400Hz. The signal
should be sampled at a sampling rate of fs = 3.2MHz, and it may be appropriate
to use N = 216 = 65536 points. The AM signal is given by:

f (t) = (1 + A sin(2π fs t)) × sin(2π fbt)

where A is the normalized amplitude of the audio signal (the loudest sound
that can be sent without distortion is A = 1.0). Use a slightly smaller value, but
please test how the signal is affected by A).
Plot the AM signal in both the time domain and the frequency domain. Select
appropriate segments from the full data set to focus on what you want to display.
Remember to set correct timing along the x-axis of the time-domain plot and
correct frequency scale along the x-axis of the frequency spectrum.
Each radio station on the medium and long wave may extend over only a 9kHz
frequency band. What are the consequences for the quality of the sound being
transmitted?

21. FM radio (FM: Frequency Modulated). Calculate how the signal sent from an
FM transmitter looks like and find the frequency spectrum of the signal. Use the
same parameters as in the previous task (although in practice, no long wave FM
is used). The FM signal can be given as follows:

f(t) = sin(phase(t)); % Principally (!)

where the phase is integrated by means of the following loop:

phase(1) = 0.0;

for i=1:(N-1)

phase(i+1)=phase(i) + \cdots

omega_b*delta_t*(1.0 + A*sin(omega_t*t(i)));

end;
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where “omega_b” and “omega_t” are the angular frequencies of the carrier and
the speech signal, respectively. The time string “t(i)” is assumed to be calculated
in advance (distance between the points is “delta_t”, which is determined by the
sampling frequency).
A is again a standard amplitude for the audio signal, which also includes the so-
called degree of modulation. You can choose, for example, A = 0.2 and 0.7 (in
turn), and see how this affects both the time-domain picture and the frequency-
domain picture.
Plot the FM signal in both the time domain and the frequency domain according
to the same guidelines as in the previous task (Hint: It may be easiest to plot the
case where the voice frequency is 4400Hz and that A = 0.7.).
Are there any clear differences in how the frequency-domain picture appears for
FM signals compared to AM signals?

22. Use inverse Fourier transformation to generate a simple sinusoid and play the
sound on your computer. Use the inbuilt sound or wavplay function (program
snippet 1 a few pages ahead of this on indicates how). Specifically, the following
is recommended: Use the CD sampling rate fs = 44100Hz and 216 = 65536
points. The values of the signal f must not exceed the interval [−1,+1]. Attempt
to make sound with frequencies 100, 440, 1000 and 3000Hz. You may want to
make a signal consisting of several simultaneous sinusoids too? Remember to
scale the total signal before using wavplay or sound.

23. Read the audio file “transient.wav” and perform Fourier transformation to obtain
the frequency spectrum. The audio file is available from the web pages providing
supplementary material for our book, the sampling rate is fs = 44100Hz. Use
217 points in the analysis. You may use program snippet 1 a few pages ahead of
this one for reading the file.
If you listen to the sound and then consider the frequency-domain picture, I
hope that you would pause and reflect on what you have done. Fourier analysis
is sometimes misused. What is the problem with the analysis performed on the
current audio signal?

24. (a) Perform a frequency analysis of sound from a tuba and from a piccolo flute
(audio files available from the course’s web pages). The sampling frequency is
44100Hz. Use, e.g., 216 points in the analysis. Plot the absolute value of the
frequency spectrum (see program below). Determine the pitch of the tone on a
tempered scale using the Fig. 5.18. Remember to get correct values along the
frequency axis when plotting the frequency spectrum and zoom in to get a fairly
accurate reading of the fundamental tone frequency.
(b) The frequency spectrum shows varying degrees of harmonics as described in
this chapter (we will return to this in later chapters). Zoom into the time signal
so much that you get a few periods. Does the signal look like a harmonic signal,
or is it far more irregular than a sinus? (Comparison must be done only when
considering 3–8 periods in the audio signal.) Does there appear to be some kind
of connection between how close the time signal is to a pure sinusoid and the
number of harmonics in the frequency spectrum?
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Fig. 5.18 Tone scale for a
tempered scale as we find it
on a piano. Frequencies for
the tones are given. The
figure is inspired from [2],
but completely redrawn
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(c) Attempt to include data only for such a small time interval that there is only
room for one period in the signal. Carry out the Fourier transform of this small
portion of the signal (need not have 2n data points). Do you find a connection
between the Fourier spectrum here compared to the Fourier spectrum when you
used a long time string containing many periods in the audio signal?
(d) For one of the audio files, you are asked to test that an inverse Fourier trans-
form of the Fourier transform brings us back to the original signal. Remember
that we must keep the Fourier transform as complex numbers when the inverse
transform is carried out. Plot the results.
(e) Perform an inverse Fourier transform on the absolute value of the Fourier
transform signal. Describe the difference between the inverse of the complex
Fourier transform and the one you found now. Try to give the reason for the
difference.

25. “Open task” (i.e. very few guidelines and hints are given): Fourier transformation
can be used in digital filtering. Explain the principle and how this can be done in
practice. Create a small program that performs self-selected digital filtering of
a real audio file, where it is possible to listen to the sound both before and after
filtering (Be scrupulous in describing the details of what you do!).

References

1. Ibn_al-Shatir. https://en.wikipedia.org/wiki/Ibn_al-Shatir, Accessed April 2018
2. Unknown. http://amath.colorado.edu/outreach/demos/music/MathMusicSlides.pdf. Accessed

Feb 18 2012

https://en.wikipedia.org/wiki/Ibn_al-Shatir
http://amath.colorado.edu/outreach/demos/music/MathMusicSlides.pdf


Chapter 6
Waves

Abstract Waves, viewed as phenomena extended in both time and space, are
introduced in this chapter. The mathematical wave equation is presented together
with the concepts of wavelength, period and wave velocity. Also, the mathematical
expressions of a wave, in both real and complex notation, are presented, as well as
the concepts of transverse and longitudinal waves. The transverse equation of motion
of a string, as well as the longitudinal movement of air (or water) molecules when
a sound wave passes through the compressible medium, is shown to follow a wave
equation.

6.1 Introduction

Everyone has seen circular waves propagating along a water surface (see Fig. 6.1).
We are so used to the phenomenon that we barely notice it.

But have you really understood the magic of waves? How come that the wave
migrates along the surface of the water without any matter moving at the wave
speed? If we throw a ball from point A to point B, the ball moves spatially with all its
mass from A to B. But when a wave moves from A to B, there is no corresponding
mass that is transported from A to B. What in heaven’s name is causing the wave to
move along?

Waves are generated when a vibration at one place in space somehow affects the
neighbouring area so that it too starts to vibrate, causing in turn another neighbouring
area to begin to vibrate, and so on.Whenwe describe this interaction and focus on the
explanation of the physics that lies behind wave motion, we study the dynamics of
the system. Nevertheless, we start in the same way as in Chap. 2 with “kinematics”,
that is, with the mathematical description.

A wave can be visualized in three ways:

• We can take a snapshot (“flash image”, a high-speed flash photograph) of how the
wave looks at a selected time in different parts of space (as a function of position).

• We can record the amplitude as a function of time at one place in space as the
wave passes this location and plot the result.
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Fig. 6.1 Waves that form on water

• We can use a “movie” (animation) that shows how the wave spreads in space as
time goes by.

Figure 6.2 shows examples of the first two viewing modes. Imagine standing on a
pier and watching waves rolling gently in front of you. You can take a picture of the
waves and get something that corresponds to the left part of Fig. 6.2. Take another
picture a moment later, and you will see that the wave has moved a little (as indicated
in the figure).

Imagine that there is a vertical pole in the water. The water surface then moves
up and down the post, and you can record the height as a function of time. This
corresponds to the right part of Fig. 6.2. If there are two pegs that stand a little apart,
the water surface will not be on top simultaneously on both pins, in general.

For a harmonic wave (with a form like that of a sine or cosine function), the first
two modes of view will both look like harmonic oscillation: the first as harmonic
oscillation as a function of position, the other as harmonic oscillation as a function of
time.We know from before that a harmonic oscillation is a solution of a second-order
differential equation. If we consider how the wave looks like a function of position
(at one point), the result f must be a solution of the differential equation:

d2 f

dx2
= −Cx f .

If we regard the wave as a function of time as it passes one place in the room, the
result must be a solution of the differential equation:

d2 f

dt2
= −Ct f .
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Fig. 6.2 A wave can be considered as a function of position at a certain time, or as a function of
time for a particular position. See the text for details

In these equations, x indicates the position and t the time, and Cx and Ct are positive
real constants that differ in the two cases. In contrast, the amplitude of the harmonic
wave f is the same quantity in each viewingmode.We therefore use the same symbol
f in both equations. The amplitude may be, for example, the air pressure of sound
waves, or the electric field strength of electromagnetic waves or the height of surface
waves at sea.

When we realize that the wave f is the same, regardless of whether we consider
the wave as a function of position in space or as a function of time, we can combine
the two equations and get:

d2 f (x, t)

dt2
= Ct

Cx

d2 f (x, t)

dx2
.

In the above notation, the dependence of the amplitude on space and time has been
explicitly indicated. And when a function depends on more than one independent
variable, we use partial differentiation and write:

∂2 f (x, t)

∂t2
= Ct

Cx

∂2 f (x, t)

∂x2
. (6.1)

Upon renaming the quotient Ct/Cx as v2, the above equation takes the form:

∂2 f (x, t)

∂t2
= v2

∂2 f (x, t)

∂x2
. (6.2)

This equation is called the “wave equation”.
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Since the C’s were positive real constants, v must be real (and positive).

Remark: We take a short detour to recall what we mean by partial differentiation.
Suppose we have a function h = h(kx − ωt) and that we wish to find the partial derivative of

this function with respect to x . We define a new variable u = kx − ωt and, using the chain rule, we
find:

∂h

∂x
= dh(u)

du
× ∂u

∂x
.

It is the second factor on the right-hand side where the implications of partial differentiation strike
us first. We have:

∂u

∂x
= ∂(kx − ωt)

∂x
.

Both x and t are variables, but when we calculate the partial derivative with respect to x , we will
treat t as a constant! Consequently, we get:

∂(kx − ωt)

∂x
= k .

Similarly, we can go on to deduce the partial derivative with respect to t . In this case, we treat x as
constant.

Partial derivatives thus represent the derivative of the function, assuming that all variables are
kept constant, except for the one with respect to which the derivative is to be calculated.

We will come across the “wave equation” Eq. (6.2) quite a few times in the book.
It may therefore be useful to try to understand it forthwith.

When we discussed oscillations in Chap. 1, we saw that if we know the start-
ing position and the starting speed, e.g. for a shuttle, we can unambiguously
calculate how the oscillation will be in the future (so long as the differential
equation governing the motion is known).

For waves, it is totally different. Even when we have the exact same wave
equation and the very same initial conditions, there are infinitelymany different
solutions. The reason is that the waves spread out into space, and the shape
of the volume the wave is confined in will affect the wave even though the
basic differential equation is the same. This is easy to understand if we think
of swells rushing towards land. The wave will show enormous local variations,
all depending on the landscape, with its rocks and protrusions and recesses.
Solving the wave equation therefore requires that we know the initial as well
as the boundary conditions. And since there are infinitely many boundary
conditions we can imagine, there will also be infinitely many solutions. But
once we have specified both initial conditions and complete set of boundary
conditions, there is a unique solution.

Since there is such an incredibly wide variety of waves, we often have to resort
to simplified solutions to extract at least some typical features. Some such solutions
are actually serviceable approximations to real waves in special cases. The most
common simplified solution is called plane wave, and we will take a closer look at
it now.
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6.2 Plane Waves

A wave is said to be plane when its amplitude is constant throughout a plane that
is normal to the direction of propagation in space. If a wave in three-dimensional
space travels in a direction parallel to the x-axis, a planar wave will have an identical
amplitude, at any selected instant, throughout an infinite plane perpendicular to the
x-axis.

For a plane sound wave that moves in the x-direction, this will in practice mean
that, at any time whatsoever, the local air pressure has a maximum everywhere along
a plane perpendicular to the x-axis. We call such a plane a “wavefront”. For plane
waves, the wavefront is plane.

Mathematically, a plane harmonic (monochromatic) wave can be described as:

f (x, t) = A cos(kx − ωt) . (6.3)

In this context, k is called wavenumber and ω, the angular frequency. If we
keep the time constant, for example, at t = 0, and start at x = 0, we move a
wavelength when kx = 2π . The wavelength λ is therefore precisely this value
of x , so that:

λ = 2π

k
.

In a similar manner, we can keep the position constant, for example, by setting
x = 0, and starting at t = 0. We find then that, if we want to change the time
function by a period, the time must increase by ωt = 2π . This time difference
is called the time period T , and we get:

T = 2π

ω
.

It may be added that the word “wavenumber” comes from k indicating the number
of wavelengths within the chosen unit of length (“how many wave peaks are there
in a metre?”), but multiplied by 2π .

We can also apply a similar idea to the angular frequency ω. In that case, we can
say that the ω is a “(time) period” which indicates how many periods we have within
the chosen unit of time (“how many periods of vibration are there in one second?”),
but multiplied by 2π .

The unit for wavenumber measurement is inverse metre, i.e. m−1. Angular fre-
quency unit is actually inverse second, that is, s−1, but in order to reduce the likelihood
of confusionwith frequency,we often give angular frequencies in radians per second.
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6.2.1 Speed of Waves

Let us find out how fast the wave travels in the x-direction. Imagine following a peak
that corresponds, let us say, to the value 6π for the argument in the cosine function,
in which case we will have

kx − ωt = 6π ,

x = ω

k
t + 6π

k
.

We differentiate the expression for position with respect to time, so that we
may see how quickly this point moves, and we obtain

dx

dt
≡ v = ω

k
.

The velocity with which the wave travels is thus equal to the ratio between
angular frequency and wavenumber. We can rephrase this relation in terms of
the wavelength and time period as:

v = 2π/T

2π/λ
= λ

T
.

But we know that the frequency is given as the inverse of the period, i.e. ν =
1/T . If we insert this in the last equation, we get a well-known relationship:

v = λν . (6.4)

The velocity of a planewave given inEq. (6.3) is thus thewavelengthmultiplied
by the frequency (Eq. 6.4). This is a very important relationship!

6.2.2 Solution of the Wave Equation?

So far, we have only asserted that Eq. (6.3) satisfies the wave equation. We will now
verify this, and we get by double differentiation of Eq. (6.3):

∂2 f (x, t)

∂t2
= −ω2 f (x, t)



6.2 Plane Waves 141

and
∂2 f (x, t)

∂x2
= −k2 f (x, t) .

We observe that:
∂2 f (x, t)

∂t2
= ω2

k2
∂2 f (x, t)

∂x2

or:
∂2 f (x, t)

∂t2
= v2

∂2 f (x, t)

∂x2
. (6.5)

We see that the plane wave given in Eq. (6.3) satisfies the wave equation, but
what about the initial and boundary conditions? Well, here some difficulties arise.
If a planar wave should be able to form and remain so, we must initiate a wave
that actually has infinite extent and the same amplitude and initial variation in time
throughout this infinite plane. There must also be no boundary conditions that affect
the wave at any point. If all of these requirements were met, the plane wave would
remain plane, but we realize that this is physically unattainable.

However, if we start by considering a wave many, many wavelengths away from
the location where it was generated—for example, sunlight as it reaches earth—the
so-called wavefront will be quite flat as long as we only consider the light over, for
example, a one square metre flat surface normal to the direction of light. If we then
follow the light a fewmetres further, the wave will behave approximately like a plane
wave in this limited volume. But if reflected light reaches this volume, we will not
have a plane wave anymore!

Remark: The wavefront of light from the sun will in fact not be plane, as indicated above. Due
to the angular size of the sun in relation to the wavelengths of visible light, the spatial coherence
length is short and the wavefronts irregular. This will be discussed in detail in Chap. 15.

Plane waves are therefore just an idealization that we can never achieve in
practice. The plane-wave description cannevertheless provide a relatively good
account over a limited volume when we are far away from bits and bobs that
can affect the wave in one way or another.

By “far away” onemeans that the distance is large relative to thewavelength,
from the source of the waves, and from boundaries that distort the wave.

6.2.3 Which Way?

We found above that a plane wave described by the equation
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f (x, t) = A cos(kx − ωt)

has a velocity v = +ω/k. That is, the wave propagates in positive x-direction as
time passes. With a little practice, we can infer this directly from the argument of the
cosine function: if we stay at the same place on a wave (e.g. a peak), the argument
must remain unchanged as time increases. And increasing the time t , we can achieve
the constancy of the argument only if we compensate by letting x also increase. In
other words, the peak of the wave moves towards larger x-values as time increases.

By using similar reasoning, we can easily show that a wave described by:

f (x, t) = A cos(kx + ωt)

propagates towards lower x-values as time increases. Pictorially, for those of us
who are accustomed to the x-axis increasing to the right, we can say that the waves
described in the first of these ways (with the minus sign) move to the right, and waves
described in the other way (with the plus sign) move leftward.

Note that the speed of the wave does not describe speed in the same way as the
speed of a ball after it is thrown. The speed of the ball, a physical body, is defined
as the time derivative of the position of the ball. For the wave, speed is defined as
a more abstract quantity, for example, the time derivative of the position in space
where the wave has its maximum value. For a sound wave in air, the velocity of the
wave is equal to the velocity of, say, a point in space where the local air pressure
has a maximum. This can be described as the speed of a “wavefront”. We will come
back to more complicated relationships later.

Fig. 6.3 Snapshot of
“amplitude” (y in red), the
time derivative of the
amplitude (ẏ in blue) and the
double derivative of the
amplitude (ÿ in green) in
different positions along a
wave. The wave as such
moves to the right (top) and
to the left (bottom). The
dashed red curve shows
where the wave is a short
time after its current location
(solid curve)
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Figure 6.3 shows a snapshot of “amplitude”, the single and double time derivatives
of the amplitude at all positions along a wave. The wave as such goes to the right
or to the left as the arrows show (top). Note that for a right-going wave, the time
derivative of the amplitude will lie a quarter period “in front” of the “amplitude” and
the second time derivative a quarter of period “in front” of the first time derivative.
For a leftward wave, exactly the same applies, but “in front” of the wave must now
mean to the left of the wave.

Let’s try to concretize these considerations, but choose a wave on a string (e.g. the one we get
just after we swing one end of a long horizontal string up and down a few times). The “amplitude”
in this case is very concrete because it simply indicates the position of the string at the spot where
the amplitude is measured. The time derivative of the amplitude will then say the vertical velocity
to the point along the string we consider, and the double time derivative for this point will then be
the vertical acceleration of this point. The wave itself moves in the horizontal direction.

Note that for any arbitrary point along the string, the sign of acceleration at all times is the
opposite of the position relative to the equilibrium point. Thus, the effective force on every element
of the wave is always pointing towards the equilibrium state/position.We hope you realize that this
is just as it should be (based on what we learned in Chap. 2).

6.2.4 Other Waveforms

So far, we have considered harmonic waves, i.e. waves with sinusoidal shape. Can
waves of another shape satisfy the wave equation?

Let us investigate a wave described by:

g(x, t) = G(kx − ωt) .

where G can have any shape (but G must be a differentiable function). We introduce
a new variable u = kx − ωt , partially differentiate, use the chain rule and get for the
left-hand side of Eq. (6.5):

∂2g(x, t)

∂t2
= d2G(x, t)

du2

(
∂u

∂t

)2

= ω2 d
2G(x, t)

du2
.

For the right-hand side, a similar differentiation gives:

∂2g(x, t)

∂x2
= k2

d2G(x, t)

du2
.
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We see that g(x, t) indeed satisfies the wave equation, assuming that k and ω

are real constants.
That is, any wave that can be described by a differentiable function and a

single argument (kx − ωt), where k and ω are constant is a solution of the
wave equation.

6.2.5 Sum of Waves

What if we have a sum of two different functions, one of which has a slightly different
combination of k and ω than the other. The sum function is then given by:

g(x, t) = G1(k1x − ω1t) + G2(k2x − ω2t)

= G1(u1) + G2(u2) .

Partial differentiation with respect to time gives:

∂2g

∂t2
= ω2

1
d2G1(u1)

du21
+ ω2

2
d2G2(u2)

du22
,

and partial differentiation with respect to position gives:

∂2g

∂x2
= k21

d2G1(u1)

du21
+ k22

d2G2(u2)

du22
.

If these functions are to satisfy the wave equation

∂2g

∂t2
= v2

∂2g

∂x2
.

We must require that the time derivative should equal v2 times the second spatial
derivative. We assume that this demand can be met, and then get the insertion and
arrangement of the terms:

(ω2
1 − v2k21)

d2G1(u1)

du21

= −(ω2
2 − v2k22)

d2G2(u2)

du22
.
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Since G1 and G2 can be chosen freely, this equation cannot be satisfied in general
unless

(ω2
1 − v2k21) = (ω2

2 − v2k22) = 0

and this implies that

v = ω1

k1
= ω2

k2

and one is led to conclude that the two waves must travel with the same velocity!

We have now established that the sum of two (or more) waves travelling at the
same speed will satisfy the wave equation if each of the sub-waves does.

We have also shown that if a wave consists of several components that move
with different speeds, we will not be able to describe the time development of
the wave by using a single wave equation. Then the waveform will change as
the wave moves (an effect we call dispersion in Chap. 8).

6.2.6 Complex Form of a Wave

We can use complex description for a wave in the same way we did it for oscillations.

A plane harmonic wave in the x-direction can be descried in terms of complex
quantities as:

f (x, t) = Aei(kx−ωt+φ) . (6.6)

Similarly, we can describe a plane harmonic wave travelling along an arbi-
trary direction k/|k|, where k is a so-called wave vector, in the following
manner:

f (r, t) = Aei(k·r−ωt+φ) . (6.7)

where k · r is the dot product between the position vector and the wave vector.
Since f should normally be real, we must either take the real part of the

above expressions or seek some other safeguard. An elegant and common way
to avoid this problem is to add the complex conjugate (“c.c.”) of the expression
and divide by 2:

f (r, t) = 1

2
Aei(k·r−ωt+φ) + c.c. . (6.8)

This form of representation can be used for both real and complex A.
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6.3 Transverse and Longitudinal

There are several types of waves. One classification is based on which direction “the
amplitude” has in relation to the direction of propagation of the wave. But since the
“amplitude” can be almost anything, and not necessarily something that moves in
space, such considerations often turn out to be misleading. It is safer to base the
classification on the symmetry properties of the wave, and we shall attempt to do
this in what follows.

For sound waves, “the amplitude” is a pressure change. For sound waves in air,
this is a pressure change in air, and likewise for sound in other materials. Pressure
changes occur locally because air molecules move in the same (or opposite) direction
as the direction of propagation of the wave.

It is the local rotational symmetry axis of the air pressure that determines the
direction of propagation of the wave. By saying that one means that the local
air pressure varies in the same manner irrespective of which direction we take
to be the normal to the direction in which the wave travels (thus, we have
cylindrical symmetry). Such a wave is called longitudinal (lengthwise).

However, air molecules do not move from, say a speaker to my ear, when I
listen to music. It is tempting to say that each air molecule fluctuates (statistically)
back and forth relative to an equilibrium point. The problem, however, is that there
is no equilibrium point because Brownian displacements of the air molecules are
usually greater than the displacements caused by the passage of sound. However, the
movement due to the sound is “collective” for many air molecules, while individual
movements are more chaotic. That way, the sound wave can survive after all. The
amplitude of the oscillations due to the sound wave alone is usually much smaller
than one millimetre (even smaller for sound in metals).

Transverse waves are the other main type of waves. The best-known example is
that of electromagnetic waves.When the physicists at the beginning of the nineteenth
century realized that light had to be described by waves (and not as particles as
Newton had convinced physicists to believe for over a hundred years), they had
trouble explaining polarization. The reason is that they assumed that light waves
were longitudinal, as they thought all waves to be. Only when Fresnel suggested that
the light waves were transverse, were they able to fathom polarization.

A transverse wave has an “amplitude” perpendicular to the wave propagation
direction (transverse: “turned across”). By that we mean that the physical
parameter we call “the amplitude” does not have local rotational symmetry
about the axis indicating the direction of wave motion. There is no cylindrical
symmetry.
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For electromagnetic waves, the electric and magnetic field is “the amplitude”.
Electrical and magnetic fields are vectors and have a direction in space. That an
electromagnetic wave is transverse means that the electric and magnetic field are in
a direction perpendicular to the direction along which the wave propagates. Then the
rotation symmetry is automatically broken. (It is sufficient with symmetry breaking
within a limited volume in space, of the order one half of the wavelength in all
directions.)

Note that there is no relocation of anything material across an electromagnetic
wave! Many imagine that there is something that moves across an electromagnetic
wave, similar to the water level in a surface wave of water. That is wrong. If we
depict electric fields as vector arrows at points along the propagation direction, then
the arrows will extend and retract. But these arrows are mere aids for thought and
have no existence of their own. They only indicate the size and direction of the
abstract quantities electric and magnetic fields at the different positions in space.
We will discuss common misconceptions when we treat electromagnetic waves in
Chap. 9.

Some waves (proclaim to) have a portmanteau character, lying between longitu-
dinal and transverse. Surface waves on water are an example. Here, water molecules
move back and forth in the direction of propagation, as well as up and down in a
perpendicular direction.

6.4 Derivation of Wave Equation

We have previously given a mathematical expression for a wave and arrived (through
quasi-reverse reasoning) at a differential equation with solutions displaying wave
behaviour. We will now start with a physical system and derive the pertinent wave
equation.Wewill do this for oscillations on a string and for soundwaves in air/liquid.
It is considerably more difficult to derive an equation for surface waves in water, and
we will just settle for an approximate solution without a derivation. Subsequently,
we will also deduce the equation for an electromagnetic wave. Surface waves on
water and electromagnetic waves will be discussed in later chapters.

6.4.1 Waves on a String

The starting point is a wave along a string. We consider a small segment of the
string,more specifically a segment that is small in relation to the effectivewavelength.
Figure 6.4 shows the segment along with forces that work on it. The wave is assumed
to propagate in the horizontal direction (x-direction), and the equilibrium position of
the string when there are no waves on it is also horizontal. The wave is assumed to be
purely transverse so that the result is solely in the vertical direction of the figure (y-
direction). It should be noted that the amplitude in the vertical direction is exceedingly
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Fig. 6.4 Forces that act on a
small segment of a string
suffering transverse motion.
See the text for details
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small in relation to the length of the piece under consideration.We expand the vertical
scale in the figure to get some visual help when important relationships are to be
entered.

It is assumed that the stiffness of the string is so small that the forces S and S′
that work at each end of the string are tangential aligned along the string.1 The mass
centre for the segment will still change position h(x, t) relative to a mean position
(the equilibrium position of the string when there is no wave). The movement of the
segment must be described by Newton’s second law.

Newton’s second law will be applied separately to the horizontal and vertical
directions, and we take the horizontal first. Since the string is assumed to have
a purely transverse movement, the centre of mass of the string segment does not
move (notably) in the x-direction. Consequently, the sum of forces in the horizontal
direction must be equal to zero, in other words:

Sx = S cosφ = S′ cosφ′ = S′
x .

This is accomplished automatically (to second order in φ) if S = S′, since φ is a very
small angle (remember, according to Taylor’s theorem, cosφ ≈ 1 − φ2 + · · · ).

Newton’s second law, when applied in the y-direction, gives:

∑
Fy = may . (6.9)

The string has a linear mass density (mass per length) equal to μ, and the length of
the segment is �x . The mass of the segment is therefore m = μ�x .

Let h(x, t) denote the position of the midpoint of the segment relative to the
equilibrium position when there is no wave on the string. Also, since S ≈ S′, it
follows from Eq. (6.9):

1For sufficient small wavelengths, this approximation cannot be used. The limiting wavelength
depends on the stiffness of the material of the string.



6.4 Derivation of Wave Equation 149

S sin φ′ − S sin φ = μ�x

(
∂2h

∂t2

)
midpoint

. (6.10)

The subscript of the last parenthesis indicates that the double derivative of the centre
of mass is calculated in the middle of the�x range, i.e. in the middle of the segment.

Since the φ and φ′ angles are very small, a Taylor expansion provides:

sin φ ≈ φ ≈ tan φ

and likewise for φ′; further, sin φ can be replaced by tan φ in the above expression.
But the tangent indicates the slope, which can also be written as ∂h/∂x . Since there
is an increase both at the beginning and the end of the segment, we get:

sin φ′ − sin φ ≈
(

∂h

∂x

)
(x+�x)

−
(

∂h

∂x

)
x

.

This can be rephrased as:

(
∂h

∂x

)
(x+�x)

−
(

∂h

∂x

)
x

�x
�x ≈

(
∂2h

∂x2

)
midpoint

�x .

Make sure that you recognize the second derivative in the above expression!
If this expression is inserted in Eq. (6.10), one obtains:

S

(
∂2h

∂x2

)
midpoint

�x ≈ μ�x

(
∂2h

∂t2

)
midpoint

.

Since both derivatives refer to the same point (midpoint), this index can now be
dropped. Upon cancelling�x and carrying out some straightforward manipulations,
one is led to the result:

∂2h

∂t2
≈ S

μ

∂2h

∂x2
.

The desired equation follows as soon as we replace the sign for approximate equality
with an equality sign:

∂2h

∂t2
= S

μ

∂2h

∂x2
. (6.11)

We have shown that the transverse motion of a strand can be governed by
the wave equation. The speed of the wave is easily deduced:
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v =
√

S

μ
. (6.12)

One solution of this equation is:

h(x, t) = A cos(kx − ωt + φ)

where A is the amplitude, k the wavenumber, ω the angular frequency and φ an
arbitrary phase angle. In the first instance, all four quantities can be chosen freely,
apart from the fact that k and ω must conform to the relation:

v =
√

S

μ
= ω

k
.

In otherwords, there are three degrees of freedom in thewavemotion, and it is perhaps
most common to choose these as amplitude, frequency and phase (phase indicates in
practice the choice of zero point for time). The initial conditions determine these, but
the boundary conditions too play an enormous role, and they can cause the solution
in practice to become a standing wave even if the initial conditions alone indicate
something completely different.

Before we leave the wave equation that describes the movement of a string, it
may be useful to recall the starting point for our derivation:
• Newton’s second law holds.
• The wave is purely transverse.
• The force acting at each end of a segment of the string is tangentially directed
(i.e. a purely geometric assumption).

• The angle between the tangent line to the string at any point and the equi-
librium line is very small all along the string.

• Only when the angle between the tangent line to the string and the equi-
librium line is different at each end of a segment of the string, do we get a
net force that performs work on this segment. This corresponds to the fact
that there must be a curvature on the segment under consideration for it to
experience a net force.

Based on these simple assumptions, one is able to infer that a delicate interplay
between forces, position and time is responsible for propagating the wave along
the string. You are advised to think about what this interaction is in fact. What is
actually propelling the wave? What makes the amplitude increase, and what causes
it to diminish? It is not only Mona Lisa who conceals something intriguing!
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In Chap. 8, we return to the basic requirements for a wave to move. We then base
ourselves on numerical methods because these provide extra insight precisely into
this context.

6.4.2 Waves in Air/Liquids

Derivation of thewave equation formovement in air/liquids ismore complicated than
the case considered in the last section. One reason for this is that we nowwork with a
three-dimensionalmedium.Tomake the derivationmanageable,we limit ourselves to
a plane, longitudinal wave, which in effect allows positional changes to be described
in terms of only one spatial dimension (plus time). Even so our presentation will be
only approximative, but will hopefully reveal the two main mechanisms behind the
waves in air and liquids: (1) the mechanical properties of a compressible medium
and (2) Newton’s second law.

Mechanical properties

In our context, the most important property of air and liquids is that they are
relatively compressible; that is, it is possible to compress a certain amount of
gas or liquid to a smaller volume than it originally had. Air can be compressed
relativelymore easily than liquids and liquids relativelymore easily than solids.
(Thiswaswhywedid not discuss compressibility of the vibrating string in Sect.
6.4.1.] Figure 6.5 illustrates the nomenclature used in the following derivation.

Suppose that a small amount of gas/liquid with volume V expands or compresses
to a new volume of V + dV as a response of a change in the pressure from P
to P + dP . It is assumed that dV and dP may be positive or negative, but their
magnitudes are always small relative to V and P , respectively.

Fig. 6.5 A gaseous volume
element can be compressed
slightly if the external
pressure increases. If dP is
positive, dV will be negative

P

V

P + dP

V + dV
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Fig. 6.6 With longitudinal movement of a gas or liquid volume, position, pressure and volume will
change, but only in one spatial dimension (here in the x-direction). In the upper part of the figure,
the gas volume is at equilibrium, but in the lower part a snapshot of a dynamic situation is given
where the same amount of material has moved and changed volume compared to the upper part.
Note that p, x and η are functions of both time and space, while the cross section A and the mass
of gas or liquid are fixed

The ability of a material to withstand volume changes when the pressure is
increased is called the “bulk compressibility module” for the material. It is
defined in the following manner:

K = − dP

dV /V
. (6.13)

The unit of both the bulk compressibility module and pressure is pascal (abbre-
viated Pa) where 1pascal = 1Pa = 1N/m2

Let us now apply this point of view to sound waves. Figure 6.6 is based on a
situation where pressure changes and movements of a gas volume occur only in one
direction, namely the x-direction. For a given value of x , there are no changes in
pressure when we move in the y- or z-direction.

We choose to follow the movement of an arbitrary cylinder-shaped portion of
the continuous medium and assume that a negligible number of molecules will be
exchanged between this cylinder and the surroundings while we consider the system.
The cross section of the cylinder will not change in time, but the cylinder will move
in the ± x-direction and will change in length (volume) with time.

Figure 6.6 shows our limited volume at equilibrium (no sound) and at an arbitrary
time of a dynamic situation. The cross section A in the yz-plane is fixed, and the
positions of the bounding surfaces of the cylinder are x1 and x2 in the equilibrium
and x1 + η1 and x2 + η2 in the dynamic situation.
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In our attempt to arrive at a wave equation, we must find relationships between
positions, pressures and volumes and use Eq. (6.13) for the model in Fig. 6.6. We
choose to write the expression in a slightly different form:

dP = −K
dV

V
. (6.14)

where K is the “bulk compressibility modulus”.
We apply the symbols in Fig. 6.6 in Eq. (6.14) and get:

p1 + p2
2

= −K
(x2 + η2 − x1 − η1) A − (x2 − x1) A

(x2 − x1) A
.

where the mean value of the pressure changes at the two ends of the cylinder is
chosen for the dP term.

We would like to go to the limit where �x = x2 − x1 goes to zero. This is strictly
not permitted given the assumptions about the size of the chosen cylinder of gas or
liquid.

We need to make an “acoustic approximation” characterized by the following:

• �x = x2 − x1 is large relative to the average length of the free paths of
air molecules between collisions with other air molecules in their chaotic
movement.

• �x is small relative to the wavelength of the sound waves.
• The displacements η are small compared to�x , which means that the sound
is weak.

The first point ensures that the gas or liquid volume under consideration is rea-
sonably well separated from neighbouring areas. It also ensures that there are a large
number of molecules within the selected volume, so that we can disregard individual
molecules and treat the contents of the volume as quasi-continuous.

The next point ensures that pressure differences between the end faces are small
compared to the pressure variation when the wave passes. The last point just ensures
that the displacement of the gas volume is small compared with the length of the gas
volume.

Under these approximations, the statement

dP = p1 + p2
2

= p(x, t) .

is justified and yields:

p = −K
η2 − η1

x2 − x1
.
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They also justify that the right side of this expression can be approximated to

p = −K
∂η

∂x
. (6.15)

This equation provides a relation between pressure and displacement.

Newton’s second law

We will now apply Newton’s second law on the system. The mass of the volume
element is equal to the mass density ρ0 multiplied by the equilibrium volume. If the
positive x-axis is also defined as the positive direction for F and the acceleration a,
one can write: ∑

F = ma

where we sum over the forces acting on the volume element in the x-direction.
Applied to our cylinder of air or liquid:

(PAtm + p1)A − (PAtm + p2)A = A(x2 − x1)ρ0
∂2η

∂t2

where the acceleration is the double time derivative of the displacement of the gas
volume. Rearranging the terms give:

p1 − p2 = (x2 − x1)ρ0
∂2η

∂t2

p2 − p1
x2 − x1

= −ρ0
∂2η

∂t2
.

Again, we would happily have gone to the �x → 0 limit, but with the limitations
we have imposed, that is not permissible. However, as long as we adhere to each of
the last two points of acoustic approximation, the left-hand side would not change
significantly if we made �x smaller. We get roughly

∂p

∂x
= −ρ0

∂2η

∂t2
. (6.16)

Then, substitution of Eq. (6.15) into Eq. (6.16) and rearranging of terms give:

∂2η

∂t2
= K

ρ0

∂2η

∂x2
. (6.17)

We have thus arrived at the wave equation for this system as well. We then
realize that if small volumes of air (or liquid) molecules are displaced in an
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oscillatorymanner, as indicated in the derivation, the result of the displacement
will spread as a wave. The speed of the wave is given by:

v =
√

K

ρ0
. (6.18)

In other words, the speed of sound increases if the gas/liquid is hard to com-
press, but decreases with the mass density of the medium through which sound
travels.

The expression for the wave velocity bears close resemblances to the comparable
expression for a wave on a string (Eq. 6.12). The wave velocity was then v = √

S/μ

where S was the force trying to bring the string back to equilibrium. In our case, K
is a measure of the force (pressure) trying to bring the volume back to equilibrium.
For the string, μ is the mass per length, while in our case ρ0 is the mass per volume.

It should be borne in mind that the foregoing derivation is based on a number of
approaches. If one uses a more rigorous approach, one arrives not at the simple swing
equation but at a nonlinear equation that can only be solved numerically. However,
for weak sounds and for normal air pressure, the solution of the latter equation would
be quite close to that found by using the simpler wave equation.

We have chosen to ignore another aspect of sound waves in air. When a gas
expands or contracts, there is also a change in temperature. We implicitly assumed
that there has been no exchange of thermal energy from different volume elements
in the gas or the liquid through which the sound wave is transmitted—an adiabatic
approach. It can be justified for weak sounds, and that is precisely what we have
treated above.

It is quite common to use gas laws instead of the definition of compressibility
modulus in the derivation of wave equation for sound waves through a gas. Our
choice was dictated by the consideration that this chapter should be comprehensible
to those without significant knowledge of statistical physics and thermodynamics.
In addition, we think that the concept of compressibility is useful for understanding
the underlying mechanism of wave propagation in gases and liquids.

Remark: It is interesting to note that the speed of sound in air is lower (but still not very much
lower) than the median of the speed of air molecules between intermolecular collisions on account
of their chaotic thermal movement. For nitrogen at room temperature and atmospheric pressure, the
maximum in the probability distribution of the molecular speed is about 450 m/s. Those interested
in the topic can read more about this under “Maxwell–Boltzmann distribution”, e.g. in Wikipedia.

6.4.3 Concrete Examples

The calculation we made to deduce the wave equation for movements in air and
liquids is quite rough. We started out with Newton’s second law, used the validity



156 6 Waves

of what that lies in the definition of the compressibility modulus, plus some other
less significant details, and came to the wave equation. Can such an easy description
provide a useful estimate of the speed of sound?

Let’s try to calculate the sound speed in water. The compressibility modulus for
water (at about atmospheric pressure) is given as K = 2.0 × 109 Pa. The density of
water is ρ ≈ 1.0 × 103 kg/m3. If these values are entered into the expression of the
sound speed in Eq. (6.18), the result is:

vwater ≈ 1.43 × 103 m/s

The literature value for sound velocity in water is 1402m/s at 0 ◦C and 1482m/s at
20 ◦C. In other words, the conformity is actually good!

Let us then try to calculate the sound speed in air. Then a problem arises because
the compressibility modulus is usually not given as a general table value, since the
value depends on what pressure we consider. Instead, we start with the gas law:

PV γ = constant (γ = Cp/Cv),

whereCp is the specific heat capacity at constant pressure, andCv is the specific heat
capacity at constant volume. It is assumed that the changes in volume and pressure
take place so that we do not supply energy to the gas (adiabatic conditions). For
sound with normal intensity, this requirement is reasonably well satisfied, but not for
very loud sound.

A general differentiation of the gas law gives:

dP V γ + P d(V γ ) = 0

V γ dP + γ V γ−1dV P = 0 .

Upon combining this with Eq. (6.13), one gets

K = −dP
dV
V

= γ P .

The ratio of the two specific heats for air is known to be

γ = Cp

Cv
= 1.402 .

Since a pressure of one atmosphere equals 101,325Pa, it follows that the value of
the bulk modulus for air under atmospheric pressure (under adiabatic conditions) is:

K = 1.402 × 101,325 ≈ 1.42 × 105 Pa.
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Standard tables show that the mass density of air at atmospheric pressure and about
20 ◦C is ρ = 1.293kg/m3. With all relevant data at hand, we are able to deduce the
speed of sound in air:

vair = 331m/s.

The value turns out to be 344m/s.
Not all the data used above refer to 20 ◦C and one atmosphere pressure. No won-

der, then, that the calculated and experimental values are not in complete agreement.
Nevertheless, the calculated value is “only” about 4% too low. It indicates that our
calculations and the formula found for the speed of sound in gases/liquids are rea-
sonably good.

Remarks: The tables also provide the data for the bulk modulus for metals, and by using the same
formula (derived for gases and liquids), we get values that are close to the tabulated values but the
discrepancy is larger than that for air and water. For example, we calculate the speed of sound in
steel to be 4510m/s, whereas the actual value is 5941m/s. For aluminium, the calculation leads to
5260m/s, but the experimental value is 6420m/s.

We should also bear in mind that in metals sound is able to propagate as a transverse wave
instead of or in addition to a longitudinal wave, for example when the metal piece is shaped as a
rod. The speed of a transverse sound wave in a metal depends on the rigidity of the metal, with the
result that transverse waves often have lower speeds than longitudinal waves. If we strike a metal
rod, we usually get transverse and longitudinal waves at the same time, and the latter usually have
a higher frequency (after the standing waves have developed).

6.4.4 Pressure Waves

In the above derivation, we saw that the effective motion of small volumes of gas or
liquid can follow a wave equation. It is interesting to see how much displacement
is undergone by the small volumes of fluids when a wave passes, but usually it is
more interesting to describe the wave in the form of pressure changes. Sound waves
are usually detected with a microphone, and the microphone is sensitive to small
variations in the pressure. The transition can be carried out as follows.

A possible solution of the wave equation Eq.6.17 is as follows:

η(x, t) = η0 cos(kx − ωt) . (6.19)

When switching to pressure waves, we use the definition of the compressibility
modulus again, more specifically Eq. (6.15) that was derived earlier:

p(x, t) = −K
∂η(x, t)

∂x
.
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By combining Eqs. (6.19) and (6.15), one gets:

p(x, t) = kKη0 sin(kx − ωt) ≡ p0 sin(kx − ωt) . (6.20)

The result shows that wavemotion in a compressible medium can be described
both as displacements of tiny volumes of the medium or as pressure variations.
There is a phase difference between these waves, and a fixed relationship
between the amplitudes. If the amplitude of displacement of the tiny volumes
(with thicknesses significantly less than the wavelength) is η0, the amplitude
of the pressure wave is k K η0.

6.5 Learning Objectives

After working through this chapter, you should be able to:

• Write down the standard wave equation (for a plane wave).
• Explain amplitude, wavenumber, wavelength, period, frequency, phase,
wave velocity and the formula f λ = v.

• Give a mathematical expression for a harmonic plane wave as well as any
arbitrarily shapedwave,whichmoves in a specifieddirection. For a harmonic
plane wave, you should also be able to provide a mathematical description
based on Euler’s formula.

• Explain how a wave can be visualized either as a function of time or as a
function of position.

• Explain the difference between a longitudinal and a transverse wave, and
give at least one example of each.

• Derive the wave equation for a transverse vibration on a string.
• Know the main steps in the derivation of the wave equation for a pressure
wave through, for example, air (sound wave).

• Calculate approximately the speed of sound in water using material/
mechanical properties for water.

6.6 Exercises

Suggested concepts for student active learning activities: Wave velocity, ampli-
tude, wavelength, plane wave, wave equation, transverse, longitudinal, Taylor expan-
sion, compressible medium, compressibility modulus.
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Comprehension/discussion questions

1. Present an example of the equation for oscillatory motion and an example of
the wave equation. What types of information should we have in order to find a
concrete solution of each of these two types of differential equations?

2. Does the velocity of waves as described in Eq. (6.6) depend on the amplitude?
Explain the answer.

3. During thunderstorms, we usually see the lightning before we hear the thunder.
Explain this. Some believe that we can determine the distance between us and the
lightning by counting the number of seconds between our seeing the lightning
and hearing the thunder. Can you find the connection?

4. Suppose that a long string hangs from a high ceiling almost down to the floor.
Suppose that the string is given a transverse wave motion at the lower end and
that the wave then rises to the ceiling. Will the wave speed be constant on the
way up to the ceiling? Explain the answer.

5. If you stretch a rubber band and pluck it, you hear a kind of tone with some pitch.
Suppose you stretch more and pluck again (have a go at it yourself!). How is the
pitch now compared to the previous one? Explain the result. (hint: the length of
a vibrating string is equal to half the wavelength of the fundamental tone.)

6. When we discussed sound waves, we said (with a modifying comment) that each
air molecule swings back and forth relative to an equilibrium point. This is in a
way totally wrong, but still the picture has a certain justification. Explain.

7. The difference between a longitudinal and a transverse wave is linked in the
chapter to symmetry. How?

8. Finally, in Sect. 6.4.1, an overview was given of the essential assumptions made
in the derivation of the wave equation for motion along a string. Attempt to set
up a corresponding list for the derivation of the wave equation in air/water.

9. Our derivation of the wave equation for a pressure wave in a fluid is rather
lengthy and full of details. In spite of this, can you actually point out the physical
mechanisms that determines the speed of sound in air or water?

10. Discuss sound waves with regard to energy.
11. For surface waves on water: can you determine, if you know the height of

the water surface at one point on the surface as a function of time, (a) where
the wave comes from, (b) wavelength and (c) whether the height (amplitude) is
the result of waves from one or more sources? Use your own experience and the
photograph in Fig. 6.1.

Problems

12. Check whether the function y(x, t) = A sin(x + vt) satisfies the wave equation.
13. What characterizes a plane wave? Mention two examples of waves that are not

plane and give an example of an (approximate) plane wave.
14. State a mathematical expression for a plane moving in the negative z-direction.
15. Is this a plane wave: S = A sin(k · r − ωt)? Here k is the wave vector which

points in the direction of wave propagation at the point r, and r is an arbitrarily
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chosen position vector, ω is the angular frequency and t the time. A is a real
scalar. Justify your answer.

16. Explain in your own words how we can see from the mathematical expressions
that a wave A cos(kx − ωt)moves towards larger x-values as time passes, while
the wave B cos(kx + ωt) moves opposite the way.

17. A standingwave canbe expressed as g(x, t) = A sin(kx) sin(ωt). Showbydirect
substitution that a standing wave is also a solution of the wave equation for
v = ω/k (we will return to standing waves in Chap. 7).

18. What is the wavelength of a 100Hz sound wave in air and in water?
19. When we take ultrasound images of foetuses, hearts, etc., the image quality

depends on the wavelength not being more than about 1mm. Sound waves in
water/tissues have a speed of about 1500m/s. What frequency must the ultra-
sound have? Is the word “ultrasound” an apt term?

20. How long is thewavelength of FMbroadcast at 88.7MHz?Andwhatwavelength
does your mobile phone have if it operates on 900, 1800 or 2100MHz?

21. A young human ear can hear frequencies in the range of 20–20,000 Hz. What is
the wavelength in air at each of these limits? (The speed of sound in air is about
340m/s.)

22. A 2m metal string weighing 3 × 10−3 kg is held under tension roughly like a
guitar string. Clamped at one end, it is stretched slightly above a table surface
and bent over a smooth round peg at the edge of the table (see Fig. 6.7); the other
end of the string is attached to a freely hanging object weighing 3kg, which
provides the tension.
(a) Calculate the speed of a transverse wave along the horizontal part of the
string.
(b) Would the velocity of the wave change if we change the length of the hori-
zontal part of the string (i.e. howmuch of the 2-m-long string is located between
the clamped point and the round edge)?
(c) How long should the horizontal part of the string be in order that it may
vibrate at 280Hz if you pluck at it? (Hint: Assume that the string is then half a
wavelength long.)
(d) How heavy should the bob be in order to make the frequency twice than that
in the previous task (assuming that the length does not change)?

23. Write a program in Matlab or Python that samples the sound signal reaching the
microphone input of a PC when a microphone is connected and plot the signal
with the correct timing along the x-axis. You may use program snippet 2 in the
end of Chap. 5 for part of the program.
Sample the sound as you sing a deep “aaaaaa”. Is the sound wave harmonic?
What is its frequency?

24. In Fig. 6.8, there is a wave along a string (a small section) at three neighbouring
times. Base your answer on the figure and explain:

• What is the direction of the net force acting on each of the eight segments of
the string at time t (ignore gravity).



6.6 Exercises 161

Fig. 6.7 Experimental setup
in the following problem

2 m

Fig. 6.8 A wave along a
piece of a string at three
neighbouring instants y

x

y(t - t) y(t) y(t + t)

1 2 3 4 5 6 7 8

• Explain in detail your arguments for finding the force, especially for segments
2, 4, 5, 6 and 7.

• What is the direction of the velocity of each of these segments at time t?
• At first, it may seem that there is a conflict between force and velocity. Explain
the apparent conflict.

• The last point is related to the difference between Aristotle’s physics and
Newton’s physics. Do you know the difference?

• How does the energy vary for an element along the string when the wave
passes by?

• Elaborate on the expression “the wave brings with it the energy”.

25. Make an animation of the wave A sin(kx − ωt) in Matlab or Python. Choose
yourself values for A, k, ω, and the ranges for x and t . Once you have got this
animation working, try to animate the wave A sin(kx − ωt) + A sin(kx + ωt).
Describe the result.
Youmay use program snippet 3 in the end of Chap. 5 for part of the program (also
available at the “Supplementary material” web page for this book is available at
http://www.physics.uio.no/pow).

26. Read the comment article “What is a wave?” By JohnA. Scales and Roel Snieder
in Nature vol. 401, 21 October 1999 page 739–740. How do these authors define
a wave?

http://www.physics.uio.no/pow


Chapter 7
Sound

Abstract The prime theme of this chapter is reflection of (sound) waves at
interfaces between two media with different wave velocities (or different acous-
tical impedances). Such reflections are used in, apart from other situations, ultra-
sound imaging in medicine, e.g. of foetuses during pregnancy. If a wave moves in an
extended medium with reflective boundaries at both ends, a wave of arbitrary shape
will go back and forth repeatedly with a fixed time period determined by the wave
velocity and the distance between the reflecting ends. We argue that this lies at the
core of musical instruments, and not pure standing waves, used as the paradigm in
most physics textbooks. We then present the tone scale and go on to define sound
intensity, both physically and in relation to human hearing. The chapter ends with a
discussion of beats, Doppler shifts and shock waves.

7.1 Reflection of Waves

Sound waves are reflected by a concrete wall, and light waves by a mirror, whereas
the waves on a guitar string are reflected at the ends where the string is clamped.
Reflection of waves under different circumstances is a topic that we would encounter
time and again in this book.Mathematically, reflections are treated by the introduction
of so-called boundary conditions.Asmentioned earlier, the samedifferential equation
for wave motion can arise in various contexts, yet the solutions differ markedly
because the boundary conditions are not identical. The first and perhaps the simplest
illustration of this is wave motion along a string of finite length, where physical
conditions at the “boundaries” (the ends of the string) play a decisive role in the
wave motion.

Suppose that we have a taut string, one end of which is attached to a large mass,
and that we produce a transverse “pulse” by providing a sharp blow to the other end
(see Fig. 7.1). The pulse will move along the string at the rate

√
S/μ, where S is the

tension and μ the mass per unit length. The shape of the pulse is preserved.
When the pulse reaches the clamped end of the string, the amplitude at this end

must necessarily vanish. This means that the pulse close to this end will be com-
pressed and the force across the string will increase significantly. Since the endpoint
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A. I. Vistnes, Physics of Oscillations and Waves, Undergraduate Texts in Physics,
https://doi.org/10.1007/978-3-319-72314-3_7

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72314-3_7&domain=pdf


164 7 Sound

(a) (c)

(b) (d)

Fig. 7.1 A transverse wave reaches an interface between two media. The wave is drawn for four
successive instants. In a, the wave goes from a region of low impedance (white) to one of much
larger impedance (yellow). The wave is fully reflected and the result gets the opposite sign of the
incoming. In b, the impedance at the interface decreases (the wave comes from a high impedance
region andmeets a low impedance region). Here, reflection of energy is near total, but if we consider
only amplitudes, the effect is more modest (indicated by the dotted line). Panels c and d illustrate
a case where the amplitudes of the reflected and transmitted wave are equal

cannot move, the compressed string experiences a force in the opposite direction,
which creates an imbalance between the amplitude and the travel speed, compelling
the pulse to turn back along the string. However, the wave that travels backwards
will have an amplitude opposite to that of the original (incoming) pulse (case a in
Fig. 7.1). No energy is lost (to a first approximation) since loss on account of friction
requires the frictional force to work over a certain distance, while we have assumed
that the end point is completely fixed.

Another extreme is that where the end is free to move. This can be achieved, for
example by holding the string at one end and allowing it to fall freely downwards
and let the end move freely in air (disregarding air resistance). However, this is not a
good model, since the tension in the string is not defined. A much better model is a
string of large linear mass density (mass per unit length) connected at the free end to
a string of significantly smaller linear mass density, and subject the entire structure
to a fairly well-defined tensile force. It will be convenient to call the former a thick
and the latter a thin string.

A pulse transmitted along the thick string will move normally until it reaches the
boundary between the two strings. The disturbance that reaches the thin string will
give it a significantly greater impact than if the stringwere of a uniform density. There
is again a mismatch between amplitude and velocity, resulting in reflection, but the
result in this case is a reflected pulse with same amplitude as the original pulse. In
this case, however, some of the wave (and energy) will also propagate along the thin
string. If the thin part has a significantly smaller density, almost all energy will be
reflected (case b in Fig. 7.1).
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The terms “amassive structure” and “a thinner or thicker string” (signifying linear
mass density) are not sufficiently preciseword, and it is better, when one is discussing
production and transmission of sound, to use the term “acoustic impedance”, defined
below:

Acoustic impedance is defined as acoustic pressure (sound pressure) divided
by acoustic volume flow rate (details in the next subsection).

Meanwhile, we will content ourselves with qualitative descriptions, but will con-
tinue to employ the term “impedance”, even though our understanding of acoustic
impedance is still vague. Based on this understanding, the rules for reflection and
transmission of waves at an interface can be enunciated as follows:

It can be shown both experimentally and theoretically that:

• Waves that strike an interface beyond which the impedance of the medium
increases, split so that the reflected part is of the opposite sign to that of
the incident wave. The transmitted wave has the same sign as that of the
incoming wave.

• Waves that strike an interface beyond which the impedance of the medium
decreases, split so that the reflected part is of the same sign as that of the
incident wave. The amplitude of the transmitted wave also has the same sign
as that of the incident wave.

• The fraction that is reflectedor transmitteddependson the relative impedance
change in relation to the impedance of the medium the wave originates
from. If there is no impedance change, nothing is reflected; if the relative
impedance change is infinitely large, all energy is reflected.

In Fig. 7.1, the waveform at the instant the wave strikes the interface is not shown
on purpose, but a detailed profile can be constructed using the method outlined in
Fig. 7.2. In the figure, total reflection is illustrated. Correct waveform before the
interface is drawn, and we let an upward pulse approach the interface. A downward
virtual pulse is also made to travel towards the interface with the same velocity. The
virtual pulse has an equal and opposite amplitude to that of the incoming pulse if total
reflection occurs against a medium with very high impedance (e.g. by attaching a
string to amassive structure). The shape of the actual wave during and after reflection
is found by adding the waveforms of the original and virtual pulses (the resultant
is indicated by the thick dotted line in the figure). Eventually, only the virtual wave
survives in the region to the left of the interface, and further wave evolution follows
the motion of the virtual pulse alone.

This model can be easily be modified to deal with the case in which the wave
approaches a medium with much lower impedance, which leads to almost total
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Fig. 7.2 A model for portraying the time development of the waveform of the reflected part of a
transverse wave reflected at an interface between two media. See the text for details

reflection with no change in the sign; it can also be modified to handle cases where
a part of the wave is reflected and a part transmitted.

We will return to a more detailed description of reflection and transmission of
electromagnetic waves when they meet an interface between two media.

7.1.1 Acoustic Impedance *

We will in this chapter speak about “acoustic impedance” rather loosely. However,
for the sake of those whowish to acquire greater familiarity with acoustic impedance,
this subsection provides a slightly more detailed description. Go ahead to the next
sub-chapter if you are not interested in spending more time on this topic at this point.

The notion of acoustic impedance arose when we discussed reflection of waves
at the interface of two media. Let us delve a little deeper into this issue. There are
several variants of acoustic impedance.

“Characteristic acoustic impedance” Z0 is defined as:

Z0 = ρc (7.1)

where ρ is the mass density of the medium (kg/m3), and c is the speed (m/s) of sound
in this medium. Z0 depends on the material and its units are Ns/m3 or Pa s/m.

The characteristic impedance of air at room temperature is about 413Pas/m. For
water, it is about 1.45 × 106 Pa s/m, i.e. about 3500 times larger than the characteristic
impedance of air.
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Differences in characteristic acoustic impedance determine what fraction of a
wave is transmitted and what fraction is reflected when a “plane wave” reaches a
plane interface between two media.

The big difference in characteristic acoustic impedance between air and water
means that sound in the air will be transmitted into water only to a small extent, and
sound in water will penetrate into air only to small extent. Most of the sound will be
reflected at the interface between air and water.

In Chap. 6, we found that the sound speed in air or water was given (using c
instead of v) as:

c = √
K/ρ

where K is the modulus of compressibility and ρ is the mass density. Upon elimi-
nating ρ by using the definition of characteristic impedance in Eq. (7.1), we get:

Z0 = K/c . (7.2)

This expressiongives us another idea ofwhat influences the characteristic acoustic
impedance. For a particular system, e.g. a musical instrument, an different measure
is often used:

“Acoustic impedance” Z is defined as:

Z = p

vS
(7.3)

where p is the sound pressure, v is the particle speed (over and above the contribution
of thermalmovements) and S is the pertinent cross-sectional area (e.g. themouthpiece
of a trumpet).

There is a close analogy between acoustic impedance and impedance in electro-
magnetism. For this reason, the definition of acoustic impedance is often compared
withOhm’s law, and Z is sometimes called “sound resistance” or “audio impedance”.

If you wish to learn more about acoustic impedance, the following article might
be of interest: “What is acoustic impedance and why is it important?” available on:
http://www.phys.unsw.edu.au/jw/z.html (accessed May 2018).

7.1.2 Ultrasonic Images

Characteristic acoustic impedance will change with mass density and the modulus
of compressibility [see Eqs. (7.1) and (7.2)]. Precise correspondence is not so easy
to obtain from these equations since the speed of sound also depends on the same
quantities.

Nevertheless, there are differences in the characteristic acoustic impedance of,
e.g. blood and heart muscle. The characteristic acoustic impedance of a foetus and
foetal fluid are different. Therefore, if we send sound waves to the body, some of

http://www.phys.unsw.edu.au/jw/z.html
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Fig. 7.3 Ultrasound images of two foetuses.On the left is a 3D image of a foetus about 11weeks old.
On the right is a sectional image (2D) of a foetus about 18 weeks old. Reproduced with permission
from the owners (private ownership)

the sounds will be reflected from the interfaces between blood and heart muscle, and
between the placenta and the foetus.

However, there is a huge difference between the characteristic acoustic impedance
of air and body. In order to get sound efficiently in and out of the body during an
ultrasound examination, a gel is applied on the skin, which reduces friction and
acts as a conductor of the ultrasonic waves from the ultrasound probe. This material
should have approximately the same characteristic acoustic impedance as the tissue
the sound is going to enter.

After reflection at interfaces between different impedances, the sound will be
captured as an echo, provided that the original sound pulse has already ceased before
the echo returns. By analyzing the echo as a function of time delay, we will be able
to determine distances. And if we can send sound in well-defined directions, we will
also be able to form images of what is inside the body. Figure7.3 shows a pair of
ultrasonic images of a foetus.

Much interesting physics goes into the design of the sound probe in ultrasound
surveys. We can control the beam in two directions by causing interference between
many independent transmitters on the surface of the soundprobe.Control of the sound
beam is achieved by systematically changing the phase of the sound for each single
transducer on the ultrasound probe. Focusing for the sake of reducing diffraction can
also be done by similar tricks. We will return to this in later chapters.

It should be added that there are major similarities between ultrasound surveys,
for example, of foetuses and mapping of the seabed for oil exploration. In the latter
case, a number of sounders (and microphones) are used along a long cable towed
along the seabed. Echo from different geological layers in the ground with different
acoustic impedances is the starting point for finding out where to expect oil and
where there is no oil and how deep the oil lies.

Many physicists in this country, educated at NTNU, UofO or other institutions,
have helped develop ultrasound and seismic equipment. The Norwegian company
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Vingmed has been a world leader in developing ultrasound diagnostics equipment.
Vingmed has now been purchased by General Electric, but Norwegian scientists
trained in physics and/or informatics still play an important role in the development.
Similarly, we have taken an active part in seismic surveys as well. A great deal of
interesting physics lies behind these methods, and these principles are sure to find
other applications in the years to come. Perhaps you will become one of the future
inventors by exploiting these ideas?

7.2 Standing Waves, Musical Instruments, Tones

7.2.1 Standing Waves

When a persistent wave travels along a taut string that is firmly attached to a massive
object at one end, the wave will be reflected from the endpoint and travel backwards
along the string with an amplitude opposite to that of the incoming wave. If there is
negligible loss, the incident and (an equally strong) reflected wave will add to each
other (superposition principle). Let the incomingwave be a harmonic wave described
in the following form:

y(x, t) = A cos(ωt + kx)

for x ≥ 0. That is to say, the wave comes from “the right” (large x) and is moving
toward the origin. The string is tied to a massive object at the origin, which gives
rise to a reflected wave that can be described by the equation:

yr(x, t) = −A cos(ωt − kx) .

We have chosen to describe the waves in a somewhat unusual way to ensure that
the amplitude at the origin is exactly the same for incoming as reflected wave, but
with the opposite sign. The two contributions will then cancel each other exactly at
the origin.

The superposition principle allows us to express the resultant of the incoming and
reflected waves as follows:

ysum = A cos(ωt + kx) + [ − A cos(ωt − kx)
]

for x ≥ 0.
We have the trigonometric identity

cos a − cos b = −2 sin

(
a + b

2

)
sin

(
a − b

2

)
.
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Fig. 7.4 A travelling (left) and a standing wave (right) as a function of position at various times.
The green arrow shows how the wave changes from one point of time (green curve) to a subsequent
time (blue curve). Pay particular attention to how we use the words “anti-node” and “node” in the
standing wave

By using the above identity for our sum of an incoming and a totally reflected
wave on a string, we find:

ysum = −2A sin(kx) sin(ωt) . (7.4)

In this expression, we have taken account of the fact that the reflection occurs
against a medium with greater impedance, so that the wave is reflected with
the opposite sign.

The important point aboutEq. (7.4) is that the couplingbetweenposition and
time is broken. Maximum amplitude in a given position is achieved at times for
which sin(ωt) = ±1, and these times have nothing to do with position. Simi-
larly, the positionswhere the maximum amplitude occurs is determined solely
by the term sin(kx), which does not change with time. These characteristic
features are displayed in Fig. 7.4.

Remark: In the foregoing account, we have assumed that the incoming wave is
harmonic, but beyond this we have not imposed any requirements on the three main
parameters needed to describe a wave: amplitude, phase and frequency. Regardless
of the values chosen for the three parameters, standing waves will result after a total
reflection as described above, but this holds only for a pure harmonic wave!

Standing waves are an important phenomenon when one is dealing with harmonic
waves; they can arise with sound waves, water waves, radio waves, microwaves and
light—indeed, for all approximately harmonic waves!

The addition of several harmonic waves which do not all have the same phase
cannot give rise to standing waves with fixed nodes and anti-nodes like those shown
in the right part of Fig. 7.4.
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7.2.2 Quantized Waves

Identical endpoints

Suppose that a string is clamped at both ends and that we manage to create a wave
pulse similar to the one in Fig. 7.1. The wave pulse will be reflected each time it
reaches an end, and the wave will travel to and fro indefinitely, provided that there
is no energy loss. The same sequence repeats over and over again with a time period
T , which is the time taken by the wave to go back and forth once.

The time period equals the total distance back and forth divided by the velocity
of the wave; that is:

T = 2L

v

where L is the distance between the two identical ends of the string. The
frequency of the periodic movement comes out to be f = 1/T , or

f = v

2L
. (7.5)

If we use the general relationship λ f = v for a wave, we can assign a kind
of wavelength λ to the wave along the string:

λ = 2L .

This will in general not be a harmonic wave.

It is somewhat artificial to speak of the wavelength inside the instrument, but it
becomes meaningful as soon as we consider the sound created by the instrument in
the surrounding air.

Note that these relationships are generally applicable and are not limited only to
harmonic waves!

A wave moving along a string clamped at both ends will have a “quantized”
time course with a period given by the time the wave needs to travel back and
forth along the string once.

The same regularity will hold also, to take another example, for an air
column inside a flute (where there is low impedance at both ends).

Figure7.5 attempts to highlight reflection of waves for two equal endpoints. The
figure shows the wave pulse as a function of position at different instants of time
(left). After an interval equal to the time period, we are back to the same situation as
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Tim
e

0
T

Fig. 7.5 Awave pulse with an arbitrary amplitude travels without loss between two reflecting ends.
The wave pulse may be a pressure pulse in air (to the left) or a mechanical transverse wave pulse
on a string (to the right). There are no change in sign of the wave pulse in the first case, but the sign
is changed for the latter kind of reflection. See explanations in the text

we had at the beginning of the interval. In the case a flute, a (weak) sound wave will
emerge from the flute every time the internal wave reaches the open end (marked
with an asterisk in the figure). The player then has to add to the wave pulse at correct
time once every period to compensate for the loss to the surroundings. The time
period of emitted sound will be the same as the time taken by the wave peak to make
one round trip inside the flute.

One should note that it is completely possible to admitmorewave peakswithin the
fundamental period of time we have considered so far. Figure7.6 attempts to specify
a hypothetical case where there are three identical wave peaks evenly distributed
over the fundamental time period. The frequency of the sound emerging from a flute
sustaining such a wave will be three times the fundamental frequency. It is important
to remember that the to and fro movement of a wave does not affect the movement
of other waves, even though the total amplitude is a sum of the several independent
contributions (assuming that a linear wave equation describes the movement).

Nonidentical endpoints

For a wave moving in a musical instrument where one end of an air column has
a high impedance and the other a low impedance, the conditions are different than
when the impedance is the same at both ends. An example is an organ pipe sealed
at one end, the other end being open to ambient air. In such a case, a wave reflected
from the low impedance end will continue in the opposite direction with unchanged
amplitude, while the wave amplitude will change sign when reflection occurs at the
high impedance end.

In such a situation, thewave as awholewill experience a sign reversal by travelling
up and down the pipe once. If thewavemakes a second round trip, its signwill change
again. This means that a wave must make two journeys back and forth twice (cover a
distance 4L) for it to repeat itself. Figure7.7 provides an illustration of this principle.
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Fig. 7.6 A wave that travels back and forth between two identical ends a distance L apart will
have a fundamental frequency v/2L. However, it is possible to add more than one wave peak to the
fundamental wave. In this figure, three equivalent peaks equally spaced within the 2L distance are
depicted at one instant of time (a) and at a slightly later time (b). Wave peaks travelling to the right
are indicated by red, and peaks travelling to the left by blue. The resulting wave is always the sum
of these two contributions. In this case, the sound will have a frequency three times the fundamental
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Fig. 7.7 A wave peak must travel twice back and forth in order to regain its initial amplitude when
one end of an air string has a high acoustic impedance and the other end low. The massive blocks
drawn to the left indicate high acoustic impedance. At this end, the wave undergoes a sign reversal
upon reflection
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The period for a wave that is reflected at two unlike ends is

T = 4L

v
.

The corresponding frequency is

f = v

4L
. (7.6)

The wave can also have any shape whatever; it is only the duration of the
period that counts in this context.

As in the case when both ends have the same impedance, we can have an
integralmultiple of the fundamental frequency, butwith one notable exception.
We cannot have an even number of identical sequences during the fundamental
period of time (you can verify this yourself by making a drawing similar to
Fig. 7.7). We can therefore have only an odd multiple of the fundamental
frequency given in Eq. (7.6). We usually write this in the form:

f = (2n − 1)v

4L
(7.7)

where n = 1, 2, 3, . . .

7.2.3 Musical Instruments and Frequency Spectra

Some musical instruments, such as a drum, provide transient sounds, while other
instruments emit more or less persistent “tones”. A tone can be characterized as
deep/dark or high/light. The pitch height depends on the frequency of the fundamental
tone. The sound of an instrument can be “sampled” and displayed as a time series
(a plot of the signal strength in the time domain). The frequency content can be
determined experimentally, for example, by Fourier transformation of the time series.

Pure sinusoidal form occurs rarely in the time series of sounds from real instru-
ments. Why is it so difficult to generate harmonic waves from a musical instrument?

It becomes easy to understand that the waveform is not harmonious when we look
into the mechanism for the production of sound in a musical instrument. When we
pluck a guitar string, it becomes obvious that we are unable to produce a perfect
sinusoidal wave. The deviation from a sinusoidal shape will depend on where the
string was plucked. This can be easily seen from a Fourier analysis of the sound,
since the intensity distribution among the different harmonics depends on where the
string is plucked.
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Fig. 7.8 In a musical instrument, a wave goes back and forth with the speed of sound in air and is
reflected at each end of the instrument. If we analyse the sound signal with Fourier transformation,
we can get many harmonics in addition to the fundamental tone. The harmonics are not independent
of each other, and their existence only means that the pressure wave is not harmonious

We know that when someone plays the trumpet, the air passes through the tight-
ened lips of the player in small puffs, and it is obvious that these puffs will not lead
to sinusoidal variations for the resultant pressure waves (illustrated in Fig. 7.8). In a
clarinet or oboe or a transverse flute, we create air currents and vibrations where tur-
bulence plays an important role. The air eddies are nonlinear phenomena and will not
lead to sinusoidal timescales for the pressure waves. It is therefore quite natural that
the pressure waves in the instrument do not become harmonic. Nonharmonic waves
inevitably lead to more harmonics in the frequency spectrum, something already
pointed out in the chapter on Fourier transformation. There is no mystery about it.

Nonlinear effects are present in virtually all musical instruments. For string instru-
ments, the vibration and rotation of the string affect in return the contact between the
(violin) bow and the string. This results in continuous small changes in the vibration
pattern, even though the salient features last long. It is the nonlinearity that gives life
to the sound of the instrument and makes it difficult to generate synthetic sound that
is as lively as that which emanates from musical instruments.

When the sound waves in the instrument are almost periodic but do not have
sinusoidal time periods, the frequency spectrumwill consist of several discrete peaks
separated by the fundamental tone frequency. How should we determine the tone of
the sound? It is the fundamental tone that determines the pitch we perceive with our
hearing.

Curiously enough, it is possible that a frequency spectrum may lack the peak
corresponding to the fundamental tone and still our ear will perceive the pitch of the
fundamental tone. Figure7.9 shows a small segment of a time signal from a tuba, an
instrument that plays low-frequency tones. The time display shows a periodic signal,
but a waveform that is far from a pure sine. The frequency spectrum shows a number
of peaks, and it is clear that the peaks have frequencies that are integer multiples of
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Fig. 7.9 It may happen that the intensity of the fundamental tone is much less than any of the
harmonics. In such cases, we can remove the fundamental tone completely without the time signal
changing noticeably.Alsowhenwe listen to the sound, the pitchwill be determinedby the periodicity
of the time signal rather than the frequency of the harmonics

the fundamental frequency. However, the intensity of the fundamental frequency is
quite small.

For the sake of a little amusement, the fundamental tone was completely removed
from the frequency spectrum1 and an inverse Fourier transform was calculated over
the entire frequency domain. The result was a time profile visually indistinguishable
from the original time signal of the tuba sound (see Fig. 7.9). If we listen to the
filtered signal, we do not hear any difference either (at least not easily).

Let us use Fig. 7.9 to point out an important message regarding our perception
of the pitch of a tone. The fundamental tone is found by requiring all peaks in
the frequency spectrum to have frequencies equal to an integral multiple of the
fundamental frequency. The fundamental frequency does not have to be present.

1Both from the positive and the negative half of the frequency domain, due to folding in Fourier
transform.
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There can also be “holes” in the series of harmonics (e.g. only third, fifth and seventh
harmonics exist). Nevertheless, only one frequency satisfies the requirement that the
frequency spectrum consists of components that are harmonics of the fundamental.

7.2.4 Wind Instruments

When we pluck on a guitar string, the resulting wave will travel back and forth along
the string, and the total movement (at each time and each instant) will be the sum
of the forward and reverse wave.2 However, the energy imparted to the string by the
act of plucking eventually changes to sound that disappears in the surroundings and
it also heats the string, since it bends a bit here and there and is not fully elastic. The
oscillations of the string will die out in a matter of seconds, which is several hundred
times longer than the time the wave needs to make one round trip along the string.

Awind instrument (such as a flute, trumpet, clarinet, oboe) is a little different from
a guitar string. With such an instrument, a musician can keep a steady volume of the
sound for a long time—until he/she has to pause for breath. For wind instruments,
therefore, we have a (quasi)-steady-state excitation of the instrument as long as we
keep blowing air into it.

In a trumpet, 40–50% of the energy in a wave disappears when the wave reaches
the funnel-like opening of the instrument. This means that only 50–60% of the sound
energy of the wave is reflected, and the musician must supplement the reflected wave
to uphold a steady state situation.

The pace at which the musician blows air must have proper timing relative to the
reflected waves, in order to get good sound intensity. This may seem like a difficult
task, but soundwaves reflected from the end of the instrument back to themouthpiece
of a brass wind instrument impress on the musician’s lips, making it easy to provide
new puffs at the right time. Finesse is achieved by tightening and shaping the lips
and how forcefully the musician squeezes air through the lips.

For a flute, the reflected wave will affect the formation of new air eddies, which
ensures proper timing also for such instruments.

There is some leeway with respect to timing (a slightly higher or lower frequency
of air blows than that corresponding to the wave speed and the length of the instru-
ment), but too great a departure will not lead to a sonorous success, because new air
blows will not work in unison with the reflected waves.

2There are details to the movement of a wave on a guitar string not mentioned here. These are easier
to understand when we use numerical methods to calculate wave movements in Chap. 8.
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7.2.5 Breach with Tradition

In this subsection, we will discuss a traditional way of presenting the physics behind
different instruments. The purpose is to show that such an approach can easily lead
to misunderstandings.

Figure7.10 shows a traditional representation of what characterizes the physics
behind an organ pipe. The organ pipe is chosen as a concrete example. The same
conditions apply to all instruments with corresponding impedance termination at the
end of an air column. The illustration focuses on the notion of standing waves, as
described in Eq. (7.4). The wavelength is determined by the requirement that there be
either an anti-node or a node in the standing waves at the end of the air column inside
the instrument (“anti-node” corresponds tomaximum and “node” to zero amplitude).
We must distinguish between the pressure and the displacement, since we know that
in a harmonic sound wave there is a phase difference of 90◦ between the two.

L

L

Fig. 7.10 Ostensible displacement amplitude (dashed blue curve) and pressure amplitude (solid
red curve) for sound waves in an open and closed organ pipe (or instrument with corresponding
acoustic endpoints). This is a standard illustration found in most textbooks in this field. However,
the figure is liable to misunderstanding, which is why it has been marked with a large cross. See
the text for details
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For an instrument that is closed at one end and opens in the other, there will be an
anti-node for pressure and a node for displacement at the closed end. The converse
holds for open ends, that is, a node for the pressure and anti-node the displacement.

The conventional account is correct, provided that there is a pure harmonic wave
in the instrument (only one frequency component), which provides a perfect standing
wave. The problem is that the proviso is seldom met in practice!

This is compensated by drawing standing waves also for the higher harmonics,
and the figure shows how these waves appear in addition to the wave of the funda-
mental frequency. One is given the impression that one need only add the separate
contributions to get the correct result.

However, the recipe cannot work. There are phase differences between the har-
monic frequency components in a Fourier analysis of the sound. These phase dif-
ferences are vital for reproducing the original time profile of the sound. The phase
differences are conspicuously absent in Fig. 7.10.

The phase difference means that there will be no standing wave inside the instru-
ment! It becomes meaningless to talk about anti-nodes and nodes inside the instru-
ment. Application of these terms at the endpoints does have a certain justification.
However, in our explanatory model, it is more natural to associate this with the rules
for reflection of waves.

An the open ends, the air molecules move more easily than inside the pipe.
Impedance outside the pipe being lower than that inside, we demand that waves
reflected at such an interface do not change sign upon reflection. This means that
there is maximum movement of the air molecules at ends that are open.

Similarly, air molecules will find it difficult to move against a massive wall, for
example, at the close ends of a closed organ pipe. Accordingly, waves reflected at
the closed end will have a sign opposite to that of the incoming wave, with the result
that the displacement of the molecules at the boundary becomes zero.

For the pressure wave, the argument is reversed.
We are led to the same conclusion, but for the end faces only, whether we base our

argument on reflection of waves or on standing waves for the fundamental frequency,
but there is disagreement everywhere else.

Animation

It may be instructive to see how a wave evolves inside a wind instrument. We can
make an animation in a simple way and the procedure is shown in Fig. 7.11. We have
chosen an animation based on a wave travelling back and forth inside the instrument
with negligible loss (but still sufficient to permit detection of the sound emitted by
the instrument). We have also chosen a situation where both ends have the same
impedance, and the impedance is lower at the ends than inside the instrument, so that
a wave is reflected without a sign reversal.

We have chosen a real audio signal from an instrument (French Horn) and picked
exactly one period of the signal. The starting point and endpoint are arbitrary, and
the signal has been divided so that one half indicates the wave amplitude at different
positions for the part of the wave moving toward the opening (where some of the
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Fig. 7.11 Total sound pressure at different positions within an instrument can be found by summing
the sound pressure of the forward and backward waves. One whole period of the sound output from
the instrument must be divided equally between the forward and backward waves, as shown at the
bottom. By moving forward the waveform (cyclically), keeping pace with the wave, we create an
animation of total sound pressure vs position with the passage of time. We see that it is meaningless
to talk of standing waves in a case where the frequency spectrum has many harmonics (the time
profile is very different from a that of pure sinusoid)

sounds are released). The other half represents the reflected wave. The part that has
just been reflected is very close to the opening of the instrument. The part that was
reflected half a period earlier has travelled all the way back to the mouthpiece of the
instrument.

The wave inside the instrument can be found by adding the forward wave and the
backward wave at each point.

Animation is achieved by cyclic stepwise movement of the waveform, each step
or frame representing a later instant. The last point of the forward wave becomes, as
we move to the next instant, the first point in the backward, while the last point in
the backward wave becomes the first point in the forward wave.

Figure7.11 shows some examples of how the wave looks at six instants (separated
by a fifth of the period). We can follow the dominant wave peak and see that it first
travels towards the open end of the instrument, but is reflected and moves away from
this end during the next half of a period, at the end of which a new reflection occurs.
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The animation is meant to show that there is really nothing here that would evoke
standing waves, as described by Eq. (7.4) and in the left part of Fig. 7.4. The model
based on a wave that travels back and forth provides by far the more faithful descrip-
tion of the state of affairs.

The upshot of the foregoing discussion is that it is more appropriate, when
one is describing the process underlying the production of sound in a musical
instrument, to speak of a “trapped moving wave” than of a “standing wave”.
JoeWolfe at TheUniversity ofNewSouthWales, Australia, focuses on trapped
moving waves in his outstanding Web pages about audio and musical instru-
ments (see references at the end of the chapter).

Concrete examples of quantization

It may be useful to look at some concrete examples of quantization (or lack of
quantization) of frequencies from different “musical instruments”.

For a 94-cm-long brass tube (internal diameter about 15mm) two series of mea-
surementsweremade. In the first, one end of the tubewas placed just next to a speaker
where a pure tone was played with a tunable frequency. At the other end of the tube,
a small microphone was placed for monitoring the signal strength. When the fre-
quency was varied from about 150 to about 1400Hz, resonances (sound intensity at
the location of the microphone) were observed at frequencies of approximately 181,
361, 538, 722, 903, 1085 and 1270Hz. This corresponds to n f1 (n = 1, 2, . . . , 7),
with f1 calculated from a tube open at both ends [Eq. (7.5)].

When we used the tube as a makeshift trumpet, we could turn (by tightening our
lips more from one variant to the next) generating sound with frequencies (ground
tone) of about 269, 452, 622, 830 and 932Hz, that is, to say completely different
frequencies than the resonant frequencies at both ends open! The frequencies here
correspond approximately to 1

2n f1 (n = 3, 5, 7), with f1 pertaining to a tube open
at both ends [Eq. (7.5)]. This is in perfect accord with the frequencies predicted by
Eq. (7.7) for an instrument closed at one end and opened at the other.

For a trumpet, the situation is a little different. The trunk of the tube in a trumpet
results in nonlinear effects because the effective length of the tube is slightly different
for different frequency sounds. The tract also causes the sound to come into the
surroundings in a more efficient manner than with instruments made hundreds of
years ago. The mouthpiece also has complicated acoustic features, but we will not
go into these details here.

In Fig. 7.12 is shown an example of a continuous sound from a trumpet, both con-
sidered in the time domain and the frequency domain. In this case, the fundamental
tone and higher harmonics are present at the same time, and the amplitude ratio
between them appears in the frequency domain (often called “frequency spectrum”
or “Fourier spectrum”).
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Fig. 7.12 Example of time frame and frequency picture of the sound of a B trumpet playing a
“C” note (which is really a B, see next sub-chapter). It is obvious that the time signal is not a pure
sinusoid, but a mixture of several frequencies, as revealed by the frequency spectrum. Note that
the fundamental frequency is a part of the harmonic range, while the fundamental frequency is not
counted in the numbering of so-called overharmonics

Note the asymmetry in the time frame of the sound from the trumpet. The maxi-
mum peak is found once again to be as large as the negative peak half a period later.
Similar to the second largest peak. This corresponds well with the picture that a wave
peak undergoes a sign change after one round trip, but the wave peak returns to the
original after two round trips.

It is this asymmetry of the signal itself that causes integer harmonics to almost
disappear in the Fourier analysis of the sound, as we see in the right part of Fig. 7.12.

Examples of nonquantization

The importance of reflection of waves and wave velocity within the instrument for
obtaining a given (quantized) frequency can be grasped by referring to Fig. 7.13.
Here, we have sampled the sound of a mouthpiece from a trumpet (removed from
the trumpet itself) while the musician has changed the tightening of the lips slightly
up and down. The time signal is analysed by a form of time-resolved Fourier trans-
formation (wavelet analysis, which we will return to later in the book). In such a
diagram, peaks in the frequency spectrum are shown as a function of time. We can
see that the pitch of the fundamental tone here can be varied continuously. There is no
quantization, because there is no reflection of the sound waves of some importance.
Frequency is determined exclusively by the rate of air blows through the lips, and
here there is no physical process that could impose quantization on frequency.

The harmonics also appear in the wavelet diagram, but since we use a logarithmic
frequency scale (y-axis), it does not become the same distance between the different
harmonics.

It is interesting to note that we get many harmonics even when the mouthpiece is
used alone. This means that it is the slightly chaotic opening/closing of the lips that
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Fig. 7.13 An advanced form of time-resolved Fourier transformation (wavelet transformation) of
the sound from the mouthpiece of a trumpet. Time is measured along the x-axis, the logarithm of
the frequency along the y-axis. The intensity of the frequency spectrum is highlighted with colours.
See also the text for comments

Fig. 7.14 A slice of the time
picture of the sound from a
mouthpiece shows that the
sound pressure does not vary
harmoniously with time.
Note that the asymmetry
seen in the trumpet signal in
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make sure the airflow does not acquire a sinusoidal time course. This is confirmed
by Fig. 7.14, which shows a small section of the time signal from the mouthpiece
sound. In other words, it is not the trumpet itself that creates the harmonics. What
matters more is the action of the tight lips whereby small air puffs are ejected in a
rather erratic manner. On the other hand, back and forth passage of the wave in the
trumpet leads to the quantization of whatever tones are emitted by the instrument.

Later in the book, wewill usewavelet transformation for further analysis of sound.
It will then be seen that Fourier transformation often furnishes a picture that lacks
life and nuance. In reality, the harmonics do not exist at the same intensity all the
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Fig. 7.15 The air column in a trumpet is slightly funnel shaped from the mouthpiece to the outer
opening. Valves permit changing the length of the air column. For a B-trumpet (the fundamental
tone is a B when no valves are pressed) the length of the air column is about as long as specified

time. The intensity distribution of the harmonics varies as shown in Fig. 7.13. This
is one reason why sound from real musical instruments has often more life in it than
synthetically produced sound.

7.2.6 How to Vary the Pitch

It is interesting to see how we may change the pitch in different instruments. For
a guitar, it is obvious that we should change the length of the vibrating part of the
string. Since the tension is largely unchanged when we press a string against a fret
in the neck of the guitar, the velocity of the waves remains unchanged. When we
choose to reduce the length of the string, the time taken by a wave to go back and
forth decreases proportionally, and the frequency rises according to the relationship
f = v/2L .
In a brass wind instrument, such as a trumpet, the length of the air column in the

instrument changes when the valves are pressed. For a trumpet, when the middle
valve is pressed, the air is diverted to a small extra loop. If only the first valve is
pressed, the extra loop is about twice as long if only the middle valve is pressed,
and if only the third valve is pressed, the extra loop is about three times as long. In
Fig. 7.15, the data for the effective air column length for different single valves are
given in bold letters. Several valves can be pressed simultaneously, and then the total
air extension will equal the sum of all the additional loops that are inserted.
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Fig. 7.16 Tones on a piano along with calculated frequency on a tempered scale. The figure is
inspired from [1] but completely redrawn

7.2.7 Musical Intervals

In the Western musical tradition, tones are graded on a scale of 12 semitones,
which together span a frequency range over which the frequency increases by
a factor of 2.0. This means that for a tone C there is a new tone C with a base
tone of a frequency twice as large as that of the first one. The tone range is
called an octave.

The semitones (or half-tones) in-between are chosen so that there is a con-
stant frequency ratio between a tone and the lower semitone. Since there are
12 such steps to achieve an octave, it follows that the ratio of the frequency of
one tone and the lower semitone must be

21/12 ≈ 1.0595

provided that all steps are equal. A scale defined in this way is called tempered.
Figure7.16 shows the frequencies on a tempered scale if we assume that one-
stroke A should have a frequency of 440.00Hz.

Two tones from, for example, a violin can together sound particularly pleasant
if their frequency ratio equals an integer fraction (where only numbers up to 5 are
included). The ratio between the frequency of an E relative to the C below on a
tempered scale is about 1.260. This is close to 5:4, and the leap is called a (major)
third. Similarly, the frequency of an F relative to the C is equal to 1.335, which is
close to 4:3, and the jump is called fourth. Finally, we may note that the relationship
between a G and the C below is 1.4987 which is very close to 3:2, a leap called fifth.



186 7 Sound

It is feasible to create a scale where the tones are exactly equal to the integer
fractions mentioned above for selected tones. Such a scale is called “just”. Certain
combinations of tones sound more melodious than on a tempered scale, but the
drawback is that we cannot transpose a melody (displace all the tones by a certain
number of semitones) and maintain the melodious character.

In Fig. 7.16, some interesting inscriptions can be seen at the bottom. If we start with a low A
with frequency 55Hz (n = 1), the frequency of the first overtone (n = 2) will be twice as large (110
Hz). The difference between the fundamental tone and the first overtone is a whole octave.

The frequency of the second overtone (n = 3) will have 3 × 55Hz = 165Hz, which almost
corresponds to an E, and the third overtone (n = 4) will have the frequency 4 × 55Hz = 220Hz,
which is the next A. This amounts to two overtones within one and the same octave.

Continuing in the same vein, one sees that there are four overtones within the next octave and
eight within the following octave. In other words, the higher harmonics will eventually stay closer
than the semitones. That is why we can almost play a full scale without the use of valves in a lur,
by forcing the instrument to emit sound mostly at the higher harmonics.

On a trumpet, the fundamental tone (which corresponds to n = 1) is achieved if the lips are
pressed together only moderately. The frequency of the fundamental tone can be increased in leaps
(n increases) by tightening/pressing the lips more and more. The air that escapes through the lips
will then come in a tighter bunches than when the lips are more relaxed.

In Fig. 7.12, we saw that the frequency of the fundamental tone for a B trumpet
was about 231.5Hz. This should be a B, and those familiar with the tone scale will
know that a B is the semitone that lies between A and H. From Fig. 7.16, we see that
this is as it should be. By slightly varying lip tension, the tone from the trumpet can
be changed quite a bit (even I can vary the frequency between about 225 and 237Hz
for the current B). Good musicians take advantage of this fine-tuning of the pitch
when they play.

7.3 Sound Intensity

Sound may be so weak that we do not hear it, or so powerful as to become painful.
The difference is in the intensity of the sound, and the sound intensity is defined as:

Sound intensity is the time-averaged energy transported per unit time and area
in the direction of the sound.

Alternatively, the sound intensity canbedefined as the time-averaged energy
per unit area and time flowing normally across a surface in the direction of
propagation of the wave.

Sound intensity is measured in units of watt per square metre: W/m2.
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It is also possible to work with an “instantaneous” intensity (as opposed to the
time average), but this will depend on both position and time. For sound waves, the
local instantaneous intensity Iins will be given by:

Iins(
#»r , t) = #»p( #»r , t) • #»v ( #»r , t) (7.8)

where #»p is the local pressure (strictly, the pressure deviation relative to the mean)
and #»v is here the local velocity of air molecules at the same place and time (not the
speed of sound!).

Remark: A useful rule of thumb will now be derived. Instead of looking at the amount of energy, we
may consider what work the sound wave is able to perform. Work is force times distance, and the
force that can work on a cross-sectional area A is the local pressure in the sound wave multiplied
by the area (actually the excess or deficit pressure in the sound wave multiplied by the area).

Work is “force times distance”, and if the wave moves a distance�x in a time�t , then it follows
that:

Instantaneous intensity = work that can be performed

area and time

Iins = p A�x

A�t

Iins = p
�x

�t
≈ pv

which is the desired rule of thumb.

In the previous chapter, a harmonic sound wave was described in terms of η, the
local displacement of the molecules, by the following equation:

η(x, t) = η0 cos(kx − ωt)

where η0 is the maximum displacement relative the equilibrium position (in addition
to the thermal movements!).

The speed of the molecules executing in the motion is the time derivative of the
displacement η:

∂η

∂t
= ωη0 sin(kx − ωt) .

It was also shown that the same wave can also be described as a pressure wave
by using the equation:

p(x, t) = kKη0 sin(kx − ωt) .

where K is the compressibility module for the medium in which the sound wave is
moving.

The instantaneous intensity will now be the product of the local velocity of the
molecules and the local pressure as described in Eq. (7.8). The wave is assumed to
be longitudinal and moving in the x-direction, so that velocity and pressure have the
same direction. Accordingly:



188 7 Sound

Im = p
∂η

∂t
= kωKη0

2 sin2(kx − ωt) . (7.9)

The wavenumber k and the angular velocity ω must satisfy the relation

v = ω

k
=

√
K

ρ

where v now stands for the speed of sound, K is the modulus for bulk elasticity and
ρ the mass density.

Whence follows the expression for the time-averaged intensity:

I = 1

2
kωKη0

2 = kωKηrms
2 = 4π2 K

v
( f ηrms)

2

since the time-averaged value of sin2 equals 1/2. Here, ηrms is the root mean
square displacement of the air molecules, or ηrms = η/

√
2. [The reader is

reminded that we are speaking here of the collective displacement of the
molecules over and above the thermal motion of “individual” molecules.]

It will be useful to eliminate K , the bulk modulus for compressibility, and
use the amplitudes of displacement and pressure, together with mass density,
sound speed, wavelength and frequency. After some trivial manipulation of
the above expression, one can show that:

I = (prms)
2

ρv
(7.10)

where prms is the root mean square deviation of the pressure fluctuation, ρ is
the mass density of air and v is now the speed of sound in air.

Further, it can be shown that:

I = 4π2ρv( f ηrms)
2 (7.11)

where λ is the wavelength of the sound in air, that is, λ = v/ f where f is the
frequency of the sound.

Equation (7.10) shows that sound with different frequencies will have the same
intensity if the pressure amplitude is the same.

Equation (7.11) shows that sounds of the same intensity, but different frequencies,
have displacement amplitudes ηrms which are inversely proportional to the frequency,
hence proportional to the wavelength.
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It ismuch easier tomeasure pressure fluctuations than displacements ofmolecules.
Therefore, Eq. (7.10) is the version that finds practical applications when sound
intensities are to be measured and reported.

Before looking at some examples of intensity values, let us return briefly to Eq. (7.9). The
equation shows the instantaneous value of energy transport as a function of position and time.
The expression is always positive (since sin2 > 0). It is an important characteristic of waves! The
molecules that propagate the wave swing back and forth, but their mean position remains fixed, and
does not move with the wave (apart from thermal movement). Yet, energy is transported onward
from the source of the wave, and it normally never returns to the source.

It is of some interest therefore to integrate over time all energy transmitted from the source to
the wave. We can do that by looking, for example, at total energy per time going through a spherical
shell around the source of the waves. The unit for such integrated intensity is watts.

A human voice during normal conversation produces a total power of about 10−5W. If one
shouts, the power may amount to about 3 × 10−2W. In other words, the production of a usable
sound wave does not require an unusual expenditure of power.

The figures for the human voice may seem strange when we know that a stereo system can
produce powers at 6–100W. Of course, a stereo system used at 100W produces a sound far more
powerful than human voice can provide. Nevertheless, the difference in intensities of sound from a
human voice and a stereo system is striking.

The reason for the big difference is that only a small part—a few per cent for ordinary speakers—
of the power supplied to the speakers is converted into sound energy. For special horn speakers, the
efficiency can reach up to about 25%. The rest of the energy is converted to heat.

7.3.1 Multiple Simultaneous Frequencies

In the derivation of Eq. (7.10), we assumed a single harmonic wave. We will now
consider waves with many different frequencies occurring simultaneously?

We must distinguish between correlated and uncorrelated waves. If we send one
and the same harmonic signal simultaneously to two stereo speakers, the soundwaves
from the two sources will be correlated. At some places in the room, the waves will
be added constructively. The amplitude can be twice as large as that from a single
speaker, in which case the intensity would increase by a factor of four. Elsewhere in
the room, the waves will be added destructively and, in the extreme case, will nullify
each other. The intensity at such a place would be zero.

For uncorrelated waves (no temporal coherence, see Chap. 15), there will be no
fixed pattern of intencifying an nullifying waves at various positions in the room. It
will change all the time. For those cases, the following applies:

Whenwemeasure sound intensities, the contributions are usually uncorrelated.
The sound intensity is then equal to the sum of the intensities of the separate
contributions.
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7.3.2 Audio Measurement: The Decibel Scale dB(SPL)

Sound intensity can be specified in watts per square metre, as described above. How-
ever, it is not a convenient scale. One reason for this is that human hearing has a more
logarithmic than linear response. This means that the ear perceives changes in vol-
ume based on percentage change compared to the existing sound level. Increases the
sound intensity from10−5 to 10−4 W/m2, the change is perceived to be approximately
as large as when the sound intensity increases from 10−3 to 10−2 W/m2.

Therefore, a logarithmic scale for sound intensity, the so-called decibel scale,
has been introduced. The sound intensity I relative to a reference intensity I0
is given in the number of decibels as follows:

β = L I = (10 dB) log
I

I0
. (7.12)

The unit “bel” is named after Alexander Graham Bell, the inventor of the tele-
phone. The prefix “deci” comes from the factor of 10 that is introduced to get simple
working values. The decibel scale is used in many parts of physics, not just when we
deal with sound intensity.

In principle, we can choose any reference value and can say, for example, that the
sound intensity 10m away from the speakers in the example above is 26dB higher
than the sound intensity 200m away (check that you understand how the number 26
arises).

In some contexts, it becomes necessary to specify sound intensity on an abso-
lute scale. This can be achieved by using a well-defined reference value spec-
ified on an absolute scale. For sound, the following absolute scale is often
used:

L Iabs = 10 dB(SPL) log
I

Iabs.re f
= 10 dB(SPL) log

p2

p2abs.re f
. (7.13)

SPL stands for sound pressure level and the reference value is 1000Hz audio
with sound pressure prms = 20µPa (rms). This sound pressure corresponds
approximately to an intensity of 10−12 W/m2 and represents about the lowest
intensity a 1000Hz sound may have for a human being to perceive it. This
corresponds to approximately the sound intensity 3 m away from a flying
mosquito.

It is amazing that the displacements η(x, t) of tiny volumes of air molecules
for such a weak sound wave is only of the order an atomic diameter. Our ear
is a very sensitive instrument!
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Although dB(SPL) has been chosen with reference to human hearing, this
is nevertheless a purely physical measure of intensity, based solely on W/m2.
dB(SPL) can be used for virtually all frequencies, regardless of whether a
human being can hear the sound or not.

The conversion from intensity to the square of sound pressure is given by
Eq. (7.10).

In practice, the term SPL is frequently omitted when sound intensity is specified.
This is unfortunate, for when one says that the sound intensity is 55dB, the statement
is, in principle, incomplete because the reference has not been specified. If it had
been stated instead that the sound intensity is 55dB(SPL), it would have implied that
the reference level is as indicated above, and that the sound level has been specified
on an absolute scale.

7.3.3 Sound Intensity Perceived by the Human Ear, dB(A)

Several factors must be taken into account when sound intensities are specified. The
definition in Eq. (7.13) is based on a reference sound with a frequency of 1000Hz.
However, we hear sound in a wide range of frequencies, and the ear does not perceive
sound with different frequencies as equally intense, even if the number of watts per
square metre remains unchanged. We find it harder to hear sounds of frequencies
which are lower and higher than sound with average frequencies. The dB(SPL)
decibel scale refers to intensity values of sound, irrespective frequencies. In order to
get ameasure of perceived loudness of a sound, we need to take into the consideration
the properties of the human ear.

Figure7.17 shows equal-loudness contours for different frequencies, that is, the
physical intensity in dB(SPL) required to give the same perceived loudness as the
frequency varies. Several curves are recorded, since the relative change in frequency
varies somewhat with how loud the sound is initially.

The unit phon device indicates the intensity of pure tones. 1 phon corresponds to
1dB(SPL) at the frequency 1000Hz. The sound intensity corresponding to a given
number of phon varies greatly with the frequency of the pure tones. For example, we
see from Fig. 7.17 that a pure 20Hz sound of 100dB(SPL) volume is perceived to
be equally intense as a pure 1000Hz sound of 40dB(SPL). We further see that the
sound intensity at 100Hz must be about 25dB(SPL) to be audible. Furthermore, an
audio intensity of 40dB(SPL) at 1000Hz corresponds to the intensity of 55dB(SPL)
for sound of 10,000Hz.

The curves, issued by the International Organization for Standardization (ISO),
were updated in 2003. The year indicates that it is not easy to determine such curves
as long as there are significant individual variations. People with obvious hearing
deficiencies are probably not used when the data for such curves are collected!
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Fig. 7.17 Sound levels at
different frequencies giving
approximately the same
sensation of loudness (see
text). Lindosland, Public
Domain, Modified from
original [2]
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Fig. 7.18 Weighting curves
used to indicate the perceived
strength of a signal that has
many different frequencies at
the same time. The graphs
give rise to dB(A)-scale,
dB(B)-scale, etc.
Lindosland, Public Domain,
Modified from original [3]
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It goes without saying that the decibels scale as presented in Eq. (7.13) cannot
be used to indicate perceived sound intensity in humans, which becomes par-
ticularly demanding when the sound is composed of multiple frequencies. For
this reason, an intensity measure is introduced so that different frequencies are
weighted according to how intense the sound appears to the ear. There are var-
ious weight functions, giving rise to dB(A)-scale, dB(B)-scale, etc. Figure7.18
shows examples of the most common weighting curves.

The curves show that low frequencies count much less than average frequencies
when dB(A)-scales are to be determined, as compared to a pure dB-scale as defined
in Eqs. (7.12) or (7.13).

The reason for employing different weight functions is based on the phon curves
in Fig. 7.18. If the intensity is high, the ear weights various frequencies a little dif-
ferently than if the intensity is low. dB(A) is best suited for mean and low-intensity

http://en.wikipedia.org/wiki/Equal-loudness_contour
http://en.wikipedia.org/wiki/A-weighting
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levels, whereas, for example, dB(C) or dB(D) is best suited for measurements at high
intensities.

Concrete example of calculation

Let us go through an example of the slightly more appropriate procedure that needs
to be used when sound contains multiple frequencies.

Suppose that a sound consists of a pure 100Hz signal and a pure 1000Hz signal and
that the signals are uncorrelated.Assume that, taken individually, the two components
are of equal strength on the dB(SPL) scale, for example, 80dB(SPL) each. The sound
intensity of the composite signal on a dB(SPL) scale would then be:

L = 10 dB(SPL) log
p2tot

p2abs.re f
= 10 dB(SPL) log

p2100 Hz + p21000 Hz

p2abs.re f

= 10 dB(SPL) log 2
p21000 Hz

p2abs.re f
= 3 + 80 dB(SPL) = 83 dB(SPL) .

However, in a dB(A) scale, the calculation would go like this: The contribution from
the 1000Hz signal should be weighted with a weight factor 1.0, that is, effectively
as 80dB(SPL). However, the contribution from the 100Hz signal is to be weighted
by a factor of −20dB, that is, we must subtract 20dB from the 80dB the sound
would have on a dB(SPL) scale, because it is placed on a dB(A)-scale. 80dB(SPL)
corresponds to

p2

p2abs.re f
= 108

and 60dB(weighted) corresponds to

p2

p2abs.re f
= 106 .

The sum comes out to be:

L = 10 dB(A) log
p2tot, weighted

p2abs.re f
= 10 dB(A) log

(
p2100 Hz, weighted

p2abs,re f
+ p21000 Hz, weighted

p2abs.re f

)

= 10 dB(A) log(106 + 108) = 80.04 dB(A) .

In other words, sound at 100Hz contributes hardly anything to the perceived intensity
as compared with sound at 1000Hz.

We often see tables with sound intensities in different circumstances, and a typical
example is shown below:
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Audibility threshold at 1000 Hz . . .0 dB(A)
Whispering 20 dB(A)
Quiet radio at home 40 dB(A)
Conversation 60 dB(A)
General city traffic 70 dB(A)
Loud music 100 dB(A)

It is most common in such overviews to use the dB(A) scale, but presented just as
“dB”. In principle, we should state the intensities in dB(A), dB(B), etc., instead of
just dB, to point out, first, that the values refer to an absolute scale, and second, that
the contributions from different frequencies have been weighted, in order to show
the perceived sound intensity and not a measurement of sheer physical intensity.

For our ear to experience that the sound level has doubled, the sound intensity
must increased by 8–10dB(A).

As for large sound intensities, we know that:

85 dB(A) prolonged exposure can lead to hearing loss
120 dB(A) acute exposure can cause hearing loss
130 dB(A) causes pain (“Pain threshold”)
185 dB(A) causes tissue damage.

Data like these vary from source to source and must be taken with a pinch of salt.
It is clear, however, that loud noise can destroy the hairs in contact with the basilar
membrane in the inner ear (see Chap. 3). Too many persons regret that they were
tempted to listen to such powerful music that hearing impairment became permanent.
Also note that with very powerful sound, ordinary tissue is torn apart and shredded,
so that the body as such degenerates completely. Powerful sound is not something
to play with!

7.3.4 Audiogram

We can test our hearing by visiting an audiologist, or by using available computer
programs and the computer’s sound card (but the accuracy is often dubious). In fact,
there even are smartphone apps for this type of test. The result of a hearing test is
often displayed as a so-called audiogram, and an example is given in Fig. 7.19. An
audiogram is constructed such that if a person has normal hearing, her/his audiogram
should be a horizontal straight line at the 0 dB level (or at least within the blue band
the figure between −20 and +10dB). If the person has impaired hearing for some
frequencies, the curve will be below the 0 level. The distance from the null line
indicates the difference in the sensitivity of the test person at a particular frequency
compared with the norm.
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Fig. 7.19 Example of an audiogram recorded by an audiologist. The curves show age-related
hearing loss in a 68-year-old man. R and L stand for the right and left ear, respectively. Normal
hearing is within the blue area between −10 and +20dB

Figure7.19 shows that the person tested has normal hearing for 500 and 1000Hz
in the left ear but has impaired hearing loss for all other frequencies. The hearing
loss is 80–90dB in both ears at 8kHz. This means that the person is practically
deaf at high frequencies. This is an example of age-related hearing impairment. It is
small wonder that older people have trouble understanding conversations between
people because the most important frequency range in this context is between 500
and 4000Hz.

Remarks:Youhave previouslyworkedwithFourier transformation of sound. If the Fourier transform
with appropriate calibration provides a measure of the sound intensity at different frequencies, you
should be able to calculate dB(A) values, dB(B) values, etc. using the curves in Fig. 7.18. As you
can see, you can create your own sound-measuring instrument! (But calibration must be done!)

dBm

Finally, another dB-scale will be defined that is widely used in physics, namely
the dBm scale. This is an absolute scale where I0 is selected equal to 1mW.The
dBm scale is used in many parts of physics, often associated with electronics,
but rarely when the sound level is reported. The scale is generally used to
specify radiated power from, for example, an antenna. If a source yields 6dBm,
it means that the radiated power is

106/10 mW = 4 mW .



196 7 Sound

7.4 Other Sound Phenomena You Should Know

7.4.1 Beats

When we listen to two simultaneous sounds with approximately the same
frequency, it may sometimes appear that the strength of the sound varies in a
regular manner. Such a phenomenon is called “beating” or “producing beats”.
The word “beat” is used because the resulting sound appears to the listener as
a regular beat.

Mathematically, this can be displayed in approximately the same way as in the
expression of a standingwave.However, for our newphenomenon, it is not interesting
to follow the wave’s propagation in space. The interesting thing is to consider how
the sound is heard at one spot in the room.

The first step is to add two sinusoidal oscillations:

ysum = A cos(ω1t) + A cos(ω2t) .

This sum is mathematically equivalent to a formula similar to that found earlier:

ysum = 2A cos
[
1
2 (ω1 + ω2)t

]
cos

[
1
2 (ω1 − ω2)t

]
.

If the two (angular) frequencies are nearly equal, a mean and differential value can
be inserted as ω and �ω in the formula, which yields the following result:

ysum = 2A cos(ωt) cos

(
�ω

2

)
t . (7.14)

This expression is mathematically speaking a product of a “mean frequency oscil-
lation” factor and a “difference frequency oscillation” factor, which is nearly inde-
pendent on each other.

If the frequency differences are too small to be distinguished by the ear, the mean
frequency oscillation factor cosωt in Eq. (7.14) will correspond to approximately the
same auditory experience as if only one of the two sounds was present. The differ-
ence frequency oscillation factor cos( 12�ωt), however, oscillates with a much lower
frequency than the original. For example, if we listen to two equally sounds simul-
taneously, with frequencies of 400 and 401Hz, the difference frequency oscillation
factor will be a cos(π t). Once a second, this factor will vanish, and the total sound
will disappear. The listener will experience a sound of almost the same frequency as
that of a single original sound, but with a volume fluctuating at a frequency of 1Hz.
This pulsation in the volume is known as “beating”.
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Fig. 7.20 When two sound
signals with nearly the same
frequency are added, the
intensity of the resulting
signal will vary in time in a
characteristic manner

Time (s)

Am
pl

itu
de

 (r
el

. u
ni

ts
)

0.0 0.5 1.0

20 Hz

23 Hz

20 Hz + 23 Hz

Figure7.20 shows an example of beating. There are two signals with 20 and 23Hz
respectively, and we follow each of the signals and their sum over a period of one
second. We see that in the sum signal there are three “periods” with strong and weak
sound within the interval we consider. Note the factor cos( 12�ωt) in Eq. (7.14), and
that half of the difference of the two frequencies (that are added) corresponds, in our
case, to 1.5Hz. Why does one see three “periods” in the intensity of the beat plot in
Fig. 7.20? This is a detail you should notice and understand, because it creeps into
several different contexts (Hint: Howmany times is a sine curve equal to zero during
one period?).

There aremore puzzles to the beat sound phenomenon. A Fourier analysis of the signal described
by Eq. (7.14) gives two peaks corresponding to ω1 and ω2 only. There are no peak corresponding
to the difference frequency. Why do we then experience beating and not two simultaneous sounds
with slightly different pitch?

If the difference in the two frequencies is increased, we will eventually hear two separate tones
and no beat. Thus, the beat phenomenon is a result of our ear and further processing in the brain.
Detailed explanations are found in textbooks in auditory physiology and perception.

However, we suggest a numerical experiment: Make a sum of two sine signals with identical
amplitudes and the frequencies 100 and 110Hz. Let the signal last for at least hundred 100Hz
periods. Calculate the Fourier transform. The result is as expected.

Calculate then the signal squared (each element is the square of the same element in the previous
signal) and perform the Fourier transformation. Notice the frequencies of the peaks now!

This numeric experiment is of interest sincemany detectors for oscillatory phenomena in physics
do not respond to the momentary amplitude of the signal, but to the square of the amplitude (to
the intensity instead of the amplitude). Whether or not this is applicable to the beat sensation is
just a speculation. Our ears are mainly “square law detectors” since phase information is lost for
frequencies higher than ≈1kHz.
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7.4.2 Sound Intensity Versus Distance and Time

When sound propagates in air, little energy is lost along the way. This means that the
amount of energy crossing a spherical shell of radius of r1 will be nearly the same as
crosses a spherical shell of radius r2 (> r1). The local sound intensity is the amount
of energy per unit area and time. Since the area of a spherical shell of radius r is
4πr2, the intensity will decrease as 1/r2 where r is the distance from the source.

Now, sound rarely spreads out in totally spherical wavefronts. The distance to
the ground is usually significantly shorter than the extent of propagation in the
horizontal plane. However, the relationship

I (r2)

I (r1)
=

(
r1
r2

)2

applies reasonably well also to limited solid angles (as long as interference
phenomena do not play a significant role).

This implies that if, at a concert, we are 10 m from the speakers, the intensity will
be 400 times greater than for the audience 200 m away.

However, inside a room an audio pulse will be damped with the passage of time.
The pressure waves lead to oscillations in objects, and many objects have a built-in
frictionwhere the sound energy is converted to heat. Variousmaterials dampen sound
more or less efficiently. A smooth concrete wall is not set into oscillation by sound
waves, and sound is reflected from such a surface without much loss of energy. Walls
covered with mineral wool or other materials that are more easily set into vibratory
motion in response to a sound wave can dampen the sound much more effectively.

Walls and interior in a room can lead to major differences in damping. They affect
the so-called reverberation time. In the Trinity Church (in Norwegian, Trefoldighet-
skirken) in Oslo, with bare stone walls and few textiles, the reverberation time is so
long that music with fast passages becomes fuzzy to listen to, especially when the
audience is thin. In a roomwith a lot of textiles and furniture and people in relation to
the overall space, the sound will die out appreciably faster. In an echo-free room, the
floor, walls and ceiling are covered with damping materials, and the reverberation
time is extremely short. For concert venues and theatre venues, it matters a great
deal for a good overall sound experience that the reverberation time is adapted to
the sound images that occur. Building acoustics are a separate part of physics, where
good professionals are hard to find and therefore much sought after.
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7.4.3 Doppler Effect

Most of us know that the sound of an ambulance siren changes pitch when
the vehicle passes us. The phenomenon is called Doppler effect. We will now
derive a mathematical expression for the observed frequency change.

Sound waves travel at a certain speed in relation to the transporting medium. No
matter what speed the source has, and no matter what speed an observer has, the
sound wave passes through, for example, air at rate v = √

K/ρ (symbols defined
earlier).

To the left in Fig. 7.21, the wavefront is shown to be the maximum in the air
pressure waves from a source that is at rest. The sound spreads smoothly in all
directions, and as long as the source does not move, all wavefronts will have the
same centre. To the right of the same figure, the wavefront is shown when the source
of the sound has moved between each time a pressure wave started. Thereafter each
pressure wave progresses unabated with the sound speed (e.g. in air).

This means that an observer positioned so that the source of sound approaches
her/himwill find that thewave peaks aremore frequent (morewave peaks per second)
than if the source were at rest. For an observer from whom the source of sound is
receding, the opposite will be true. This means that the frequency experienced by an
observe will differ in the two situations.

When the observer is at rest with respect to the air, the sound waves will approach
her/him with the speed v. When the effective wavelength is as shown in the right part
of the figure, it follows that the frequency as heard by the observer is fo:

fo = v

λeff
.

v   = 0k

 = vT

v   > 0k

´ = (v+v  )Tk ´´ = (v - v  )Tk

vk

Fig. 7.21 Sound waves spread with the same speed in all directions in the medium through which
the sound waves pass. The wavy peaks are equally far apart if the source is at rest in relation to the
air. If the source moves relative to the air at the speed vs, the wave peaks are closer together one
side than on the other. The sound speed is set as v
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When a source of sound with period T and frequency fs = 1/T approaches
the observer with a speed vs, one has:

fo = v

(v − vs)T

fo = 1

1 − vs/v
fs (7.15)

where v is the speed of sound in air. For an observer from whom the source is
receding, the minus sign is to be changed into plus.

This version of Doppler effect can be described by saying that the wave speed
relative to the observer (who is at rest) equals the speed of sound in air, while the
effective wavelength is different from a situation where both source and observer are
at rest.

A variant of Doppler effect is that when the source is at rest, but the observer is
in motion. Then the velocity of the wave peaks relative to the observer is different
from the sound velocity in air in general. However, the wavelength is unchanged.

The frequency experienced by the observer will then be proportional to the effec-
tive velocity of the wave peaks relative to the observer, compared with the speed
with which the waves would have reached the observer if he/she and the source were
at rest. For a stationary source, and an observer in motion with the speed vo towards
the source, we have the relation:

fo = (1 + vo/v) fs (7.16)

where fs is again the frequency of the source.

It is perfectly possible to combine the two variants of Doppler effect discussed
above, so that we get a more general expression that applies to situations where
both the observer and the source are moving in relation to the air where the
sound is spreading.

In Eq. (7.16), the frequency fs can be replaced by the frequency an observer
(suffix o) would have experienced if the source (index s) were in motion, i.e.
with fo given by Eq. (7.15). The result will then be:

fo = v + vo
v − vs

fs . (7.17)

Here v is the speed of sound in air (e.g. 344m/s), and vs and vo are, respectively,
the speeds of the source and the observer relative to the air through which the
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Fig. 7.22 Ultrasound picture of a human heart, superimposed with an ultrasound Doppler image of
the blood flow, at a particular point in the heart rhythm. The picture reveals that a heart valve does
not close properly during a ventricular compression. The picture is reproduced with a permission
from Vingmed. It is difficult to understand a single picture like this. It is recommended to watch a
video (search at YouTube with the search words: cardiac ultrasound Doppler heart)

sound is transmitted. In the equation, the following sign convention is observed:
If the source moves towards the observer at a rate of vs relative to air, vs is
positive. If the observer moves toward the source at the rate vo relative to the
air, vo is positive.

Note that the sign is based on the relative motion between the source and
observer as noted above, while the actual magnitude of the velocity is specified
relative to air (or the medium through which the sound waves propagate).

Note that it is not irrelevant which is moving, the source or the observer. If the
source approaches the observer at a speed close to the speed of sound in air, the
denominator will tend to zero and the frequency perceived by the observer will tend
to infinity. On the other hand, if the observer approaches the source at a speed equal
to the speed of sound in air, he/she will perceive a frequency that is only twice the
frequency of the source of sound.

Doppler shift is utilized today in ultrasound diagnostics. In Fig. 7.22, a combined
ultrasound and ultrasound Doppler image of a heart is shown. The black and white
picture shows the ultrasound picture, while the sector with colours indicates blood
flow towards or away from us. The subject has a heart valve that does not close
properly when the ventricle compresses.
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7.4.4 Doppler Effect for Electromagnetic Waves

Applications of the Doppler effect for sound waves are based on a constant sound
speed relative to the medium which the sound passes through. For electromagnetic
waves, the situation is completely different. The velocity of light is linked in a not
easily comprehensible way to our entire space/time concept, and the velocity of light
in vacuum is the same regardless of the speed of the source and how an observer
moves. When wavelengths are measured, length contractions are observed due to
relativistic effects, and time dilation/contraction take place due to relativistic effects.
Therefore, the derivation ofDoppler effect for electromagneticwaves becomes a little
more complicated than for sound; we will content ourselves by merely reproducing
the final expression.

Doppler shift for electromagnetic waves in vacuum is given by the relation:

fo =
√
c + v

c − v
fs . (7.18)

Here c is the velocity of light, and v the velocity of the source relative to
observer, v > 0 if the two approach each other. As before, fs is the frequency
of the wave emanating from the source.

This relation shows that light from distant galaxies will be observed to have a
lower frequency if the galaxies are moving away from us. The effect is well known
and is termed “red shift” in the observed spectra.

Redshift is more pronounced in the light from distant galaxies, as these (in accord
with the Big Bang model for the universe) are moving away from us at high speed.
The effect is so strong that parts of the visible spectrum are shifted into the infrared
region.

This is one reason why the space telescope JamesWebb is equipped with infrared
detectors.

7.4.5 Shock Waves *

From the right part of Fig. 7.21, it appears that the pressure waves lie closer to an
sound source moving relative to air than if the source had been at rest. However,
the figure was based on an implicit assumption, namely that the source of sound
does not catch up with the sound waves generated by it. In other words, the sound
source moves at a speed less than the speed of sound in air (or the medium under
consideration).
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What happens if the audio source moves faster than the speed of sound? This
state of affairs is depicted in Fig. 7.23. To go from the case at the right of Figs. 7.21,
7.22 and 7.23, we must, however, consider the situation where the source moves at
precisely the speed of the sound. In this situation, the pressure waves at the front
of the source pile up on each other, and we can have enormous pressure variations
within relatively short distances. Such a situation is called a shock wave, a shock
front or even a “sound barrier”.

Considerable energy is needed to penetrate the sound barrier. The intensity of the
shock front can reach 160–170MW/m2. And, perhaps more importantly, the object
that is “going through the sound barrier” must be robust enough to withstand the
stresses when the pressure variations over the object become very large. The sound
intensity of the shock wave is about 200dB, so that persons aboard a plane passing
through the sound wall must be shielded significantly to avoid permanent damage.

Remark: It is not the noise of the engine on the plane that gives rise to the shock
wave. It is simply the pressurewave due to the airplane getting through the air. Engine
noise comes as an addition to this main component of the pressure wave.

The speed of sound in air is usually taken as 340 or 344m/s, which comes out
to be around 1230km/h. Fighter planes can fly faster than this, breaking the sound
barrier on their way to the highest speeds.

The speed of a supersonic aircraft is given in terms of theMach number, where:

v measured in Mach = vplane
vsound

.

The Concorde aircraft had a normal transatlantic cruising speed of about 1.75
Mach, but a peak speed of approximately 2.02Mach. The space shuttle had a speed
of 27Mach. Remember, in this connection, that the speed of sound in the rarefied air
at high altitudes differs from the speed of sound at the ground level.

From Fig. 7.23, one sees that the shock wave forms the surface of a cone after
the plane that is the source of the waves. The opening angle of the conical
surface is given by:

sin α = vsound × t

vairplane × t
= vsound

vairplane
.

When a supersonic plane is flying at high altitudes, the aircraft will have gone past
an observer on the ground several seconds before the observer hears the sound from
the plane. Only when the shock wave reaches the earth-based, will he/she hear the
plane, and that as a bang, which indicates that the pressure wave on the expanding
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Fig. 7.23 Behind a
supersonic plane, a shock
waveforms (also called a
shock front or a “sound
barrier”) with a conical
surface with the plane at the
vertex. The angle of the cone
depends on how much faster
the plane moves with respect
to the speed of sound

vT

v Ts



vs

cone surface has reached the ground. The instant at which the bang is heard is not
the moment when the plane crosses the sound barrier, but when the shock wave cone
hits the observer.

In the case of the Concorde aircraft, the shock wave had a pressure of about 50Pa
at the ground when the plane flew at an altitude of 12,000m. It was easy to hear the
noise from the shock wave shortly after the plane had flown past. Similarly, in the
Los Angeles district, we could hear a bang when the spaceship came in for landing
on the desert strip a little northeast of the city.

Historically, the American Bell X-1 rocket-powered aircraft was the first vehicle
to break the sound barrier. This happened on 14 October 1947; the aircraft then
achieved a speed of 1.06Mach.

7.4.6 An Example: Helicopters *

Few would think of helicopters in the context of supersonic speed, but we must.
A Black Hawk helicopter has blades that rotate about 258 times per minute, which
corresponds to about 4.3 rotations per second.

The rotor blades have a length of 27 feet, which corresponds to about 9m.
The speed at the tip of the blade for a stationary helicopter (with the rotor running)

is then:
2πr

1/4.3
m/s = 243m/s.

If the helicopter is flying at a speed of 100km/h relative to the air, the speed of the
blades relative to the air will be 360m/s on one side of the helicopter. This is about
equal to the sound speed!

Manufacturers of helicoptersmust find a balance between blade speed, the rotation
rate and the flight speed in order to avoid problems with the sound barrier. The fact
that the speed of the outer edge of the blade does not have the same speed relative
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to the air through a full rotation makes the task a little easier than with a supersonic
plane.

Anyway, it is interesting to calculate the radial acceleration for a point at the
extreme end of a helicopter rotor blade. On the basis of the figures above, it follows
that:

ar = v2

r
= 2432

9
m/s2

ar = 6561m/s2 ≈ 670 g.

In other words, enormous forces work on the rotor, and the material must be
flawless to avoid accidents. It is not uncommon for a rotor blade to cost more than
100,000e per piece.

7.4.7 Sources of Nice Details About Music and Musical
Instruments

There ismuch fun associatedwithmusical instruments. Physicists have contributed to
better understanding of many details and continue to do so. Here are some interesting
sources you can look at:

Joe Wolfe, Music Acoustics: Basics, The University New South Wales, Australia.
http://newt.phys.unsw.edu.au/jw/basics.html (accessed May 2018). Highly recom-
mended!

Alexander Mayer, RIAM (Reed Instrument Artificial Mouth). Institute of Music
Acoustics, University of Music and Performing Arts Vienna.
http://iwk.mdw.ac.at/?page_id=104&sprache=2 (accessed May 2018).

Seona Bromage, Visualisation of the Lip Motion of Brass Instrument Players, and
Investigations of an Artificial Mouth as a Tool for Comparative Studies of Instru-
ments. Ph.D. thesis, University of Edinburgh, 2007.

H. Lloyd Leno, Larry Fulkerson, George Roberts, Stewart Dempster and Bill
Watrous: Lip Vibration of Trombone Embrouchures. YouTube video showing lip
vibrations when playing trombone: Lip Vibration of Trombone Enbouchures, Leno,
(accessed May 2018).

Barry Parker, Good Vibrations. The Physics of Music. The John Hopkins University
Press, Baltimore, 2009.

http://newt.phys.unsw.edu.au/jw/basics.html
https://iwk.mdw.ac.at/?page_id=104&sprache=2
http://www.acoustics.ed.ac.uk/wp-content/uploads/Theses/Bromage_Seona__PhDThesis_UniversityOfEdinburgh_2007.pdf
https://www.youtube.com/watch?feature=player_embedded&v=CoxnhjLMVBo
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7.5 Learning Objectives

After working through this chapter you should be able to:

• Explain general features of reflection and transmission of waves at an inter-
face between two different impedance media.

• Explain conditions for the formation of standingwaves, and how suchwaves
are characterized, including the terms nodes and anti-nodes.

• Explain what determines the pitch of some different musical instruments,
and how we can achieve different pitches with one and the same instrument.

• Calculate the frequency (approximate) for a vibrating string and for a wind
instrument.

• Explain the concept “trapped moving wave” (as opposed to the traditional
“standing wave pattern”) and explain advantages by this concept.

• Explain what we mean by frequency spectrum, fundamental frequency and
harmonics when sound is analysed using, for example, Fourier transforma-
tion.

• Explain a tempered scale and calculate the frequency of any tone on a piano.
• Explain what is meant by beats, and derive a mathematical expression that
shows that beating has something to do with the sound intensity.

• Calculate (when formulas are given) the amplitudeofmotionof airmolecules
and the amplitude of the pressure wave created by a harmonic sound wave
with a specified dB value.

• Explain dB, dB(SPL), dB(A) and dBm scales.
• Explain the causes of Doppler shift in different contexts, derive formulas
that apply to Doppler shift in air, and perform calculations based on these
formulas.

• Explain shock waves, especially the “sound barrier” of supersonic aircraft
and the like.

7.6 Exercises

Suggested concepts for student active learning activities: Acoustic impedance,
reflective boundaries/interfaces, standing wave, node and anti-node, quantized
wave, trapped moving wave, pitch, musical interval, tone scale, octave, sound inten-
sity, difference between physical and phonetic intensity units, sound pressure limit,
frequency dependency, decibel scale, dB(SPL), dB(A), audiogram, ultrasound, beat-
ing, Doppler effect, shock waves.
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Comprehension/Discussion questions

1. For ultrasound examinations of, for example, a foetus, there must be at least
as much sound reflected from the interface between the uterine wall and the
amniotic fluid as from the interface between the amniotic fluid and the foetus.
Whywill not reflected sound from the first interface blur the image of the foetus?

2. Some piano tuners base their tuning on a frequency counter alone. Many believe
that this is not a good way to tune. Can you give a reasonable explanation for
such scepticism?

3. Try to give a verbal description of what is going on physically as we begin to
blow air into an organ pipe and until the sound becomes stable.

4. We can create a tone by blowing air through a straight tube. By changing the
tightening of the lips, we can produce different pitches. How is it related? What
is the wave pattern inside the tube made by some of the sounds that can be
generated? How do you suppose the spectrum would look like?

5. Can we get a standing wave by adding two waves moving in the opposite direc-
tion to each other, one having greater amplitude than the other, but the same
frequency? Can we get a standing wave if we add two waves that move in the
opposite direction to each other, where one has greater frequency than the other,
but the same amplitude?

6. Are standing waves always quantized? Explain.
7. In music, an octave is characterized such that the frequency, for example, of a

high C being twice the frequency of a C that is an octave lower. Suppose we
have a properly tuned guitar, and we will amuse ourselves by tightening a string
so that it will give an octave higher than it normally should be. How much more
tightening do you need? [Is this a party game that can be recommended?]

8. A violinist sometimes touches the midpoint of a string while stroking the bow
over the string. What does she accomplish with this trick?

9. When sound goes from air to water, which one of the following quantities stays
constant: Wavelength, wave speed, frequency, amplitude of displacement of the
molecules that propagate sound?

10. On a trumpet we can play different tones by pushing valves that cause air to
pass through tubular loops (of different lengths) that extend the effective length
of the air string within the instrument. How can we play different tones on a
“post horn” or similar instruments where we cannot change the effective length?
Can we play the same type of tunes on such an instrument as, for example, on a
trumpet?

11. If we inhale helium and talk, we get a “Donald Duck voice” that is light and
shrill.What is the reason for that? [Remember that inhaling toomuch helium can
damage health and cause death, so be careful if you want to try this yourself!]

12. When we play an acoustic guitar (see Fig. 7.24), the sound becomes different
depending on whether we strum the strings all the way down to near the saddle
where the strings end or near the sound hole (or even closer to the middle of the
string). What is the reason for the difference in tonal quality? And how would
you characterize the difference?
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1. fret

2. fret

3. fret
etc ...

If the string is pressed down here ...

... the string is effectively this long

Fig. 7.24 On a classic guitar, a string is shortened if pressed against the first fret. The tone will
then be a half-tone higher than with an open string. If the string is clamped at the second fret, the
tone becomes two semitones higher, etc.

13. Does it make sense to say: Adding X dB to the sound corresponds to multiplying
the intensity of the original sound wave with a definite factor?

14. Explain briefly the difference between dB, dB(SPL), dB(A) and dBm.
15. At an organ concert a listener noticed that after the organist had finished playing,

it took a few seconds for the sound to subside totally. What is the reason that the
sound dies out slowly? And what happened to the energy that was in the original
sound?

Problems

16. An organ pipe is 3.9m long, and open at the end. What tone do you suppose it
emits (compare with Fig. 7.16).

17. The length of the free part of the strings on an acoustic guitar is 65cm (that is,
the part that can vibrate). If we clamp down the G-string on the fifth fret, we get
a C (see Fig. 7.24). Where must the fifth fret be located on the guitar neck? The
G has a frequency of about 196.1Hz and the C about 261.7Hz.

18. Use the information and answers from the previous assignment. For every semi-
tone we go up from where we are, the frequency must increase by a factor of
1.0595. Calculate the position of the first fret, and to the sixth fret. Is the dis-
tance between the frets (measured inmillimetres) identical along the guitar neck?
Show that the distance between the frets is 0.0561 times the length of the string
when it was clamped at the previous fret.

19. Check the frequencies indicated in Fig. 7.16. Supposed that we determined the
frequency content of the sound data using Fourier transformation. For how long
did we have to sample the sound to reach such precision? Is this a realistic
way to determine the frequency accurately? Would it be more realistic to report
the frequency with five significant digits for the highest frequencies than for
the lowest? (Hint: Use the time-bandwidth product from the Fourier transform
chapter.)
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Fig. 7.25 Example of the
frequency spectrum of a
trumpet
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20. Assume (for the time being) that the intensity of the sound that comes from a

choir is proportional to the number of singers. How much more powerful, on a
decibel scale, will a choir of 100 persons sound compared to a four-person choir
(a quartet)?

21. Figure7.25 shows the frequency spectrum of a trumpet sound.
(a) Estimate the frequency and relative pressure amplitude of the first five har-
monics.
(b) What is the frequency of the fifth overtone?
(c) Assume that the intensity of the fundamental tone is 50 dB(SPL). Calculate
the sound intensity in dB(SPL) for the entire trumpet sound (enough to include
the first four (or five) harmonics).
(d) Calculate the sound intensity in dB(A) for the entire trumpet sound (enough
to include the first four (or five) harmonics).

22. Suppose a person is lying on a beach and listening to aCDplayer placed 1m from
the head, and that the music has an intensity of 90 dB. How powerful will the
music sound to someone who is 4 m away from the speaker? If the neighbour
complains about the noise level, what can the first person do to resolve the
conflict? Feel free to present a calculation to support your proposal.

23. Two strings on an instrument are both tuned to vibrate at 440Hz. After a few
hours, we notice that they no longer have the same frequency, because we hear
a 2Hz beat when we let both strings vibrate at the same time. Suppose one of
the strings still vibrates at 440Hz. Which frequency or frequencies can the other
string have? How much has the tension changed on the string that has lost its
tuning?

24. In this assignment, we will compare sound intensities, displacement amplitudes
and pressure amplitudes. Remember to comment on the results you get in every
part!
(a)What is the amplitude of air molecules when the sound intensity is 0dB(SPL)
at 1000Hz? Repeat the same calculation for sound with intensity 100dB(SPL).
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(b) What is the sound pressure amplitude (both in Pascal and in atmospheric
pressure) when the sound intensity is 0dB(SPL) at 1000Hz? Repeat the calcu-
lation for sound with intensity 100dB(SPL).
(c) What is the displacement amplitude and the pressure amplitude for sound
with the frequency 100Hz and the intensity 100dB(A)?
(d) There is an upper limit for how large the sound pressure amplitude may be if
the sound wave is to be approximately harmonic (sinusoidal). What is this limit?
How powerful would the sound be at this limit (specified in dB(SPL))?

25. Suppose you drive a car at 60km/h and hear that a police car with sirens
approaches from behind and drives past. You notice the usual change in sound
as the police car passes. Assume that the speed of the police car is 110km/h and
that the upper limit for the frequency of the siren (when heard inside the police
car) is 600Hz. What frequencies do we hear before and after the police car has
passed us?

26. Suppose a fighter plane takes off from Bodø airport and reaches 1.75Mach
already at 950m altitude. What angle does the shockwave have? How long does
it take from the moment the plane passes directly above a person on the ground
till the moment the person notices the shock wave? Disregard changes in the
speed of sound with the height.

27. In an ultrasound examination of a foetus, the Doppler effect is used for mea-
suring the rate of cardiac movement in the foetus. The sound has a fre-
quency of 2.000000MHz (2MHz sharp), but the sound back has a frequency
of 2.000170MHz. How much speed had that part of the foster heart where the
sound was reflected from, in the short period in which this measurement was
made. Sound travels in the foetus with a speed of about 1500m/s. [Optional addi-
tional question: How much time resolution is it possible to achieve for mapping
cardiac movement in cases like this?]

28. TheCrabNebula is a gas cloud that can be observed evenwith small telescopes. It
is the remnant of a supernova explosion that was seen on Earth July 4, 1054. Gas
in the outermost layers of the cloud has a red colour that comes fromhot hydrogen
gas. On earth, the hydrogen alpha line H-α has a wavelength of 6562.82Å.When
studying the light from the Crab Nebula, the H-α line has a width of 56,942Å.
(a) Calculate the rate at which the gas in the outer part of the Crab Nebula
moves. [Assume that the velocity of light is 3.0 × 108m/s and that the relativistic
Doppler shift for electromagnetic waves can be given approximately as fobserv =
(1 − v/c) fsource if the source moves away from the observer with speed v.]
(b) Assume that the gas in the outer part of the nebula has moved at the same
speed ever since the supernova explosion. Estimate the size of the Crab Nebula
as it appears now. State the answer both in metres and in light years.
(c) The angular diameter of the Crab Nebula when we see it from Earth is about
5arc minute. An arc minute is 1/60 of a degree. Estimate the distance (in light
years) to the Crab Nebula.
(d) When did the explosion of the star actually take place (approximately).
(e) In reality, the Crab Nebula is not spherical. Viewed from the Earth, it looks
more elliptical with the largest and smallest angular diameters of 420 and 290arc



7.6 Exercises 211

seconds, respectively. Even today, we do not know the distance to the Crab
Nebula very accurately. Can you give a good reason for the inaccuracy based on
the calculation you have made?

29. Perform a Fourier transform frequency analysis of the sound of two different
musical instruments (record sound yourself via microphone and sound card on
a PC, on a mobile phone, or use wav-files made available from our Web pages).
Determine the frequency of the sound (fundamental tone) and find which tone
on the scale it corresponds to. State approximately how many harmonics you
find.

30. The left part of Fig. 7.26 shows a time plot of the sound from a tuba. One student
used Fourier transform to convert this signal to the frequency spectrum including
the harmonics. The student then conducted an inverse Fourier transformation of
the frequency spectrum and expected to recover the original time signal. He did
not. The result is shown in the right part of the figure. What went wrong?

31. A piano tuner first selects all three C-strings (all of which are activated by
one key) to produce the 261.63Hz frequency. [She actually starts with another
frequency, but let’s take this starting point here.] She now wishes to tune the
F-strings by starting from C and using “re-tuning” where the frequency of F is
exactly 4/3 of the frequency of C. This she does for all three F-strings that are
struck when we press the key. She then intercepts one of the three F-strings by
listening to the beat frequency she gets when she presses the key. By adjusting
the beat frequency correctly, she ensures that the string gets the correct frequency
on a tempered scale (and can adjust the frequency of the other two F strings after
the first). What beat frequency should she choose?

32. Use the numbers for the length of the air column in a trumpet given in Fig. 7.15
to check that:
(a) the fundamental tone is about a B (indicate the frequency).
(b) that the elongation of the air column resulting from the depression of valve
1 corresponds approximately to a complete compared with that when no valves
are pressed. Does the frequency go up or down when we press a valve?
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Fig. 7.26 See problem text
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33. Suggested Project: We invite you to make your own “sound meter”. The pro-
cedure could be as follows:

• Sample sound from your laptop using, for example the program snippet 2 at
the end of Chap. 5.

• Perform a Fourier transformation and get the frequency spectrum of the sound.
The intensity for the different frequency components are then proportional to
the square of the Fourier coefficients.

• Reduce the relative intensities for various frequency components according
to for example the weight function for dB(A).

• Add the weighted intensities for the frequency components.
• Calculate the dB(A) value for your sound, using an arbitrary reference inten-
sity.

• Borrow a sound meter from someone who has one and adjusts the reference
intensity in the calculations until you get a similar reading on your own sound
meter as for the commercial instrument.

In fact, it is reasonably easy to make your own sound meter in this manner.
However, remember that themicrophone on the computer aswell as the digitizing
circuit have their limitations. Especially, it is difficult to get a good determination
of weak signals.
For strong signals, it is another serious problem: The sound may produce signals
larger than the digitizing circuit can manage. In those cases, “clipping” will
occur. It can be discovered if you plot the sampled signal in time domain. Sinus
signals will then have a flat top, and no signal can exceed this limit.
For such signals, the sound meter will give wrong readings! However, it is
reasonably easy to let your program display a warning in those cases.

References

1. Unknown, http://amath.colorado.edu/outreach/demos/music/MathMusicSlides.pdf. Accessed
18 February 2012
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3. Lindosland, http://en.wikipedia.org/wiki/A-weighting. Accessed April 2018
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Chapter 8
Dispersion and Waves on Water

Abstract This chapter asks how the time development of a wave may be described
numerically. The algorithm may offer a better understanding of wave motion than
the traditional treatment of the topic. We proceed by discriminating between phase
and group velocities and introduce the concept of dispersion. Numerical modelling
of dispersion is described in detail, computer programs are provided, and the calcula-
tions demonstrate distortion of pulses of waves when they pass through a dispersive
medium. Finally, we discuss various phenomena related to gravity-driven surface
waves on water, based on a formula for phase velocity of waves on water. As a
curiosity, we present at the very end a fun experiment with an oscillating water drop
on a hot surface.

8.1 Introduction

Waves on water and sea have fascinated people through the ages. There exists a
panoply of waveforms, and the underlying physics is so complex that even today it
is almost impossible to make calculations on swirling waves like those illustrated by
Katsushika Hokusai almost 200years ago; see Fig. 8.1.

The waves we treat in this chapter are extremely simple in comparison. Neverthe-
less, we hope that even our simple descriptions can give you a much deeper under-
standing of the phenomenon of waves than you had prior to reading this chapter,
which has three main themes: numerical calculation of the time evolution of a wave,
dispersion including differences between phase and group velocities, and a review
of gravity-driven waves on water.

Before starting a more thorough analysis, we will undertake a brief recapitulation
of oscillations and waves in general. A feature common to all such phenomena is
that:

• There is an equilibrium state of the system when oscillations and waves have died
out.

• There is a “restoring force” that tries to bring the system back to equilibrium when
it is not at equilibrium.

© Springer Nature Switzerland AG 2018
A. I. Vistnes, Physics of Oscillations and Waves, Undergraduate Texts in Physics,
https://doi.org/10.1007/978-3-319-72314-3_8

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72314-3_8&domain=pdf


214 8 Dispersion and Waves on Water

Fig. 8.1 Real waves are extremely complex, like “The Great Wave off Kanagawa”. Katsushika
Hokusai, Public Domain [1]

• There is an “inertial force” that causes the system to go past the equilibrium state
even though the restoring force here is equal to zero.

For a swinging pendulum, the restoring force is a component of gravity; for waves
on a string, the tension on the string acts as the restoring force. For sound waves in air
or a liquid, pressure differences provide the restoring force through the compression
of parts of the volume. The “inertial force” in all these examples is that expressed
by Newton’s first law. For surface waves on water, there are two restoring forces,
namely gravity and surface tension.

8.2 Numerical Study of the Time Evolution of a Wave

It is very difficult to understand the mechanisms that lie behind the temporal devel-
opment of a wave by starting from the wave equation and relying solely on analytical
mathematics. If your repertoire consists of only analytical mathematics, you will find
it difficult to understand why initial conditions are so crucial to how a wave develops,
and how the boundary conditions affect the time development of the wave in detail.
Instead, we will use numerical methods to review the mechanisms that govern the
time evolution of a wave.
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Fig. 8.2 Using numerical
methods, a wave is described
only at discrete positions in
space and at discrete instants
in time. Here one and the
same wave are indicated at
three different times. The
first subscript specifies the
position index, and the
second subscript specifies
the time index

x

u

tj
tj+1

u i,j

x i

u i -1 ,j
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There are several reasons for presenting such a review. The most important is to
bring to the fore the underlying algorithm because it can provide a better understand-
ing of wave motion in general.

The starting point is the one-dimensional wave equation for a nondispersing
medium (explained later in the chapter):

∂2u

∂t2
= v2 ∂2u

∂x2
.

In a numerical calculation, the solution is stated only at discrete instants and positions:

u(x, t) → u(xi , t j ) ≡ ui, j

where
xi = x0 + i�x, (i = 0, 1, 2, . . . , N − 1) ,

and
t j = t0 + j�t, ( j = 0, 1, 2, . . . , M − 1) .

Figure8.2 illustrates how a wave is described numerically. For each instant of
time, a numerical string describes the amplitude at the selected spatial positions. In
the figure, parts of the position data points are displayed for three different instants.

In the chapter on numerical methods earlier in the book, it was shown that the
second derivative can be expressed in discrete form as follows:

∂2u

∂x2
≡ uxx (xi , t j )

= u(xi+1, t j ) − 2u(xi , t j ) + u(xi−1, t j )

�x2
.

This can be expressed more succinctly as:
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uxx,i, j = ui+1, j − 2ui, j + ui−1, j

�x2
. (8.1)

In a similar way, the double derivative with respect to time can be expressed as:

utt,i, j = ui, j+1 − 2ui, j + ui, j−1

�t2
. (8.2)

The discretized version of the whole wave equation takes the form:

utt,i, j = v2uxx,i, j . (8.3)

Setting Eq. (8.2) in Eq. (8.3) and rearrangement of the terms gives:

ui, j+1 = ui, j + (ui, j − ui, j−1) + (�t v)2uxx,i, j .

The expression shows that if we know the wave at an instant and at the preceding
instant, we can calculate the amplitude of the wave at the next instant by using our
prescription. This is an important formula that we should dwell on:

The algorithm to calculate how a wave evolves in time and space is given by
the equation:

ui, j+1 = ui, j + (ui, j − ui, j−1) + (�t v)2uxx,i, j . (8.4)

These terms are actually quite easy to understand:
• The first term on the right-hand side states that we must begin with the
current amplitude at a point in the wave when we calculate the amplitude
for the next instant.

• The second term corresponds to the assumption that the time derivative of
the amplitude at our given point of thewavewill be about the same at the next
instant as it was in the previous one. This is the “inertial term” corresponding
to Newton’s first law.

• The third term states that if the wave in our given point bulges (often bulging
away from the equilibrium state), there is a “restoring force” that tries to pull
the system back to the equilibrium state. See Fig. 8.2. This restoring force
is closely related to the phase velocity of the wave. In the expression, the
phase velocity appears in the second power. The phase velocity is therefore
determined by how powerfully the neighbourhood affects the motion of any
selected point in the wave. The algorithm can be visualized as shown in
Fig. 8.3.

The algorithm in Eq. (8.4) shows that if we know the wave at all positions at an
instant t j and the wave as it was at the preceding t j−1, then can we calculate the wave
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Fig. 8.3 Illustration of the cardinal algorithm that can be used for calculating the time development
of a one-dimensional wave when the initial and boundary conditions are given. New amplitude at
a particular point is determined by: (1) the amplitude “now” at that point; (2) the approximation
that the velocity at the point will be the same at the next instant as in the previous; and (3) the
restoring force from the nearest neighbours to the point, which will increase or decrease the change
in position according to the sign of the curvature of the restoring force

as it will be at the next instant t j+1. There are hurdles to be jumped over, presented by
the initial conditions and boundary conditions, and we will get back to these shortly.

Equation (8.4) is probably the easiest expression to use, if we want to understand
the rationale behind the algorithm developed below. The expression on the right-
hand side of Eq. (8.4) is not suitable for the design of the program code itself. It is
advantageous to put Eq. (8.1) into Eq. (8.4), and the result, after some rearrangement,
comes out to be:

ui, j+1 = 2

[
1 −

(
v�t

�x

)2
]
ui, j − ui, j−1

+
(

v�t

�x

)2

(ui+1, j + ui−1, j ) .

(8.5)

Problem at the boundary of the region under consideration

Equation (8.5) is the central expression we use to calculate how a wave evolves in
time, but the expression contains some important details that we need to look into.
When we start the calculations, we assume that we know the initial conditions along
the part of the wave we describe at the start of the calculations. For example, the
amplitude at the instant j = 0 given by {ui,0} for i = 0, 1, 2, . . . , N . But Eq. (8.5)
also includes xi+1,0 and xi−1,0. The points x−1,0 and xN+1,0 do not exist, so our
algorithm must employ some artifice for dealing with these terms. In other words,
we must supply so-called boundary conditions for the particular problem at hand.
These conditions apply at all instants in the calculations.

In practice, itmaybe almost impossible tofindboundary conditions that are perfect
for the calculations we want to make. The most common boundary conditions are
“open/free” and “closed/fixed”. In the former case, we put x−1, j = x0, j and xN+1, j =
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xN , j , in the latter casewe set x−1, j = xN+1, j = 0. For a concrete calculation, wemust
choose how to set the boundary conditions, and in many cases, the response depends
strongly on the physical system we try to describe.

For a wave that has zero amplitude at the boundary, we can consider, without
incurring any error, the time evolution of the wave until the wave has spread to the
edge of the calculation range. By making the calculation region large enough and
limiting the time for which we consider the wave evolution, calculations of localized
waves can be good even without worrying about boundary effects.

Problem with the starting instant

Another source of difficulty in Eq. (8.5) is the term ui, j−1. If we start the calcu-
lations at time t = 0, there is no ui,−1. Therefore, we get trouble already at the start
of the calculations.

On the other hand, in all differential equations, we must use the initial conditions
to arrive at the particular solution we seek. For a wave, it means that the initial
conditions, for example, may be stated as the amplitude at all positions at t = 0,
along with the time derivative of the amplitude at all positions at the same time.
Based on this information, we can calculate positions at the starting instant and
approximate positions one time-step earlier.

There are also other ways to specify initial conditions and procedures that can be
followed for taking advantage of the initial conditions. We confine ourselves to the
amplitude and its time derivative, both as a function of position.

The time derivative of the result at the point i can be specified as follows:

u̇i, j ≡
(

∂u

∂t

)
i, j

≈ ui, j − ui, j−1

�t
.

Consequently,
ui, j−1 = ui, j − �t u̇i, j . (8.6)

For j = 0 we get:
ui,−1 = ui,0 − �t u̇i,0 . (8.7)

Threading together

Assume that the initial conditions are given by the amplitude {ui,0} at all positions
along the wave and the time derivative of the amplitude {u̇i,0} at all positions along
thewave at the start time. Then Eq. (8.5) in combinationwith Eq. (8.7) can be used for
the starting instant in the calculations. Equation (8.5) can be used for the remaining
instants as many times as we wish. Along the way, one must take account of the
boundary conditions.
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8.2.1 An Example Wave

As an example, let us calculate how a Gaussian wave moves on a string. The initial
conditions are a snapshot of the wave as it is at one point (both position and speed!),
and we will follow its development in time.

The displacement as a function of position along the string is given analytically
by:

u(x, t) = A exp

[
− (x − vt)2

2σ 2

]
= A exp [ f (x, t)] (8.8)

where we have used the notation exp [ f (x, t)] instead of the notation e f (x,t), since
the expressions in this chapter are more complex than in previous chapters.

The time derivative of u(x, t) comes out to be:

∂u

∂t
≡ u̇ = A exp [ f (x, t)]

∂ f

∂t
= A exp

[
− (x − vt)2

2σ 2

]
(−2)

(
x − vt√

2σ

) (
− v√

2σ

)

= (x − vt)v

σ 2
A exp

[
− (x − vt)2

2σ 2

]
,

= v

σ 2
(x − vt)u . (8.9)

We choose to describe the wave on a string that is long in relation to the width of
the Gaussian function, and we choose to follow the wave only so long that it does
not come too close to a boundary. We use in the program a complete adherence to
the endpoints along the way in the calculations.

We select the following parameters A = 1, σ = 2
√
2, v = 0.3 and allow x to

cover the range from −20 through +20 in 400 equal steps. We try with �t = 0.1
and follow the movement for 300 time increments. No units are provided, but we
assume that all units are SI devices.

A computer programwritten inMatlab is given below. The code is also available at
the “Supplementary material” web page for this book at http://www.physics.uio.no/
pow. The program performs the calculations based on the expressions given above.

function waveAnimationX

% Generate position array
delta_x = 0.1;
x = -20:delta_x:20;
n = length(x);
nx = 1:1:n; % Just for plotting purposes

% Generate and plot the wave at t=0
sigma = 2.0*sqrt(2.0);
u = exp(-(x/sigma).*(x/sigma)/2.0); % Gaussian shape
plot(nx,u,’-r’);

http://www.physics.uio.no/pow
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Fig. 8.4 Profiles of the wave
at the start of the calculation
and after a lapse of 300
time-steps for initial
conditions that ensure a
constant wave shape as the
wave evolves in time
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axis([1 n+1 -0.3 1.2]) % Ease comparison with animation
figure;

% Generate parameters and time derivative of the wave at t=0
v = 0.5; delta_t = 0.1;
factor = (delta_t*v/delta_x)ˆ2;
dudt = (v/(sigma*sigma))*x.*u;

% Calculate effective initial conditions:
u_jminus1 = u - delta_t*dudt;
u_j = u;

% The animation (one thousand time steps):
for t = 1:1000

u_jplus1(2:n-1) = (2*(1-factor))*u_j(2:n-1) - ...
u_jminus1(2:n-1) + factor.*(u_j(3:n)+u_j(1:n-2));

% Handle boundary problem (fixed boundary)
% u_j(-1) = u_j(n+1) = 0
u_jplus1(1) = ...

(2*(1-factor)).*u_j(1) - u_jminus1(1) + factor.*u_j(2);
u_jplus1(n) = ...

(2*(1-factor)).*u_j(n) - u_jminus1(n) + factor.*u_j(n-1);

plot(u_j);
axis([0 n+1 -0.3 1.2])
drawnow;

u_jminus1 = u_j;
u_j = u_jplus1;

end;

Figure8.4 shows the wave at the start and after the passage of 300 time-steps.
We see that the wave moves to the right (positive v) and that the waveform remains
unchanged.
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Fig. 8.5 Profiles of the
initial position of the string
on a guitar just before it is
released and made to
oscillate

0.0

0.2

0.4

0.6

-0.2
100 200 300 4000

t = 0

Position (arbr. units)

D
is

pl
ac

em
en

t

In an exercise at the end of the chapter, you are asked to investigate how the
wave evolves if we use a u̇ which is either too small or too large compared to what it
should have been.Which term in Eq. (8.9) is now incorrect if we want to preserve the
waveform as the wave evolves? Would it be possible to explain the pattern observed
in the simulations if you consider the initial condition as a sum of two different
waves? It is crucial that you carry out this exercise and try to explain in your own
words the mechanisms behind time evolution of a wave.

You are also urged to modify the code so that you can handle a case where the
wave hits an interface between twomedia with different impedances (different phase
velocities). It is recommended that you complete the exercise, for that would provide
you with a significantly better understanding of waves.

Finally, another highly recommended exercise: When we play the guitar, we pull
at the string so that the initial condition is a slanted triangle (with straight edges, see
Fig. 8.5) and no motion before we release the string. Use the reasoning and algorithm
that lies behind Fig. 8.3 to suggest how the string will move afterwards! It will reveal
whether you have understood the algorithm or not!

Then perform a numerical calculation of the motion of the guitar string. It is easy
since the string is at rest before you release it, and the endpoints are fixed (no motion
is permitted). You may be surprised by the result!

It should be noted that the algorithm we use does not allow for any rigidity in
the string. If the string has a certain stiffness, segments a little further than the
neighbouring point will also affect the motion. A true guitar string will therefore
get a little different motion than our calculations show, at least if we follow the
motion over several periods. However, if we use a rubber band as a guitar string, we
will observe a pretty close fit with the calculation, because the band has negligible
stiffness. There are nice YouTube videos (shot with high-speed camera) showing the
motion of a rubber band. Examples are “Motion of Plucked String” by Dan Russell
and “Slow motion: Rubber string pulled and released” by Ravel Radzivilovsky. It is
fun to compare your own calculations with these videos!
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8.3 Dispersion: Phase Velocity and Group Velocity

In the previous section, we studied the mechanisms which govern the time develop-
ment of a one-dimensional wave. We initially said that the calculations dealt with
an idealized situation in which there was no dispersion. “No dispersion” means that
a wave moves at the same speed no matter what its wavelength. In the calculations,
the wave rate v was a constant.

For many physical wave phenomena, the restoring force will vary with the wave-
length. In such situations, we say that the medium is dispersive. The multicoloured
band we get when we send white light through a glass prism is an example of the
phenomenon called dispersion. The spectrum is a consequence of the fact that light
of different wavelengths travels with different speeds through the glass. This is the
dispersion property of glass for light.

Let us take a closer look at this. We know that the refractive index of glass varies
with the wavelength of light (see Fig. 8.6 for different types of glass). The refractive
index increases as the frequency increases (wavelength decreases).

In Chap. 9, wewill show at the phase velocity of the electromagnetic waves (light)
in glass is given by the relation

vp = cglass = c0/n(λ)

where c0 is the light velocity in vacuum, cglass = vp is the light velocity in glass,
which by definition is the phase velocity of light in glass. n(λ) is the refractive index
which is wavelength dependent [see Eq. (9.36)].

Phase velocity is the velocity a constant intensity laser beam (or a perfect
harmonic wave) will have when it travels through a medium.

It follows from the data plotted in Fig. 8.6 that the phase velocity decreases as the
wavelength decreases. Such a behaviour is called normal dispersion.

A slightly different graphic representation is often used to display dispersive
behaviour. The alternative is to plot the angular frequency ω as a function of the
wavenumber k. For a usual monochromatic wave A cos(kx − ωt), the velocity (i.e.,
phase velocity) is given by:

vp = ω

k

If we want to send information from one place to another, we cannot just send
a constant intensity laser beam. We must make changes in the light output, and the
information is conveyed through the changes.
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Fig. 8.6 Refractive index of
light, from UV to IR, in
various types of glass
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In an optical fibre, we often send a number of light pulses one after the other.
In the case of radio telecommunications, we also make variations in the radio
wave that causes the wave to be seen as different “groups” of waves that
come one after the other. It is remarkable that these pulses or wave groups
propagate through the fibre or the atmosphere at slightly different velocities
than a constant intensity laser beam would propagate. The pulses or wave
groups propagate with what is called group velocity.

There is usually little difference between phase velocity and group velocity for
electromagnetic waves. However, when we throw a pebble in a still body of water,
the group velocity will only be half the velocity of water waves if a wave-making
machine had generated continuous waves of about the same wavelength as we saw in
the rings after the stone hit the water. It is therefore important to distinguish between
phase velocity and group velocity!

It is dispersion that accounts for the difference between phase and group velocity.
The connection between phase velocity vp, (angular) frequency ω and wavenumber
k is:

ω = vpk

When there is no dispersion, vp is independent of k, and if we plot ω as a function
of k, we get a straight line.

With dispersion, however, vp will be a function of the wavelength and hence k.
We can then write:

ω(k) = F (k) .
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Fig. 8.7 Relation between
the angular frequency ω and
the wavenumber k for a
given medium is called the
dispersion relation for the
medium. We distinguish
between three different
classes of media, as
indicated in the figure. Note:
The three curves represent
completely different physical
action mechanisms, so the
three curves do not have to
coincide for low k values. It
is the form (curvature) that is
important!
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where F is some function. Then a plot of ω will no longer be a straight line.

We callF , which gives us the relationship between ω(k) and k, the dispersion
relation for themedium inquestion. For a dispersivemedium, anω versus k plot
will be a curved line, as shown in Fig. 8.7. When the curve bends downwards,
the phase velocity decreases with the wavenumber (the wavelength becoming
smaller). This is called normal dispersion. When the curve bends upwards,
the phase velocity increases with the wavenumber (the wavelength becoming
smaller). This is called anomalous dispersion.

It can be shown that the group velocity is determined by the slope of the
dispersion relation in the region under consideration:

vg = ∂ω

∂k
. (8.10)

It can be shown that such a definition corresponds to the velocity of the “envelope”
of a composite wave packet, at least where the envelope has a Gaussian shape.
This corresponds to what we associate with “group velocity”. For more complicated
“envelopes” it is not always easy to specify a group velocity precisely, since the
actual shape of the envelope will change as it moves.

The fact that the group velocity is the derivative of the dispersion relation ω(k)
opens up interesting possibilities. We will use it several times in this book.

For example, let us find an expression for the variation of group velocity with the
refractive index. The starting point is then the relationship:

ω

k
= c0

n(k)
.
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Whence follows the relations:

vg = ∂ω

∂k
= − c0

n2
∂n

∂k
+ c0

n
,

vg = vp(ω)

(
1 − k

n

∂n

∂k

)
. (8.11)

In normal dispersion, dn/dω > 0, which means that vg < vp, that is, the group
velocity is less than the phase velocity. If we use the data from Fig.8.6, we see
that there is very little difference between the phase velocity and the group velocity
when we transmit light through glass—at least as long as the wavelength is greater
than 400nm (visible light and IR). On the other hand, dispersion becomes a major
problem if we try to send light of shorter wavelengths through glass.

Inmodern communication, we use optical fibres andwavelengths in the IR region,
where the refractive index is almost completely independent of the wavelength. Then
dispersion is very small, and it allows the use of short pulses, which ensures a high
data transfer rate.

8.3.1 Why Is the Velocity of Light in Glass Smaller Than
That in Vacuum?

This may be an appropriate moment for injecting a small aside, since in practice
it has been found that relatively few know why light travels more slowly in glass
than in vacuum. A clear indication is obtained by examining the expression for the
velocity of light through amedium. This expression, usually given in books of general
electromagnetism, is also discussed in detail in Chap. 9 in our book, and it reads:

c = c0/n = 1√
ε0εrμ0μr

where c0 is the light velocity in vacuum, n is the refractive index, ε0 is the permittivity
in vacuum, εr is the relative permittivity, μ0 is the magnetic permeability of vacuum
and μr is the relative magnetic permeability. In glass, which is diamagnetic, μr is
approximately equal to 1, and we get:

c = 1√
ε0εrμ0

= c0
1√
εr

.

Whenwe remember that εr is ameasure of howmuchpolarization (shifting of positive
and negative charges in each direction) we can achieve when we put a material into
an electric field, we realize that polarization of glass is the reason that light goes
slower through glass than in vacuum.
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E > 0 E = 0 E < 0

Fig. 8.8 When an electromagnetic wave passes through a slab of glass, the electromagnetic field in
the wave will cause the electrons in the electron cloud around each nuclear core to shift as expected
from the Coulomb force

Figure8.8 shows what happens when an electromagnetic wave passes through
glass. The electric field will alternate in a harmonic manner, with a value sometimes
in one direction (across the direction of motion of the light), sometimes zero, and
sometimes in the opposite direction. The electrons in the glass atoms will be affected
by the electric field, and the entire “electron cloud” around each nuclear core will
shift slightly relative to the core as indicated in the figure. In reality, the displacement
is extremely small, since the electromagnetic field from the electromagnetic wave is
usually small compared to the electrical forces between the core and electrons.1 Yet,
even in weak light, there will be a collective displacement of the electrons relative
to the nuclei, and that is what really matters.

The collective displacement results in the glass being almost regarded as an
antennawith oscillating currents. This oscillation in charges leads to the transmission
of electromagnetic waves at the same frequency as the wave that started it all. How-
ever, we have seen in Chap. 3 (forced fluctuations) that there is generally a phase
difference between the movement and the applied force. It is the combination of
the original wave and the phase shifted resonant wave from the oscillating electron
clouds, which ensures that the light velocity in glass is less than in vacuum.

It goes without saying that when the electromagnetic wave has passed the glass
and gets into the air (almost like vacuum in our context), there will be no noteworthy
polarization of the medium and the wave will not be delayed by the re-emitted wave.
The velocity of light speed returns, of course, to (almost) the velocity of light in
vacuum.

If we recall what was said in Chap. 3 about forced oscillations, we will also think
of the resonance phenomenon. At certain frequencies, the amplitude became par-
ticularly large under the influence of the applied force. If you look at Fig. 8.6, you
can see clear indications that something special happens to wavelengths just under
200nm (0.2µm). Then we are in the UV region. Several different physical processes
will take place at the same time, but it may be useful to think that there will be
some form of resonance in the electron oscillations around the nuclei. By thinking
about the form of the resonance curve in Chap. 3, you can hopefully also imagine

1In a rapid pulse laser experiment in Germany in 2013, however, the electric field was so powerful
that many electrons were stripped away from the core. Then the glass is transformed from being an
insulator to a good electric conductor within a few femtoseconds!.



8.3 Dispersion: Phase Velocity and Group Velocity 227

what happens if we go through resonance and reach even shorter wavelengths. Then
curves in a diagram similar to Fig. 8.6 will slope the opposite way and we get the
so-called anomalous dispersion. For some materials, the supposed resonance fre-
quency will be at much longer wavelengths, and then we can achieve anomalous
dispersion even for common visible light. However, it is somewhat strained to com-
pare dispersion unequivocally with resonance in such phenomena, because more
physical interactions usually contribute.

This is one of many aspects of physics where the simple laws and patterns dis-
cussed in the early chapters of the book appear. Simple principles are often part
of the explanation even for more complicated phenomena, but seldom the whole
explanation!

A nice little historical episode in this context:
In Newton’s corpuscular model of light, diffraction was explained by the particles being faster
through glass than in air, but the wave description gave the opposite prediction. Measurement of
the velocity of light in glass was therefore regarded, during a certain period, as an important test
for seeing whether a wave model or particle model accorded better with experiments. However, we
cannot measure the velocity of light velocity in a coherent monochromatic wave. We must have a
“structure” in the wave that we can recognize in order to be able to measure the velocity of light.
This translates into the measurement of group velocity.

However, no one was able to measure the velocity of light in this way in the eighteenth and early
nineteenth centuries. Foucault was the first to carry out the experiment. That happened in 1850, and
the result showed that the velocity of light in glass was smaller than that in air, which supported the
wave model for light. By this time, however, most physicists had reluctantly abandoned Newton’s
particle model for light. Experiments of Thomas Young (1801 double-slit experiment) and a work
of Fresnel around 1820 (first opposed by Poisson, but corroborated by an experiment conducted by
Arago), eventually convinced physicists that the wave model of light gave a better description than
particle model. Please read about “Arago spot” in Wikipedia.

8.3.2 Numerical Modelling of Dispersion

Dispersion is a phenomenon that is somewhat difficult to understand. We present
here a method which can be used to model dispersion numerically. We hope that,
by reading the description of the method and the results furnished by it, you will
understand dispersion better. We recommend that you run the computer program
and watch how the waves within a group are moving forward, backward or stand still
compared to the envelope of the wave group. It is fascinating, and you can easily
observe such a pattern in real life when you look, for example, at the wake behind a
boat on the sea.

We start this section by pointing out that a frequency analysis of a wave may be
carried out both in time domain and in space domain. It is related to Fig. 6.2 in
Chap. 6.
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We often use the word “wave” rather uncritically, and seldom think that a real
physical wave must have a limited extent in time and space. This means that when
we describe a wave, for example, with the following expressions:

y(x, t) = A cos(k0x − ω0t) ,

this is at best just an approximate description of reality within a limited range of time
and space. The velocity such a wave moves with is the phase velocity v = ω0/k0.
A Fourier analysis of the time variation of the amplitude (meaning the displacement
from the rest position) of such a wave at one fixed position x = x0 would be

Y (ω) = 1

2π

∫ ∞

−∞
y(x0, t)e

−iωt dt (8.12)

and Y would give one sharp peak in the frequency domain for ω = ω0. This tells us
that the amplitude of the wave varies harmonically with time at the fixed position
x = x0 and the frequency is f = ω0/2π and the time periodicity is T = 1/ f .

We could equally well have described the wave as a snapshot at one particular
time t = t0. A Fourier analysis can be carried out of the amplitude as a function of
position for this particular time. We would then have a slightly different expression:

Y (k) = 1

2π

∫ ∞

−∞
y(x, t0)e

−ikxdx . (8.13)

The numbers we put into the calculation would be almost identical with the numbers
describing the amplitude as a function of time. So mathematically, there will be no
difference (in the numbers used). As physicists, however, we need to keep track of
the difference and how the analysis should be used. Even in this case Y would give
one sharp peak for k = k0. We call k “the wavenumber”, but that is the number of
wavelengths within 2π metres and can equally well be called 2π times the “spatial
frequency”. This tells us that the amplitude of the wave varies harmonically with
position at the particular time t = t0 and that the spatial frequency is fs = k/2π and
the spatial periodicity is the wavelength λ = 1/ fs .

In our numerical simulations of dispersion, we will use a description based on
spatial frequencies, as will be apparent in the following.

Our chosen model of a real physical wave

As mentioned above, dispersion will have no influence on the motion of a pure
harmonic wave. At the same time, it is also impossible to define a “group” for a pure
harmonic wave. Thus, for a simulation of dispersion, we need a different model for
a physical wave.

A physical wave changes character (form) from one region in space-time to
another, and it can in general be very complicated indeed.

We have chosen to base our discussion on a “wave packet” that is formed by
multiplying a harmonic wave with a Gaussian envelope. We describe the wave at a
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Fig. 8.9 Frequency analysis
of our wave packet (absolute
values). Only the small
region where the coefficients
are clearly different from
zero is shown. Along the
horizontal axis, only element
number has been given, in
order to pick out the indices
we are interested in
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particular time t = t0 = 0

y(x, t0) = cos(k(x − xr )) e
−{ x−xr

σ
}2 . (8.14)

Here xr is the position where the wave packet has its maximum and the 1/e width
of the envelope equals 2σx . For our choice of parameters, the wave at the starting
instant (t = 0) is shown in the upper left of Fig. 8.10.

We may Fourier transform this description of our wave packet as described in Eq.
(8.13). From Fig. 5.12 in Chap. 5 and the description in that chapter, we know that
the Fourier transform of Eq. (8.14) will have contributions mainly within a band of
(spatial) frequencies, which correspond to a band of wavelengths. The band for our
chosen model (discrete version) is shown in Fig. 8.9.

If we also bring the inverse Fourier transform into play, we can then state that

Our model of a physical wave y(x, t0) can be described as a sum (integral)
of harmonic spatial waves with different wavelengths, for wavelengths in a
limited wavelength band.

The key element in our simulation of dispersion

• We now know that the wave at t = t0 = 0 can be described as a sum of
spatial harmonic waves with different wavelengths.

• We also know that a harmonic wave will evolve in time as if dispersion was
not present.

• However, dispersion implies that the phase velocitywill depend on thewave-
length.
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Fig. 8.10 Evolution of the wave packet with different dispersions is shown in blue. The green curve
shows a wave with a wavelength corresponding to the maximum in Fig. 8.9 and is only included to
show the difference between phase rate and group velocity in an animation. The wave packet at the
start of time development is shown at the top left, and the next three graphs show the wave packet
after it has been 1.4 s. S and L indicate shorter or larger wavelengths than the dominant one. See
the text for details

• The time evolution of the total wave packet can then be calculated by adding
a number of spatial harmonic waves that evolve in time with different phase
velocities.

To be more specific, the last step can be implemented by replacing summation
of spatial harmonic waves at one instant of time cos[k(i)x + θ(i)] followed by a
common time evolution—with summation of harmonic waves in space and time
with individual time evolution and arguments cos[k(i)x − ω(i)t + θ(i)]. However,
the challenge is to determine ω(i). This is explained in the more detailed description
of the actual simulation program at the end of this chapter, and it is illustrated in the
Fig. 8.21 there.

Later in this chapter, we will discuss some physical wave phenomena in which
the chosen behaviour is manifested.



8.3 Dispersion: Phase Velocity and Group Velocity 231

t = 0.0 s t = 1.3 s t = 6.5 s

Wave velocity direction

 high  low

Fig. 8.11 Wave packet at the start, after it has moved (with anomalous dispersion) for a short time,
and after a much longer time. Note the difference in wavelength in the front of the wave packet
compared to the end. It is a fingerprint of dispersion

The results of our animation are given in three of the four plots in Fig. 8.10. A
number of details emerge from the modelling/animation:

Figure8.10 shows the important characteristics of dispersion:
• The waveform of the envelope curve does not change over time when there
is no dispersion.

• When there is dispersion, the wave packet “spreads”, its shape changes and
the peak amplitude decreases, as shown in Fig. 8.11.

• When there is no dispersion, the group velocity equals the phase velocity,
i.e. vg = vp.

• With normal dispersion, the group velocity is less than the phase velocity,
more specifically vg = 1

2vp < vp in our case.
• With anomalous dispersion, group velocity is greater than the phase velocity,
more specifically vg = 3

2vp > vp in our case.
• Group velocities are exactly as expected on the basis of Eq. (8.10).
• Although the wave packet (“the group”) moves with a different velocity than
the phase velocity, the individual wave peaks within the envelope moves
approximately with the phase velocity of a wave whose wavelength corre-
sponds to the dominant component in the frequency spectrum (shown green
in Fig. 8.10).

• This means that the wave packet under the envelope curve moves forward
relative to the envelope with normal dispersion and backward with anoma-
lous dispersion.

• Thismeans that at normal dispersion,wavepacketswill apparently disappear
at the front of a wave packet as time passes and appear to grow out of
nothingat the rear end of the wave packet. For anomalous dispersion, the
opposite holds. See Fig. 8.12.
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Fig. 8.12 Wave packet after
it has moved for a while with
normal dispersion. The
phase and group velocities,
vp and vg , respectively, are
indicated by arrows vp

vg

Waves die outWaves arise 
from nothing

• In normal dispersion, the phase velocity for small wavenumbers, i.e. long
wavelengths, is greater than the phase velocity for short wavelengths. Then
the longest wavelengths will dominate the fastest part of the group, and the
shortest wavelengths will dominate the last (slowest) part of the group. For
anomalous dispersion, it is the opposite. In Fig. 8.10, long wavelengths are
marked with L and short with S.

8.4 Waves in Water

It is time now to describe waves on the surface of water. However, we will start with
qualitative descriptions before we grapple with a mathematical description where it
is possible to go into more detail.

In Chap. 6, we derived the wave equation for waves on a string and waves in a
medium. It would have been nice to go through a similar derivation for surface waves
in water, but this will not be attempted here, since the task is rather demanding.
The interested reader is referred instead to books in hydrodynamics or geophysics.
We will nevertheless look at some details. In Fig. 8.13 is shown one possible model,
which can be used as a basis (the model is the starting point for the derivation in, for
example, the book by Persson, reference at the end of this chapter).

Here we consider a vertical volume element parallel to the wavefront has the same
volume, regardless of whether it is in a trough (valley) or a crest (top). In the figure,
this wouldmean that V1 = V2. However, since the pressure is equal to the air pressure
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Fig. 8.13 One wave model envisages that vertical volume along the wavefront preserves its value,
regardless of whether the column is in a trough (valley) or a crest (peak). The surface area of the
cross sections will change, but we ignore that at first

above the water surface (approximately the same above all volume elements) and
the pressure increases with the depth inside the water, the pressure at a given height
above the bottom is higher in the volume element corresponding to the wave peak
compared with that in the wave valley. In this way, we can regard the wave as a
longitudinal pressure wave that moves with the velocity of the wave.

In Chap. 6, sound waves in air and water were described as pressure waves. The
model in Fig. 8.13 looks similar to that description, but is still quite different!

For sound waves, we considered the gas or liquid as compressible fluids, that is,
if we increase the pressure, the volume will decrease. The compressibility modulus
was central to the derivation. Gravity, on the other hand, played no role whatsoever.

When surface waves on water are modelled, we completely ignore the compress-
ibility. Regardless of pressure changes, a volume element retains the same volume.

In surfacewaves, large pressureswill mean that the volume element is compressed
across the wavefront, that is, in a volume element below a wave peak.

We may wonder whether it is reasonable to operate with completely different
models of sound waves and surface waves, and of course there are transition zones
where these descriptions will be at variance with each other. However, there are
physically good reasons to operate with different models.

In the case of sound waves, we are most interested in frequencies in the audible
region (and possibly ultrasound). That is, from about 20Hz and upwards. The period
is 50ms or less (in part much less). If sound would lead to surface waves as described
in this chapter, we must move significant amounts of water up to several metres in
25ms or less! It would require enormous powers (according toNewton’s second law).

On the other hand, we can transfer large amounts of water a few microns within
25ms as required for sound waves, and still shorter times (higher audio frequencies).
The powers that are needed for this task are achievable.

Surface waves on water have a much lower frequency (at least for large wave
heights). Then we get time to move large amounts of water from a wave bottom to a
wave peak with the available power.

One must also take into account the time scale and Newton’s second law, which
means that we operate with completely different models of sound waves in water
and gravity-driven surface waves on water.
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A better model
All in all, the model given in Fig. 8.13 does not provide a good description of

surface waves. For a better description, we would like to base ourselves on one of
the basic equations in fluid mechanics, namely Navier–Stokes equation:

ρ

(
∂ #»v

∂t
+ #»v · ∇ #»v

)
= −∇ p + ∇ · # »

T + #»

B

where ρ is mass density, #»v is the flow rate, p is hydrostatic pressure,
# »

T is a stress
vector (may include surface tension) and

#»

B stands for “body forces” that work per
unit volume in the fluid. ∇ is the del operator.

It may be useful to look closely at Navier–Stokes equation and recognize that it
is largely a further development of Newton’s second law for a continuum fluid.

Navier–Stokes equation is nonlinear, which means that solutions of this equation
do not necessarily follow the superposition principle. If two functions separately are
solutions of the equation, the sum of these functions will not necessarily be a solution
of the equation. Another characteristic feature of nonlinear equations is that they can
have chaotic solutions, that is, solutions where we cannot predict how the solution
will develop in time (in a purely deterministic way). Even the slightest change in
initial conditions or boundary conditions could result in the solution after a time being
having wildly different values. This has come to be called “the butterfly effect”. The
flap of a butterfly’s wings can cause weather development after a long while to be
completely different from what it would have been had the butterfly not flapped its
wings.

There are some interesting mathematical challenges associated with Navier–Stokes equation
today, but we will not mention it here.

My main concern is to point out that there is a wealth of different phenomena related to motion
in fluids, and amazingly many physicists and mathematicians have been interested in water waves.
These include Newton, Euler, Bernoulli, Laplace, Lagrange, de la Coudraye, Gerstner, Cauchy,
Poisson, Fourier, Navier, Stokes, Airy, Russell, Boussinesq, Koertweg, de Vries, Zabusky, Kruskal,
Beaufort, Benjamin, Feir and others. We are talking about monster waves, tsunamis, solitary waves,
etc. The field has a rich tradition, also in the Norwegian research milieu, and there is still a lot to
be tackled!

In our time, computers have become so powerful and so many numerical methods have been
developed for use in mathematics and physics that we can now grab wave descriptions in a com-
pletely different way than could be done a few decades earlier. As an example of the development
that has taken place, Professor Ron Fedkiw (born 1968), as working with Computer Sciences at
Stanford University, received an Oscar award in 2008 for his efforts to animate realistic water waves
for use in the film industry (including the film “Poseidon”). For those who are students today and
will become familiar with numerical methods for solving mathematical and physical problems, this
is extra fun. After completing your studies you will have the skills that would enable you to produce,
only with modest effort, realistic animations of similar to those of Ron Fedkiw!
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8.4.1 Circle Description

Let’s now give a picture-and-word description of the waves themselves. Figure8.14
shows a vertical cross-section of the wavefront. The solid curve shows the wave at
a given moment, and the dotted curve shows the wave a short while later. The wave
moves to the right in this case.

In the figure, arrows are drawn to show which direction the water must move in
order to let the wave as it is now to become what it will be. The arrows in the upper
half are quite easy to understand, while the arrows in the lower half may be harder
to get hold of. However, we recall that the wave does not necessarily lead to a net
transport of water in the direction of the wave, so water that moves forward in a part
of the wave must move backwards into another part of the wave. And water that
moves upward in part of the wave must move down in another part. If we keep these
facts in mind, the directions of the arrows begin to make sense.

Note that the water must move both along the wave propagation direction and
across it. This means that the wave is a mixture of a longitudinal and a transverse
wave.

If we draw the direction of motion and relative position of the same small volume
element at different times while a wave peak passes, we get a chart as in the lower
part of the figure. It appears that the water in the surface moves along a vertical circle
across the wavefront.

0 8
7
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5
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3
2
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Fig. 8.14 Upper part indicates in which direction the water at the surface moves when the wave
rolls to the right. In the lower part, the position and speed of one and the same volume element are
drawn as a wave peak passes. The current wave element is that at position 8 at the beginning, but
at the next moment it is located on the part of the wave that is in line with point 7 in the upper part.
At the next moment, it has a location in the waveform that corresponds to point 6, etc. The result is
that the volume element we follow appears to move in the clockwise direction as time passes
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Fig. 8.15 When we want to
indicate how the water
moves between the surface
and the bottom, simple
sketches like this are used.
However, sketches like this
give a rather simplistic
picture of what is happening

Further down into the water, the circular motion will change from being near-
circular (as in the surface) to a more and more flattened ellipse, as shown in Fig. 8.15.
At the bottom of the bottom, the movement is almost a pure horizontal movement
back and forth. We can notice that when we snorkel at the bottom of a lake, and see
aquatic plants and weeds swing slowly back and forth as waves pass on the surface.

This description, however, applies only to shallow water, that is for water that is
not much deeper than the wavelength (the distance between the wave crests).

For deeper water, the waves on the surface will only propagate downwards a short
distance, but near the bottom, the waves on the surface will not be noticed at all.

It is possible to see the circular motion by spraying small droplets of coloured oil
into the water, provided that the mass density of these drops is about the same as
that for water. We can then follow the movement of the drops in water waves, as is
done in the basement of Abel’s House at UiO and in Sintef’s wave tanks in Norway.
However, I have been told that it is harder to show these circular motions than we
might infer from the textbooks.

When we portray water waves by drawing circles and ellipses at different depths,
we must recognize that such a description can be easily misunderstood. How should
we look at the circles and the ellipses for subsequent volumes in the wave direction?
Here there must be some sort of synchronization that does not emerge from the figure
and which necessarily has to give a more detailed description than can be conveyed
through simple sketches.

The sinusoidal form is by no means the best model for surface waves on water.
Often the wave tops are more pointed than the bottoms, as indicated in Fig. 8.16. The
larger the amplitude, the steeper the top becomes. However, there is a limit to this
tendency. When the wave peak becomes larger than about 1/7 of the wavelength, the
wave is often unstable and can, e.g., go over to a breaking wave. At the border, the
angle between the upward and downward part of the wave peak is about 120◦ (an
angle that of course does not fully apply to the actual vertex).
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Fig. 8.16 Waveform is usually such that the top ismore pointed than the bottom.The effect becomes
clearer as amplitude increases. When the peak to peak amplitude is 1/7 of the wavelength, we reach
a limiting value after which further increase in amplitude often gives an unstable wave

8.4.2 Phase Velocity of Water Waves

Although we have not shown how the wave equation will actually look for sur-
face waves, we can establish an approximate expression of one characteristic
of the solutions, namely the phase velocity of water waves. The expression is:

v2
p(k) =

[
g

k
+ T k

ρ

]
tanh(kh) (8.15)

where k is the wavenumber, g the acceleration due to gravity, T the surface
tension, ρ the mass density and h the depth of water. The formula applies to a
practically flat bottom (compared to the wavelength).

The first term inside the square brackets indicates the contribution of gravity to
the restoring force, while the second indicates the contribution of surface tension.
The first term thus corresponds to so-called gravity-driven waves, while the second
term corresponds to what we call “capillary waves”.

Since the wavenumber k occurs in the denominator of one term and in the numer-
ator of the other, it follows that the gravitational term will dominate for small
wavenumbers (long wavelengths), while the surface tension will dominate at large
wavenumbers (smallwavelengths). Itmay be interesting to find thewavelengthwhere
the two terms are about the same magnitude. We put then:

g

kc
= T kc

ρ
.

The subscript c indicates a “critical” wavenumber where the two contributions are
equal. The result is:
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Fig. 8.17 Phase velocity of surface waves on water. The red curve in this figure is taken from R.
Nave, (water depth was not specified). The blue curve is calculated using Eq. (8.15) with h = 1000
m. Inspired by [2]

1

k2c
= T

gρ
.

Since k = 2π/λ we find finally:

λc = 2π

√
T

gρ
.

For pure water at about 25 ◦C and 1 atmosphere, T = 7.197 × 10−2 N/m. Then
the critical wavelength becomes:

λc ≈ 1.7 cm.

In other words, the surface tension will dominate the phase velocity of waves
of wavelength appreciably smaller than 1.7cm, while gravity will dominate
for wavelengths considerably larger than 1.7cm.

The phase velocity is actually smallest when the wavelength is about 1.7cm,
being only 0.231m/s. Both shorter and longer wavelengths increase the phase veloc-
ity, and at very long wavelengths, the phase velocity can reach more than 100m/s.
Figure8.17 shows the calculated phase velocity for wavelengths from 1mm to 10km.
The calculations are essentially based on the fact that the water depth is large relative
to the wavelength (something that cannot be attained here on earth for the longest
wavelengths!).

We will immediately look at the expression for phase velocity, but first of all
remind us of some features of the hyperbolic tangent function. The entire range of

http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/watwav2.html
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hyperbole trigonometric functions can be defined in an analogous manner to normal
sine, cosine, etc. (all ofwhich canbedescribedby exponential functionswith complex
exponents). For the hyperbolic functions, the expressions look like this:

sinh(x) = ex − e−x

2
,

cosh(x) = ex + e−x

2
,

tanh(x) = ex − e−x

ex + e−x
.

In what follows, we focus on how hyperbolic tangent behaves when the argument is
much smaller or much larger than 1. Then it applies:

tanh(x) ≈ x for |x | < 1 ,

tanh(x) ≈ 1 for x > 1 .

In Eq. (8.15), the argument for tanh is equal to hk. The argument can also be
written as

hk = 2πh

λ
.

It is then natural to distinguish between “shallow water” characterized by h < λ/20
and “deepwater” characterized by h > λ/2. These limitsmean that the shallowwater
condition corresponds to:

hk <
2πλ

20λ
= π

10
< 1.0

and deep water condition corresponds to:

hk >
2πλ

2λ
= π > 1.0 .

It is time now to discuss some main features of Eq. (8.15). For shallow water
first and wavelengths well above 1.7 cm (so that we may ignore the surface
tension term) follow:

v2
p(k) = g

k
tanh(kh) ≈ g

k
kh = gh ,

vp(k) = √
gh .
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We see that the phase velocity is independent of the wavelength (wavenum-
ber). Furthermore, we notice that phase velocity decreases as the depth
decreases.

This gives a good effect. When waves come from the ocean towards a longshore
beach, waves that are inclined inward will move fastest in the part where the depth is
greatest. That is, the part of the longest wave will go faster than the part of the wave
that is farther in. Generally, this causes the wavefront to become quite parallel to the
shoreline, no matter what direction the waves had before approaching the beach.

For a deep water coast all the way down to the mountain cliffs down to the water,
there is no equivalent effect and the waves can come in towards the cliffs in any
direction.

For deep water waves, the phase velocity (assuming that the surface tension
plays a negligible role):

v2
f (k) = g

k
tanh(kh) ≈ g

k
1 = gλ

2π
,

vf(k) =
√

g

2π

√
λ ≈ 1.25

√{λ}m/s .

where {λ} means the value of λ (without units) measured in the number of
metres.

Thus, in deep water the phase velocity will change with the wavenumber
(wavelength). Such a relationship has been called dispersion earlier in the
chapter.

Increasing the wavelength by two decades in our case, the phase velocity
will increase with a decade. This is reflected approximately in Fig. 8.17.

Something to ponder over
It may be interesting to know that the ocean wave with the highest wavelength here
on earth has a wavelength of 20,000km. It rolls and goes all the time. Can you guess
what sort of wave it is? Do youwant to characterize it as a surface wave that is gravity
driven? If so, does it fall under our description above and will it have a wavenumber
given by our formulas? You can think about it for a while!

When we treated Eq. (8.15), we said that for wavelengths well over 1.7cm, gravity dominated
the wave motion. For capillary waves with wavelength significantly less than 1.7cm, the surface
tension dominated. These numbers apply at the ground surface.

A water drop will have a shape that is determined by both gravity and the surface tension. When
the gravitational force disappears, such as, for example, in the weightless state of Spacelab, it is
possible to make water droplets that are almost perfectly spherical, even with a diameter up to
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10cm. Waves on the surface of such water balls will in weightless state be dominated by surface
tension even at wavelengths greater than 1.7cm.

8.4.3 Group Velocity of Water Waves

Wehave previously given inEq. (8.15), an expression for the phase velocity of surface
waves in water, but reproduce the formula here to refresh the reader’s memory.

v2
p(k) =

[
g

k
+ T k

ρ

]
tanh(kh) .

As usual, here k is the wavenumber, g the acceleration due to gravity, T the surface
tension, ρ the mass density and h is the depth of the water. The expression can be
derived if we start by just taking into account gravity and surface tension, and we
ignore viscosity, wind and a tiny but final compressibility to the water.

We have previously found expression of the phase velocity for gravity-driven
waves for shallow and deep water. Now we will also discuss group velocity and
describe three of the four possible simple special cases a little more in depth:

1. Gravity-driven waves with a small depth relative to the wavelength, i.e.
the product hk << 1:

The wavelength is assumed to be large relative to the critical (1.7 cm) and from
Eq. (8.15) follows:

v2
p(k) ≈ g

k
hk ,

vp ≈ √
gh .

This has been shown earlier, but let us also look at the group velocity. We then use
the relationship vp = ω/k and get:

ω

k
= √

gh ,

ω = √
gh k ,

vg = dω

dk
= √

gh = vp .
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Therefore,

vg = vp .

This means that there is simply no dispersion.

2. Gravity-driven waves in deep water

In this case, we found:

v2
p(k) ≈ g

k
.

We set again vp = ω/k and get:
ω2

k2
= g

k
.

This leads to the following dispersion relation:

ω ≈ √
gk .

The group velocity is thus seen to be:

vg = dω

dk
= 1

2

√
g

k
.

vg ≈ 1

2
vp . (8.16)

Thus, we see that the group velocity is approximately equal to half the phase
velocity.

Wake pattern from ships often fall into this category. The single waves seem to
roll faster than the “plow” or “fan” that follows the boat (see Fig. 8.18). As a result,
the single waves roll in a way past the “fan” and disappear soon afterwards. We will
look into this in some respects.

3. Short ripples in deep water
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Here the wavelength of the waves is small relative to the critical wavelength of 1.7
cm. At the same time, the wavelength is much less than the depth of the water. Then
we get surface tension-driven waves and

v2
p(k) ≈ T k

ρ
× 1 = ω2

k2
.

The dispersion relation is easily seen to be:

ω ≈
(√

T

ρ

)
k

3
2 .

The group velocity in this case becomes:

vg = dω

dk
=

(√
T

ρ

)
3

2
k

1
2 = 3

2

√
T k

ρ
,

vg = 3

2
vp .

In this case, the group velocity is actually greater than the phase velocity (corre-
sponding to anomalous dispersion). In this case, individual waves seems to appear
from nothing at the front of the group of waves, and then move “backwards” through
the group and disappear. However, relative to the water, the single waves will always
propagate away from the source that created the waves (as long as we do not have
reflection), but the illusion of walking backwards is because the group velocity is
even greater than the phase velocity.

8.4.4 Wake Pattern for Ships, an Example

Many are not used to identifying what is meant by a group of waves and what is
meant by single waves. Left part of Fig. 8.19 attempts to show this. The figure refers
to the photograph in Fig. 8.18. The fan with many single waves that extends slightly
across the outer edge of the fan forms the group of waves. This fan is expanding at a
speed that is the group velocity. However, each single wave will wander in a different
direction than the fan as such and with a different wave velocity which is now the
phase velocity.

We have previously concluded that for deep water waves, the group velocity is
about half the phase velocity [see Eq. (8.16)]. This means that the single waves move
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Fig. 8.18 Photograph of a boat with waves forming a V-shaped wake behind it. See further discus-
sion in the next section. Arpingstone, Public Domain, [3]

Group of waves

Single wave

Group velocity

Phase velocity
 

Movement of the
group of waves

Movement of one
single wave

Fig. 8.19 To the left: Identification of the group moving with group velocity and single waves
moving at phase velocity in waves from a boat. The figure is a continuation of Fig. 8.18. To the
right: Detail showing how far the wave group and how far a single wave has moved across each
of its wavefronts over a certain period of time. The figure clearly shows that the group velocity is
lower than the phase velocity of these water waves

faster than the group. The single waves therefore appear to arise of almost nothing
on the inside of the group, and scroll across the group, and almost disappear when
they reach the outer edge of the group.

If you have ever paddled a canoe and watched a bit nervously how fast single
waves approach the canoe after a boat has passed, you might have wondered that the
waves which looked so scary seem to have vanished on their own before reaching the
canoe. Only much later than we first became aware of them do the waves reach the
canoe. The waves make it to the canoe only when the group reaches there, and the
group moves half as fast as the single waves. This time course comes out beautifully

https://commons.wikimedia.org/wiki/File:Wake.avon.gorge.arp.750pix.jpg
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in the animation of how a wave packet evolves in time using the computer program
discussed earlier in the chapter (listed at the end, just before “Learning objectives”).

In the right part of Fig. 8.19, the waves are drawn at one point and a little later.
Then it becomes clear that the group has gone a much shorter distance than the single
waves in the period we are studying. It always remains true that the wave pattern
behind the boat is stationary relative to the boat. When the boat has moved 10 m
forward, the entire wave pattern behind the boat has also moved 10 m ahead.

Lord Kelvin (W. Thomson) claimed long time ago (1887) that wakes pattern from ships are
fanning out at a constant angle of 19.47◦, no matter the speed of the vessel. This was regarded
as an established truth. This has lately been shown not to be true. Especially, the wake pattern is
quite different from what is seen in Fig. 8.18 for high-speed boats. The subject is described by
Ceri Perkins in an easily readable article in Physics World May 30, 2013, and in more details,
for example, in the paper “A solution to the Kelvin wake angle controversy” by A. Darmon, M.
Benzaquen and E. Paphal, 2013, available at https://www.gulliver.espci.fr/sites/www.gulliver.espci.
fr/IMG/pdf/darmonbenzaquen2013.pdf. It is fascinating to see the broad range of pattern a ship
wake can take.

Additional comments for the most interested:
There has been a lot of research on phase and group velocities since about 1980. Much of this is
related to light.

In February 2015,Giovannini and colleagues published an article inScience that shows taking the
velocity of light in vacuum is not necessarily c as Einstein’s relativity theory indicates. Light velocity
equal to c applies only to light in the form of plane waves. For some other wave configurations,
which the authors designate as “spatially structured photons”, the velocity of light in vacuum is
slightly lower than c (not a big difference, but demonstrably smaller).

We have long known that when light goes through glass (or a water drop for that matter), light
of different wavelengths travels at different speeds. The refractive index is wavelength dependent,
n(λ), which is again the expression of dispersion. Light in glass shows normal dispersion.

However, in the last few decades a number of special materials have been developed, and some
of these have a highly varying phase velocity for light with different wavelengths. Therefore, we
can get widely varying phase and group velocities, and even materials where phase velocity has
one direction and group velocity has the opposite direction.

There are also artificial materials and experimental relationships where we can slow down the
light enormously, even “stop” it for shorter periods, then start it again (search for Lene Hau at
Harvard University to get an insight into an exciting research field. Lene is Danish and is a favourite
for the Danish press).

In some materials, a light pulse can travel—according to some people—faster than light in the
vacuum, and in principle, we threaten Einstein’s relativity theory in this way. When we look at what
happens, we see that the claim of “faster than the light speed in vacuum” can be defeated. It all
depends on how we define this or that, but Einstein’s relativity theory is not exactly threatened by
these experiments, on the whole. What the future will bring is something harder to contemplate!

Dispersion is also relevant to matter waves in quantum physics. Group velocity is defined
through dispersion relations where ω(k) is described and we use vg = dω/dk. For matter waves,
the wavelength through the Broglie relationship is related to the momentum and the frequency of
energy. For matter waves, therefore, we have dispersion if the energy does not increase with the
momentum in the expected manner.

Dispersion turns up in many other contexts, among them the so-called Kramers–Kronig relation
that shows that dispersion is related to the amount of absorption for different wavelengths in the
medium. To a certain extent, this is linked to forced oscillations and Q-values, as we havementioned
earlier, but we do not have the time to go further in depth.

https://www.gulliver.espci.fr/sites/www.gulliver.espci.fr/IMG/pdf/darmonbenzaquen2013.pdf
https://www.gulliver.espci.fr/sites/www.gulliver.espci.fr/IMG/pdf/darmonbenzaquen2013.pdf
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8.4.5 Capillary Waves

We all know waves at sea. Less commonly known are oscillations in small water
droplets where surface tension is the dominant restoring force. When a drop falls
from a tap, it will oscillate while it falls. Examples of this are found in references 1
and 2 at the end of the chapter.

Standing waves in a water drop we can observe when we place some water in the
pit of an old-fashioned electric stove, provided that the plate is so hot that the drop
floats atop a cushion (steam cushion) that forms. We can get beautiful quantized
oscillations with an asterisk shape where an integer number of arms swings back
and forth (see Fig. 8.20). Slight variation in heat or size of the drop may cause it
to suddenly change the swing pattern from, for example, a five-arm to a four-arm
star. The arms are shot out and pulled back in such a way that we will perceive an
octagonal star (since we cannot follow the rapid movement with the unaided eye).

The purpose of this description is to recall that classical physics is full of quanti-
fied states, in an analogous manner to what is found on the atomic scale described in
quantum physics. We have already seen in other chapters other examples of quanti-
zation on macroscopic scale, such as oscillations on a string and sound waves in a
musical instrument.

The reason for quantization is that we are dealing with waves and the associated
boundary conditions. For waves on a guitar string, the quantization is a consequence
of the fact that the amplitude at the endpointsmust be equal to zero. This is completely
analogous to quantization of thewave function in quantumphysics (e.g. for a “particle
in box”).

Fig. 8.20 Pictures of an oscillating water drop. The picture to the left is taken a few milliseconds
before the image to the right. The two pictures show the extremes of the oscillation of this drop.
The movement can be considered as a standing wave in the drop. The images are selected from a
video taken by high-speed camera at the Department of Physics, University of Oslo (M. Baziewich
and A. I. Vistnes). The video is available at the “Supplementary material” web page for this book
at http://www.physics.uio.no/pow

http://www.physics.uio.no/pow
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8.5 Program Details and Listing

Given below is a Matlab program that can be used to explore how dispersion affects
the time development of a wave packet (a wave group). The program consists of a
main program that calls on four functions. One must find out oneself which param-
eters are to be changed when one wants to switch between no dispersion, normal
dispersion and anomalous dispersion. It is natural to change several of the functions
if you want to enter the appropriate parameters to model completely specific physical
wave phenomena. However, it is imperative to understand the parts of the program
that you want to change; otherwise, the result may turn out to be meaningless.

A description of the different parts of the actual program

The function/script pg3 is the main program that activates the different modules in
the complete program. We have to choose in the program code whether we want
normal, anomal or no dispersion.

The wave packet is calculated in function pg_wpack.
Since the wave is limited in extent, a Fourier analysis of y(x) in the function pg_fft

will yield a range of spatial frequencies. For our selection of parameters, the result is
illustrated in Fig. 8.9. The components with indices 23–59 (marked with blue vertical
lines) contain all the components that are notably different from zero (compared to
the value of the most powerful component). The different indices correspond to each
(spatial) frequency (as explained in detail in the chapter on Fourier analysis). This
range of components has to be stated in the code of fg3.

Fourier analysis gives us (spatial) frequency, amplitude and phase of each com-
ponents of interest.

k(i) = (i − 1)
2πxmax

N
A(i) = 2 abs(Y (i)) θ(i) = atan2(imag(Y (i)), real(Y (i)))

where Y (i) is the i th element in the Fourier transform of y(x), and xmax and N are,
respectively, the greatest value of the position and number of points in our description.
The factor of 2 in A is because we use only the lower half of the Fourier spectrum (not
the folded part). The expressions “abs”, “atan2”, “imag” and “real” are all Matlab
functions.

We know from Chap. 5 on Fourier transformation that we can describe the same
function as in Eq. (8.14) by a “reverse Fourier transform”:

z(x) =
59∑

i=23

A(i) cos[k(i)x + θ(i)] (8.17)

where we have included only the components that are worth mentioning for the
result. Plotting z(x) calculated with Eq. (8.17) and comparing it to a plot based on
Eq. (8.14) will not reveal any difference visually.
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Note that in Eq. (8.17), we add cosine functions, each contribution having the
same amplitude over the entire region for which we calculate. There is no specific
information about where the peak of the wave packet should be or how wide it is.
All of this is information hidden in amplitudes and phases of the various frequency
components that are included.

Both Eqs. (8.14) and (8.17) describe the wave at time t = 0. Equation (8.17) is
most useful in our context because it is well suited to describe how the wave will
evolve over time when we have dispersion. Then the algorithm we used first in the
chapter will not suffice because there is no simple wave equation when the phase
velocity is not constant.

Ifwe useEq. (8.17),we can get the time evolution simply by replacing cos[k(i)x +
θ(i)] with cos[k(i)x − ω(i)t + θ(i)]. Then each spatial frequency component will
evolve with its individual phase velocity. This demonstrates why Fourier analysis
sometimes is very useful! However, the challenge is to determine ω(i). The function
pg_omega takes care of that challenge.

We have chosen the following three variants:

ω(k) = vp
k

kdom
No dispersion

ω(k) = κ1vp

√
k

kdom
Normal dispersion

ω(k) = κ2vp

(
k

kdom

)3/2

Anomalous dispersion

where vp is the phase velocity of a contemplated harmonic wave with wavenumber
kdom (dominant wavenumber in our Fig. 8.21). Note: We have chosen the parameters
so that the group velocities are roughly the same for all three cases. The phase
velocities are quite different. κ1 and κ2 are small correction factors (1.04 and 1.10)

k (rel. units)k (rel. units)
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Fig. 8.21 Relation between frequency and wavenumber used in our calculations for the next figure
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to optimize Fig. 8.10 and do not matter for the argument that follows. Figure8.21)
shows how ω varies with the wavenumber k.

In the function fg_omega, we also defines a parameter “deltat” that is used in the
animation of the time evolution of the wave packet. The numbers in the computer
code at the end of this chapter are chosen just so that the final position of the wave
packet is convenient for plotting. Can be adjusted as wanted to have a different time
at the end of the animation.

The animation including plotting is carried out by the function pg_animer. This
function uses the function pg_wave to generate a complete spatial wave for each
wavelength component and time in the animation.

Main Program

The code is available at the “Supplementary material” web page for this book at
http://www.physics.uio.no/pow.

function pg3

% Program to illustrate the difference between phase and group
% velocity. Movement of a wave package is animated (blue). To
% ease the understanding of the difference between phase and
% group velocity, a pure monochromatic wave with the central
% wavelength is animated along with the wave package (in green).
% This will move with the phase velocity.
% Version: 5. October 2017, AIV

% NOTE: Due to the periodicity buried in a FFT, the wave pattern
% will only be valid if the animation stops before the wave
% pattern reaches the right end of the animation plot. If it
% turns up again at the left, the result is not valid.

% NOTE 2: You have to choose several values for the parameters
% in the program listing below!

% Choose first type of dispersion:
disp = -1.0; % -1,0,+1: normal, no, anomal dispersion

% Create a wave package IN SPACE (!)
N = 4000;
xmax = 40.0;
xlambda = 1.0; % Spatial wavelength
xsigma = 2.0; % Width of the package
[x,z] = pg_wpack(N,xmax,xlambda,xsigma);
plot(x,z,’-b’);

% Spatial frequency analysis, find amplitude and phase as a
% function of the wavenumber k
[A,phase,k] = pg_fft(z,N,xmax);

% Pick manually those points in the frequency plot with
% considerable amplitude (use pg_fft, last part).

http://www.physics.uio.no/pow
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imin = 23;
imax = 59;

% Determines omega(k) using the dispersion relation
[omega,deltat] = pg_omega(imin,imax,k,disp);

% Now the movement can be animated
[xavt] = ...

pg_animer(x,deltat,N,A,phase,k,omega,imin,imax,xmax,disp);
xavt; % Position to a peak in a monochromatic wave (moving at

% the phase velocity) after finishing the animation.
% Start value is xmax/8.Remove the semicolon to have
% this value written to the screen.

Create Wave Package in Space (at t = 0)

function [x,z] = pg_wpack(N,xmax,xlambda,xsigma)

% Create a wave package in space (!). Version Oct 5 2017 AIV
% Input parameters: N: Points in the description,
% xmax: Defines the interval x is defined ( |0,xmax>),
% xlambda: spatial wavelength for the central wavelengh,
% xsigma: the width in the gaussian shaped wave package.
% Returns: x array as well as the wave package array.

x = linspace(0,xmax*(N-1)/N,N);
xr = xmax/8.0; % Startpoint for the centre of the wave package
xfreq = 1/xlambda; % Spatial frequency
y = cos((x-xr)*2*pi*xfreq);
convol = exp(-((x-xr)/xsigma).*((x-xr)/xsigma));
z = y.*convol;
return;

Frequency Analysis of Wave Package in Space

function [A,theta,k] = pg_fft(z,N,xmax)

% Frequency analysis of a wave package in space.
% Version Oct 5 2017 AIV
% Input parameters: z: the array describing the wave package,
% N: number point in this description, xmax: describe the x
% interval |0, xmax>. Returns: Amplitude A and phase (theta)
% in the frequency analysis as a function of the wavenumber k.

Zf = fft(z)/N;
A = 2.0*abs(Zf); % Ignore the error in Zf(1), don’t use it
theta = atan2(imag(Zf),real(Zf));
xsamplf = N/xmax; % Spatial sampling frequency
xfreq = linspace(0,xsamplf*(N-1)/N,N); % Spatial frequency
k = zeros(1,N);
k = 2.0*pi*xfreq;
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% NOTE: Use the reminder of this function when you need to
% pick frequency components for your wave package. You need
% this in order to choose imin and imax in the program pg3.m
%figure;
%plot(A,’.-r’); % Plot to be able to choose points to be used
%plot(xfreq,A,’.-r’); % Alternative plot
%plot(xfreq,fase,’.-k’);
return;

Generate the Dispersion Relation omega(k)

function [omega,deltat] = pg_omega(imin,imax,k,disp)

% Generate the dispersion relation omega(k).
% Version Oct 5 2017, AIV
% Input parameters: imin, imax: first and last index that
% will be used in the function that creates the animation,
% k: the wavenumber array created by the function pg_fft,
% disp: -1, 0, or +1 represent normal, no and anomalous
% dispersion.
% Returns: omega: the dispersion relation omega(k),
% deltat: a suitable delta_t for the animation in order to
% get useful animation/plots.

if (disp==-1) % Normal dispersion (here vg = vp/2)
deltat = 0.015;
omegafactor = 44.0;
for i = imin:imax

omega(i) = omegafactor*sqrt(k(i));
end;

end;

if (disp==0) % No dispersion (here vf = const)
deltat = 0.015;
omegafactor = 9.5;
for i = imin:imax

omega(i) = omegafactor*k(i);
end;

end;

if (disp==1) % Anomal dispersion (here vg = 3vp/2)
deltat = 0.0065;
omegafactor = 5.5;
for i = imin:imax

omega(i) = omegafactor*(k(i)ˆ1.5);
end;

end;

figure;
plot(k(imin:imax),omega(imin:imax),’.-b’);
xlabel(’k (rel. units)’);
ylabel(’omega (rel. units)’);
return;
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Create a Sum of Harmonic Spatial Waves at a Given Time t

function [zrecon] = pg_wave(x,t,N,A,phase,k,omega,imin,imax)

% Generate the complete spatial wave using the Fourier
% coefficients. Version Oct 5 2017 AIV
% Input parameters: x: position array, t: current time,
% N: number of points, [A, phase, k]: amplitude, phase and
% wavenumber arrays, respectively, omega: the dispersion
% relation omega(k), [imin, imax]: minimum andmaximum index
% that will be used in the arrays A, phase and k.
% Returns: zrecon: the position of the marker which gives the
% position to where a peak with the central wavelength would
% have ended up (for verification of proper functioning).

zrecon = zeros(1,N);
for i = imin:imax % Sum over Fourier elements

arg = k(i)*x - omega(i)*t + phase(i);
zrecon = zrecon + A(i)*cos(arg);

end;
return;

Make an Animation of All Spatial waves

function [xavt] = ...
pg_animer(x,deltat,N,A,phase,k,omega,imin,imax,xmax,disp)

% Animation of a wave package during some time. To ease the
% understanding of the difference between phase and group
% velocity, a pure monochromatic wave with the central
% wavelength is animated along with the wave package.
% Returns how far the monochromatic wave has moved during
% the animation (indicates the phase velocity).
% Input parameters: See the explanations given in the
% functions pg3.m, pd:wpack.m, pg_fft.m, pg_omega.m and
% pg:wave.m Version: Oct 5 2017 AIV

figure;
count=1;
% The animation loop
for n = 1:200

% Calculate the wave at time t (manual IFFT)
t = deltat*n;
[zrecon] = pg_wave(x,t,N,A,phase,k,omega,imin,imax);
% Calculate also the wave with central spatial frequency
% in the distribution
imean = round((imin+imax)/2.0);
[zrecon0] = pg_wave(x,t,N,A,phase,k,omega,imean,imean);
% Calculate marking positions, start and end of movement
% at phase velocity
x00 = xmax/8.0;
xavt = x00 + t*omega(imean)/k(imean);
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% Plots everything
plot(x,2.5*zrecon0,’-g’, x,zrecon,’-b’, x00,0.25,’+r’, ...

xavt,0.25,’+r’);
xlabel(’Position (rel)’);
ylabel(’Amplitude (rel)’);
axis([0,xmax,-1.04,1.04])
title(’Movement to a blue wave package’);
S = sprintf(’Time: %.2f s’,t);
text(3.0, 0.8,S);
S = sprintf(’Xref: %.2f’,xavt);
text(3.0, 0.65,S);
S = sprintf(’Dispersion code: %.1f’,disp);
text(3.0, -0.8,S);
M(count)=getframe;
count=count+1;
M(count)=getframe;
count=count+1;

end;
% Animation is played with (1 x 20 frames per sec)
movie(M,1,20);
return;
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8.7 Learning Objectives

After going through this chapter, you should be able to:
• Perform numerical calculations of the time course of a one-dimensional
wave (with arbitrary shape) when there is no dispersion, based directly on
the wave equation.

• Explain the contents of the algorithm for such calculations.
• Explain the difference between phase and group velocity in general and
know how each is calculated.

• Explain how we can animate the time development of a wave packet.
• Know typical characteristics of how a wave packet develops over time when
there is no dispersion, normal dispersion and anomalous dispersion.

• Provide examples of physical systems with dispersive behaviour, both nor-
mal and anomalous.

• Perform numerical calculations of the time course for a one-dimensional
wave in dispersive media.

• Explain the contents of the algorithm for such calculations.
• Explain differences in gravity-driven waves in water and sound waves
through water.

• Explain the two different “restoring forces” of surface waves on water.
• Enter an approximate criterion for whether it is the surface tension or gravity
that dominates in a given case.

• Give examples of surface tension-driven waves and gravity-driven waves.
• Explain a model where we explain/describe waves by (small volumes of)
water following a circular motion.

• Find approximate expression of phase velocity and group velocity of waves
both in shallow and deep water, starting from the formula

v2
p(k) =

[
g

k
+ T k

ρ

]
tanh(kh) .

• Recapitulate the main features in Fig. 8.17.

8.8 Exercises

Suggested concepts for student active learning activities: Dispersion, group veloc-
ity, phase velocity, anomal/normal/no dispersion, mechanism for wavelength depen-
dence of the speed of light in glass, wave packet, wave envelope, gravity-driven
waves, capillary waves, high-speed camera, V-shaped wake.
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Comprehension/discussion questions

1. What do we mean by a dispersive medium? How will dispersion affect the wave
motion of a) a harmonic wave and b) a nonharmonic wave?

2. What is the difference between normal and anomalous dispersion?
3. What characterizes dispersion? What is a dispersion relation? Is the dispersion

responsible for the phenomenon that waves often come in almost parallel to a
sandy beach?

4. Indicate how a guitar string looks (amplitude vs position) just before we release
the string. Use the algorithm given in Fig. 8.3 to tell which parts of the string
will move in the first time step, second time step and third time step. Perhaps
you can guess how the string will actually vibrate?

5. The oscillatory pattern we encounter in the previous task (and in our calcula-
tions based on the program bolgeanimationX) corresponds to the real motion
of a guitar string during the first few oscillations. Eventually, sharp transitions
disappear. Can you imagine what physical characteristics of the string, not taken
into account here, would affect the fluctuations quite quickly? (Hint: Videos on
YouTube, which show a motion entirely in accord with our calculations, use
a rubber band rather than a proper guitar string to get the particular vibrating
behaviour found in our calculations.)

6. A common misconception about why light goes slower through glass than in
vacuum is that the photons are impeded by the glass. Such a view is confronted
with a problem when we come to explain that the velocity returns to its value in
air as soon as the light has passed the glass. Why is this hard to explain with the
aforementioned explanation/model?

7. Why do we use a wave packet in the calculations that give us animation of
dispersion?

8. Could you give some kind of explanation that the wavelength is different at the
beginning of a wave packet compared to the wavelength at the end of the pack
if we have normal or anomalous dispersion?

9. Are surface waves in water transverse or longitudinal waves? Explain.
10. Try to explain why we do not notice any effect of surface waves on water at a

depth that is large relative to the wavelength.
11. Explain why waves roll in with the wave peaks parallel to the water’s edge on a

longshore beach.
12. See the video of Chang and coworkers in Reference 3 above. Find a diagram

from the web that shows electron orbitals for the hydrogen atom. Compare the
diagrams of Chang et al. with quantum descriptions of atomic orbitals. Comment
on similarities and dissimilarities (Hint 1: 2D vs 3D; Hint 2: Quantum Physics
operates with wave functions; Hint 3: Quantization).

Problems

13. Set up amathematical expression (based onwavenumber and angular frequency)
for a plane, monochromatic harmonic wave. Comment on the phase velocity and
group velocity to the extent they are defined.
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14. Create your own program to calculate numerical solutions of the wave equation.
Feel free to take a look at the program shown under point Sect. 8.2.1 above. Test
that a wave described by Eqs.(8.8) and (8.9) appears as shown in Fig. 8.4. Then
make the following changes:
(a) Change the time derivative of the amplitude at the starting instant to the
negative of what it should have been. Complete the calculations and describe
what you observe.
(b) Reduce the time derivative of the amplitude at the starting instant to a half
of what it should have been. Complete the calculations and describe what you
observe.
(c) Use instead twice the time derivative of the amplitude instead of the correct
one at the starting instant. Complete the calculations and see what you observe
this time, paying attention to both amplitudes and phases.
(d) How do you want to create the initial conditions to simulate standing waves?
[Optional]
(e) What conclusion can you deduce from all the calculations in this task? With
a pendulum motion, we can choose position and velocity independently and
always get an oscillatory motion that is easy to understand. Does the same apply
to waves?

15. Modify the program you used in the previous task so that it can handle the case
of a one-dimensional wave along a string meets a material with a different phase
velocity. The wave should be able to continue into the new material and may
also be reflected at the point where the string changes property (may correspond
to the string changing mass per unit length). Attempt both with a 30% increase
in phase velocity and a 30% reduction in phase velocity. Describe the results and
comment on whether the results are consistent with what is described in Chap. 7
or not.

16. Make some simple sketches that show how you, before you do the calculations
(or get to know the results found by fellow students), envisage a guitar string
to vibrate. Write afterwards a computer program that calculates the motion of
a guitar string for at least a couple of vibration periods after the string has been
pulled, by means of a plectrum or fingernail, at a point that is at a distance of
about 1/3 of the string length from one end, and released from there (after being
at rest). Feel free to look at the program shown under point Sect. 8.2.1 above.
Describe the motion.
[Check after you have done the calculations, whether there is a match between
your calculations and YouTube movies mentioned in the text.]

17. Try to modify the computer program waveAnimationX based on the algorithm
in Eq. (8.5) early in this chapter so that it can be used to describe the movement
of a triangular wave as depicted in Fig. 8.22 for the case where the waveform
is conserved during the movement. The wave will eventually hit a fixed/closed
boundary and is reflected. Compare the result with the left side of Fig. 7.2.

18. Try to describe how the triangular wave in the previous problem will develop if
it runs through a dispersive medium. In this case, a procedure based on Fourier
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Fig. 8.22 A triangular wave
that moves towards higher
x-values. Suppose that the
shape is unchanged at first
until it hits a wall. See the
problem text

v

x

y

decomposition in spatial components described in the end of this chapter should
be used. Do not include the reflecting wall in this case.

19. Check through your own calculation that the wavelength is about 1.7cm when
surface waves on water are controlled as much by surface tension as by gravity.
Surface tension for clean water at 25 ◦C is 7.197 × 10−2 N/m.

20. Determine the phase velocity of surface waves on “deep” water at a wavelength
of 1.7cm (Tip: Use the information from the previous task.).
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Chapter 9
Electromagnetic Waves

Abstract This chapter starts with the integral form ofMaxwell’s equations—one of
the greatest achievements in physics. The equations are transformed to differential
form and used, in concert with important assumptions, to derive thewave equation for
a plane, linearly polarized electromagnetic wave. The wave velocity is determined
by electric and magnetic constants valid also at static/stationary conditions. The
electromagnetic spectrum is presented as well as expressions for energy transport
and radiation pressure. It is emphasized that the simple plane-wave solution is often
invalid due to the effect of boundary conditions; we need to discriminate between
near- and far-field conditions. At the end, a brief comment on the photon picture of
light is given.

9.1 Introduction

Of all the wave phenomena that are consequential to us humans, sound waves and
electromagnetic waves occupy a prominent position. Technologically speaking, the
electromagnetic waves rank the highest.

We are going to meet, in many of the remaining chapters, electromagnetic waves
in various contexts. It is therefore natural that we go into some depth for the sake
of describing these waves; it is not true that all electromagnetism can be reduced to
electromagnetic waves. That means, we must be careful to avoid mistakes when we
treat this material.

Of all the chapters in the book, this is the most mathematical. We start with
Maxwell’s equations in integral form and show how their differential versions may
be deduced. It will then be shown that Maxwell’s equations can lead, under certain
conditions, to a simple wave equation. Electromagnetic waves are transverse, which
means that the complexity of the treatment is somewhat larger than for longitudinal
sound waves.

The chapter takes it for granted that the reader has previously taken a course in
electromagnetism, and is familiar with such relevant mathematical concepts as line
integrals and surface integrals. It is also a great advantage to know Stokes’s theorem,
the divergence theorem and those parts of vector calculus which relate to divergence,
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A. I. Vistnes, Physics of Oscillations and Waves, Undergraduate Texts in Physics,
https://doi.org/10.1007/978-3-319-72314-3_9

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72314-3_9&domain=pdf


260 9 Electromagnetic Waves

gradient and curl, and it is vital that the reader knows the difference between scalar
and vector fields before embarking on the chapter.

As already mentioned, mathematics pervades this chapter. Nonetheless, we have
tried to point to the physics behind mathematics, and we recommend that you too
devotemuch time for grapplingwith this part. It is a challenge to grasp the orderliness
of Maxwell’s equations in its entirety.

Experience has shown that misunderstandings related to electromagnetism arise
frequently. A common misconception, incredibly enough, is that an electromagnetic
wave is an electron that oscillates up and down in a direction perpendicular to the
direction of propagation of the wave. Other misapprehensions are harder to dispel.
For example, many believe that the solution of the wave equation is “plane waves”
and that the Poynting vector always describes energy transport in the wave.We spend
some time discussing such misunderstandings and hope that some readers will find
this material useful.

At the end of the chapter is a list of useful mathematical relations and a memo-
randum of how electrical and magnetic fields and flux densities relate to each other.
It may be useful for a quick reference and for refreshing material previously learned.

Let us kick off with Maxwell’s stupendous systematization (and extension) of all
that was known about electrical and magnetic laws in 1864.

9.2 Maxwell’s Equations in Integral Form

Four equations connect electric and magnetic fields:
1. Gauss’s law for electric field:

∮
#»
E · d #»A = Qinside

εrε0
(9.1)

2. Gauss’s law for magnetic field:

∮
#»
B · d #»A = 0 (9.2)

3. The Faraday–Henry law:

∮
#»
E · d #»l = −

(
dΦB

dt

)
inside

(9.3)

3. The Ampère–Maxwell law:

∮
#»
B · d #»l = μrμ0

[
i f + εrε0

(
dΦE

dt

)
inside

]
(9.4)
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We expect that you are familiar with these laws, and therefore do not go into
great detail about how to interpret them or what the symbols mean. In the first
two equations, the flux is integrated over a closed surface and compared with the
source within the enclosed volume (electrical monopole, i.e. charge, and magnetic
monopole, which are non-existent). The vector d

#»

A is positive if it points outward of
the enclosed volume.

In the last two equations, the line integral is calculated for electrical or magnetic
fields along a curve that limits an open surface. The line integral is compared with
the flux of magnetic flux density or electrical flux density as well as flux of electrical
currents due to free charges through the open surface. The signs are then determined
by the right-hand rule (when the four fingers on the right hand point in the direction
of integration along the curve, the thumb points in the direction corresponding to the
positive flux).

Prior knowledge of these details is taken for granted.
The symmetry is best revealed if the last equation is written in the following form:

∮
#»
H · d #»l =

[
i f +

(
dΦD

dt

)
inside

]
. (9.5)

Here, use has been made of the following relationship between the magnetic field
strength

#»
H and the magnetic flux density

#»
B:

#»
H = #»

B/(μrμ0)

where μ0 is (magnetic) permeability in vacuum and μr is relative permeability.
Use has also been made of the following relationship between the electric field

strength
#»
E and the electric flux density

#»
D (also called “displacement vector”):

#»
E = #»

D/(εrε0)

where ε0 is the (electrical) permittivity in vacuum and εr the relative permittivity.
The left-hand sides of Eqs. (9.3) and (9.5) are line integrals of field strengths (

#»
E

and
#»
H), whereas the right-hand sides are the time derivative of the flux through the

enclosed surface plus, for the latter equation, the current density due to free charges.
The flux is obtained by integrating the pertinent flux density (

#»
B or

#»
D) over the

surface.
The contents of Maxwell’s equations are given an approximate verbal rendering

below:

• There are two sources of electric field. One source is the existence of electrical
charges (which may be regarded as monopoles). Electric fields due to charges are
radially directed away from or towards the charge, depending on the signs of the
charges. (This is the content of Gauss’s law for electric field.)

• The second source of electric field is a time-varying magnetic field. Electrical
fields that arise in this way have a curl (or circulation); that is, the field lines tend
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Fig. 9.1 James Clerk
Maxwell (1831–1879).
Public domain [1]

to form circles across the direction along which the magnetic field changes in time.
Whether there are circles or some other shape in space depends on the boundary
conditions. (This is the content of Faraday’s law.)

• There are two contributions to magnetic fields as well, but there are no magnetic
monopoles. Therefore, magnetic fields will never flow out radially from a source
point similar to electric field lines near an electrical charge. (This is the content of
Gauss’s law for magnetic fields.)

• On the other hand,magnetic fields can arise, as in the case of electric fields, because
an electric field varies over time. An alternative way of generating a magnetic field
is to have free charges inmotion that form a net electric current. Both these sources
provide magnetic fields that tend to form closed curves across the direction of the
time variation of the electric field or the direction of the net electrical current.
However, the shape of these closed curves in practice is entirely dependent on the
boundary conditions. (This is the content of the Ampère–Maxwell law.)

It was the physicist and mathematician James Clerk Maxwell (1831–1879,
Fig. 9.1)) who distilled all knowledge of electrical and magnetic laws then avail-
able in one comprehensive formalism. His publication “A Dynamical Theory of
Electromagnetic Field”, published in 1865, shows that it is possible to generate elec-
tromagnetic waves and that they travel with the speed of light. His electromagnetic
theory is considered to be on a par with Newton’s laws and Einstein’s relativity the-
ory. The original 54-page long article (https://doi.org/10.1098/rstl.1865.0008 Phil.
Trans. R. Soc. Lond. 1865 vol. 155, pp. 459–512) can be downloaded for free from:
The Royal Society.

Maxwell–Heaviside–Hertz: However, the four Maxwell’s equations, as we know them today,
are far from the equations Maxwell himself presented in “A Treatise on Electricity andMagnetism”

https://doi.org/10.1098/rstl.1865.0008
http://rstl.royalsocietypublishing.org/content/155/459
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Fig. 9.2 Michael Faraday (1791–1897). Parts of an old 10-pound banknote from Great Britain

in 1865. His original article consisted of 20 equations with 20 unknowns. Maxwell did not use the
vector field formalism familiar to us.

Oliver Heaviside (1850–1925) gave in 1884 the equations in about the form we use today.
Heaviside, who was from a poor home, left school when he was 16 and receive no formal education
subsequently. Nevertheless, hemade a number of important contributions to physics. It is fascinating
to read about him, for example, in Wikipedia. (There are certain similarities between Heaviside and
Faraday. Faraday’s story is also fascinating, and highly recommended to read, and is even honoured
on a British banknote; see Fig. 9.2. Heaviside did not receive similar recognition.)

The German physicist Heinrich Hertz (1857–1894) was the first to demonstrate how we can
send and receive electromagnetic waves. It happened in 1887 when Hertz was 30years old.

It is interesting that Hertz is honoured by a number of stamps from many different countries,
while Maxwell is far from getting the same honour.

Recapitulation from electromagnetism: It might be appropriate to begin with a little repetition
of some details here. We will later see that magnetic permeability and, in particular, electrical
permittivity play an important role in electromagnetic waves. The values in vacuum μ0 and ε0 are
rather uninteresting. They are primarily related to the choice of units for electrical and magnetic
fields.

The relative values, however, are of far more interest. The relative (magnetic) permeability is
related to how much magnetic field is generated in a material when it is exposed to an external
magnetic field. In a diamagnetic material, a tiny magnetic field is generated in the material, and the
field is directed opposite the external magnetic field. Even in a paramagnetic material, only a tiny
magnetic field is generated, but it is in the same direction as the extraneous field. The magnetic field
generated in the material is only of the order of 10−5 times the external magnetic field in each of
these cases. In a ferromagnetic material, a significant magnetic field is generated inside the material,
and it is in the same direction as the applied field. There are many details related to these processes,
and we do not deal with these here.

Since most of the substances we come in contact with are either diamagnetic or paramagnetic,
we can simply set the relative permeability equal to 1.0 and ignore the interaction of the magnetic
field with materials in the processes we are going to discuss.

For the electrical field, it is different. The relative (electrical) permittivity tells us something about
the amount of electrical field that occurs inside a material when subjected to an external electric
field. In Fig. 9.3, a schematic representation of what is happening is given. An external electric field
will cause the electron cloud around an atomic core to shift slightly. However, since there are so
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EE = 0

Fig. 9.3 In a material such as glass, an external electric field can easily cause a polarization of the
charge distribution in each individual atom of the material. This polarization leads to an electric
field inside the material directed opposite to the applied electric field

many atoms, even an almost negligible shift in position of the negatively charged electron clouds
relative to the positively charged nuclei, the generated electric field inside the material can easily
reach the same magnitude as the outer electric field (e.g. half the size).

There is no talk of moving free charges here, only of a local distortion of the charge distribution
of each individual atom, which imparts, nonetheless, a polarization to the entire material. Note that
we are talking about “polarization” in a certain sense. We will soon talk about polarization in a
completely different context, so it is imperative that you do not mix different terms with the same
name!.

9.3 Differential Form

We will now show how we can go from the integral form of Maxwell’s equations to
the differential form. The integral form can be applied to macroscopic geometries,
for example to find the magnetic field at a distance of 5 m from a straight conductor
where there is a net electrical current. The differential form applies to a small region
of space. How “small” this might be is a matter for discussion. Maxwell’s equations
were developed before we had a proper knowledge of the structure of atoms and
substances on the microscopic level. Maxwell’s equations in differential form are
often used in practice on an intermediate length scale that is small in relation to the
macroscopic world and yet large compared to atomic dimensions.

In going over from the integral to differential form, twomathematical relationships
are invoked that apply to an arbitrary vector field

#»

G in general:

Stokes’s theorem (more correctly the Kelvin–Stokes theorem, since the theorem
first became known through a letter from Lord Kelvin. George Stokes (1819–1903)
was a British mathematician/physicist. Lord Kelvin (1824–1907), whose real name
was William Thomson, was a physicist/mathematician contemporary of Stokes.)
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Stokes’s theorem: ∮
#»

G · d #»l =
∫

A
(∇ × #»

G) · d #»A . (9.6)

The theorem provides a relation between the line integral of a vector field and
the flux of the curl of the vector field through the plane limited by the line.

The second relationshipweuse is thedivergence theorem (discovered byLagrange
and rediscovered by several others). Joseph Louis Lagrange (1736–1813) was an
Italian/French mathematician and astronomer:

Divergence theorem: ∫
∇ · #»Gdv =

∮
A

#»

G · d #»A . (9.7)

The divergence theorem provides the connection between divergence to a
vector field in a volume and the flux of the vector field through the surface
which bounds the volume.

Gauss’s law for electric field:
We start with Gauss’s law for electric field.

εrε0

∮
#»
E · d #»A = Qinside .

By using the divergence theorem, we get:

∮
εrε0

#»
E · d #»A =

∫
∇ · (εrε0

#»
E) dv = Qinside .

We now choose such a small volume that ∇ · (εrε0
#»
E) is approximately constant

over the entire volume. This constant can then be taken outside the integral sign,
and integration over the volume element simply gives the small volume �v under
consideration. Accordingly:

∫
∇ · (εrε0

#»
E) dv ≈ (∇ · #»D)�v = Qinside

∇ · #»D = Qinside

�v
= ρ

where ρ is the local charge density. We are led thereby to Gauss’s law for electric
fields in differential form:
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∇ · #»D = ρ . (9.8)

Gauss’s law for magnetic field:
The same approach leads us to the differential form of Gauss’s law for magnetic
field:

∇ · #»B = 0 . (9.9)

The Faraday–Henry law:
We will now rephrase Faraday’s law. The starting point is thus:

∮
#»
E · d #»l = −

(
dΦB

dt

)
inside

.

The application of Stokes’s theorem now gives:

∮
#»
E · d #»l =

∫
A
(∇ × #»

E) · d #»A = −
(
dΦB

dt

)
inside

.

The magnetic flux through the surface can be expressed as:

ΦB =
∫

A

#»
B · d #»A .

Hence,

∫
A
(∇ × #»

E) · d #»A = − d

dt

∫
A

#»
B · d #»A

= −
∫

A

∂
#»
B

∂t
· d #»A .

In taking the last step, we have assumed that the area element dA does not change
with time. In addition, we have changed the ordinary derivative to partial derivative
since the magnetic flux density

#»
B depends on both time and spatial relationships, but

we assume that spatial conditions do not change in time. Again, for a small enough
area A, the functions to be integrated can be regarded as constants and placed outside
the integral signs, which leads to the result:

∇ × #»
E = −∂

#»
B

∂t
. (9.10)

This is Faraday’s law in differential form.

The Ampère–Maxwell law:
The same procedure can be used to show the last of Maxwell’s equations in a differ-
ential form, namely the Ampère–Maxwell law. The result is:
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Fig. 9.4 Maxwell’s equations on a T-shirt

∇ × #»
H = #»

j f + ∂
#»
D

∂t
(9.11)

where
#»

j f is the electric current density of the free charges.
Einstein had pictures of Newton, Maxwell and Faraday in his office, indicating

how important he thought their works to be. It is therefore not surprising that the
Physics Association at UofO has chosen Maxwell’s equations on their T-shirts (see
picture 9.4) as a symbol of a high point in physics, a high point as regards both how
powerful equations are and howmathematically elegant they are! (It should be noted,
however, that mathematical elegance did not seem to be as polished at Maxwell’s
time as it is today.)

Collected:

Let us assemble all of Maxwell’s equations in differential form:

∇ · #»D = ρ (9.12)

∇ · #»B = 0 (9.13)

∇ × #»
E = −∂

#»
B

∂t
(9.14)

∇ × #»
H = #»

j f + ∂
#»
D

∂t
(9.15)
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Maxwell’s equations in the presence of the Lorentz force

F = q(
#»
E + #»v × #»

B)

form the full basis for classical electrodynamic theory.

9.4 Derivation of the Wave Equation

The wave equation can be derived fromMaxwell’s equations using primarily the last
two equations along with a general relation that applies to an arbitrary vector field G:

∇ × (∇ × #»

G) = −∇2 #»G + ∇(∇ · #»G) . (9.16)

In words, the relation states that “the curl of the curl of a vector field is equal
to the negative of the Laplacian applied to the vector field plus the gradient of the
divergence of the vector field” (pause for breath).

Application of this relation to the electric field yields:

∇ × (∇ × #»
E) = −∇2 #»E + ∇(∇ · #»E) .

We recognize the curl of the electric field in the expression on the left-hand side.
Replacing it by Faraday’s law, interchanging the right and left side of the equation,
and changing the sign, we get:

∇2 #»E − ∇(∇ · #»E) = −∇ ×
(

−∂
#»
B

∂t

)
. (9.17)

On the right-hand side, we change the order of differentiation to find:

= ∂

∂t
(∇ × #»

B) .

Applying now the Ampère–Maxwell law, and using the relation

#»
B = μrμ0

#»
H

we get:

= ∂

∂t

[
μrμ0

(
∂
#»
D

∂t
+ #»

j f

)]
. (9.18)
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For the left-hand side of Eq. (9.17), Gauss’s law is used for electric field to replace
the divergence of electric field in the second link on the left side with charge density
ρ divided by total permittivity.

∇2 #»E − ∇ρ

εrε0
. (9.19)

By equating the right-hand side of (9.19) to the left-hand side of (9.18), and
transposing some terms, we end up with:

∇2 #»E − εrε0μrμ0
∂2 #»E
∂t2

= ∇ρ

εrε0
+ μrμ0

∂
#»

j f

∂t
. (9.20)

This is a nonhomogeneous wave equation for electric fields. The source terms are
on the right side of the equality sign.

In areas where the gradient of charge density ρ is equal to zero (i.e. no change
in electrical charge density), while there is no time variation in electrical current
density

#»

j f of free charges, the inhomogeneous equation is reduced to one simple
wave equation:

∇2 #»E − εrε0μrμ0
∂2 #»E
∂t2

= 0

or in the more familiar form:

∂2 #»E
∂t2

= 1

εrε0μrμ0
∇2 #»E . (9.21)

Well, to be honest, this is not an ordinary wave equation, as we have seen before,
since we have used the Laplacian on the right-hand field. In detail, we have:

∇2 #»E =
(

∂2Ex

∂x2
+ ∂2Ex

∂y2
+ ∂2Ex

∂z2

)
#»

i

+
(

∂2Ey

∂x2
+ ∂2Ey

∂y2
+ ∂2Ey

∂z2

)
#»

j

+
(

∂2Ez

∂x2
+ ∂2Ez

∂y2
+ ∂2Ez

∂z2

)
#»

k . (9.22)

We search now for the simplest possible solution and investigate if there is a
solution where

#»
E is independent of both x and y. In that case, all terms of the type

∂2Eu/∂v2 will vanish, where u = x, y, z and v = x, y. If such a solution is possible,
it will involve a planar wave that moves in the z-direction, since a plane wave is just
unchanged in an entire plane perpendicular to the wave direction of motion.

Equation (9.22) then reduces to the following simplified form:
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∇2 #»E =
(

∂2Ex

∂z2

)
#»

i +
(

∂2Ey

∂z2

)
#»

j +
(

∂2Ez

∂z2

)
#»

k = ∂2 #»E
∂z2

(9.23)

and Eq. (9.21) along with Eq. (9.23) finally gives us a common wave equation:

∂2 #»E
∂t2

= c2
∂2 #»E
∂z2

(9.24)

where

c = 1√
εrε0μrμ0

. (9.25)

is the phase velocity of the wave.
We already know that one solution of the wave equation, Eq. (9.24), is

#»
E = #»

E0 cos(kz − ωt) (9.26)

where
#»
E0 is a constant vector whose direction can be chosen arbitrarily within the

x − y-plane.

Let us now see whether we are able to derive a wave equation for the magnetic
field. To this end, we start with Eq. (9.16), but apply it to the magnetic flux density
and write

−∇2 #»B + ∇(∇ · #»B) = ∇ × (∇ × #»
B) .

We use next the Ampère–Maxwell law in order to replace the curl of
#»
B with the time

derivative of the electric flux density
#»
D plus the current density of free charges. As in

the corresponding derivation for the electric field, we interchange the order of time
and space derivatives, obtaining thereby a term containing the curl of

#»
E. We invoke

Faraday’s law and the vanishing of the divergence of
#»
B (Gauss’s law for magnetic

fields), to arrive finally at the following equation for
#»
B:

∇2 #»B − εrε0μrμ0
∂2 #»B
∂t2

= −μrμ0∇ × #»

j f . (9.27)

We observe that the magnetic flux density also satisfies an inhomogeneous wave
equation, in which the source term is the curl of the current density of free charges.
For regions of space which are source-free, we obtain a homogeneous wave equation.
We seek the simplest solution to the equation, and ask, as we did in the case of the
electric field, whether a plane-wave solution exists for a wave propagating in the
z-direction. With the same simplifications as those used earlier, we obtain
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∂2 #»B
∂t2

= c2
∂2 #»B
∂z2

(9.28)

where the wave velocity c is precisely that given in Eq. (9.25), applicable to the
electric field.

We already know that, in this case as well, the equation does have a solution,
which can be written in the form:

#»
B = #»

B0 cos(kz − ωt) (9.29)

where
#»
B0 is a constant vector whose direction is essentially arbitrary.

9.5 A Solution of the Wave Equation

Equations (9.26) and (9.29) are valid solutions of the twowave Eqs. (9.24) and (9.28),
respectively. But the solutions must also satisfy Maxwell’s equations individually,
in practice the Ampère–Maxwell law and Faraday’s law.

We start with Faraday’s law

∇ × #»
E = −∂

#»
B

∂t

and substitute the solution for the electric field (9.26) (in determinant form):

∣∣∣∣∣∣∣∣

#»

i
#»

j
#»

k
∂

∂x

∂

∂y

∂

∂z
Ex Ey Ez

∣∣∣∣∣∣∣∣
= −∂

#»
B

∂t

{(
∂ Ez

∂y
− ∂ Ey

∂z

)
#»

i −
(

∂ Ez

∂x
− ∂ Ex

∂z

)
#»

j +
(

∂ Ey

∂x
− ∂ Ex

∂y

)
#»

k
}

= −∂
#»
B

∂t
.

For the plane-wave solution sought by us, partial derivatives with respect to x or
y will vanish, and the expression takes the simpler form shown below:

−∂ Ey

∂z
#»

i + ∂ Ex

∂z
#»

j = −∂
#»
B

∂t
.

We already notice that
#»
B cannot have any component in the z-direction, that is, the

direction of propagation of the wave. A similar analysis using Ampère–Maxwell’s
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law shows that nor can
#»
E have a z-component (except for a static homogeneous field,

which is of no interest in the present context).
We choose now the following solution for

#»
E:

#»
E = E0 cos(kz − ωt)

#»

i (9.30)

which means that Ey = 0, hence also Ey = 0 and also ∂ Ey/∂z = 0
Consequently,

∂ Ex

∂z
#»

j = k E0 sin(kz − ωt)
#»

j = −∂
#»
B

∂t
.

This equation will be satisfied if

#»
B = B0 cos(kz − ωt)

#»

j . (9.31)

Furthermore, since

−∂
#»
B

∂t
= ωB0 sin(kz − ωt)

#»

j

and the (phase) velocity of this plane wave is ω/k which must be equal to c from
Eq. (9.25), we also get an important connection between electric and magnetic field
in an electromagnetic wave:

E0 = cB0 . (9.32)

We have then shown that one possible solution to Maxwell’s equations for a
space where no charges are present is a planar electromagnetic wave

#»
E = E0 cos(kz − ωt)

#»

i (9.33a)
#»
B = B0 cos(kz − ωt)

#»

j (9.33b)

where
E0 = cB0

You are reminded that solutions of wave equations generally depend on a
great extent on boundary conditions. In our derivation, we have searched for a
solution that gives a planar wave. In practice, this amounts to assuming that the
area under consideration is located far from the source of the wave, as well as
free charges and currents generated by such charges. The plane-wave solution
is therefore, in principle, never a perfect solution of Maxwell’s equations, but
an exact solution may in some cases be quite close to a planar wave solution.
It is our task as physicists to decide whether or not we can model real field
distribution with a plane-wave description in each case. See the description of
the near field and far field given below.



9.5 A Solution of the Wave Equation 273
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Fig. 9.5 A snapshot of the simplest form of electromagnetic wave, namely a plane wave. Such a
wave can be realized sufficiently far from the source of the wave and frommaterials that can perturb
the wave. Experience has shown that figures of this type cause many misunderstandings, which are
discussed in the last part of this chapter

Since Maxwell’s equations are linear, we can have plane electromagnetic waves
in addition to other electrical or magnetic fields with completely different character-
istics. The sum of all contributions will then not follow the relationships given in the
blue box above!

Figure9.5 shows a snapshot of an electromagneticwavewith properties as given in
Eq. (9.33). Such a static figure does not give a good picture of the wave. It is therefore
advisable to consider an animation to get an understanding of time development.
There are several animations of a simple electromagnetic wave on the Web (but
some of them have wrong directions of the vectors!).

9.6 Interesting Details

What determines the speed of light?
We saw in the derivation of the wave equation that electromagnetic waves have a

phase velocity

c = 1√
εrε0μrμ0

. (9.34)
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In vacuum, εr = 1 and μr = 1, and the velocity of the wave becomes

c0 = 1√
ε0μ0

. (9.35)

This is simply an expression for the velocity of light in vacuum.

It must have been a wonderful experience for Maxwell when he first understood
this. The speed of light was known, but not associated with any other physical param-
eters. Then,Maxwell derives the wave equation and finds that the equations allow for
the existence of electromagnetic waves, and—as it happens—these waves will prop-
agate with the familiar speed of light! The surprise must have been particularly high
because the speed of light closely follows the electrical and magnetic constants ε0
and μ0, which were determined by static electrical and static magnetic phenomena.

In glass, the velocity of light is given by Eq. (9.34), but for glass μr is practically
equal to 1. That means that it is simply the relative electrical permittivity of the
glass, which causes light to be slower in glass than in vacuum. This too is surprising
since the relative permittivity can be determined by putting a glass plate between two
metal plates and measuring change in capacitance between the metal plates. Even
this measurement can be made by using static fields, and equally this quantity plays
an important role for light oscillating with a frequency of the order of 1015 times per
second!

There is no dispersion in vacuum, but in a dielectric material dispersionmay occur
because εr (and/or μr ) is wavelength dependent. We discussed this in Chap. 8 when
treated dispersion and the difference between phase velocity and group velocity.

It will be noted that when we discuss the passage of light through glass, we are
dealing with a material constant called refractive index n which varies slightly from
one glass to another. The phase velocity of light is lower in glass than in vacuum.
The refractive index n can be defined as the ratio of the light velocity in vacuum to
the light velocity in glass: n = c0/c. The word refractive index will be explained in
detail when we in Chap. 10 describe how light rays change direction when the beam
is inclined towards an interface between air and glass or the other way round (Snel’s
law).

Glass is diamagnetic and μr ≈ 1.0. From the above expressions, then the
refractive index is approximately equal to the square root of the relative per-
mittivity:

n ≈ √
εr . (9.36)

Relative permittivity is also called dielectric constant.
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Plane wave
The wave we have described is plane because the electric field at a given instant is

identical everywhere in an infinite plane normal to the wave propagation direction z.
Another way of expressing this is to say that the “wavefront” is plane. The wavefront
of a plane wave is a surface of constant phase (i.e. the argument of the sine or cosine
function is identical at all points of the surface at a given time).

The fact that the electric field everywhere is directed in the ±x-direction is a
characteristic feature of the solution we have found. We say that the wave is lin-
early polarized in the x-direction. We return to polarization in Chap. 10, but already
mention here that another solution to Maxwell’s equations is a so-called circularly
polarized wave. For such a solution, the electric field vectors in a snapshot corre-
sponding to Fig. 9.5 will look like the steps in a spiral staircase, and the arrows
themselves will form a “spiral” whose axis coincides with the z-axis. The magnetic
field will also form a spiral, and in this case too the electric and magnetic fields will
be perpendicular to each other and perpendicular to the direction of propagation. You
can find nice animations of circularly polarized electromagnetic waves on the Web.

In addition, we will return later to an important discussion of the validity of the
simple electromagnetic waves we have described so far.

9.7 The Electromagnetic Spectrum

In deriving the wave equation for electromagnetic waves, we placed (initially) no
restrictions on the frequencies and wavelengths. In principle, more or less “all”
frequencies (with the corresponding wavelengths) were eligible for consideration.

It turns out also in practice that we can generate electromagnetic waves for a wide
range of frequencies (and wavelengths). Figure9.6 shows an approximate overview
of the frequency ranges/wavelength ranges we operate in, what we call the waves at
different frequencies and what such waves are used for. We say that figures like 9.6
present “the electromagnetic spectrum”.

Figures of this type must be taken with a large pinch of salt. They seduce many
people into thinking that there exist tidy plane waves at each of the specified fre-
quencies, but that is not the case. The spreading of waves in time and space, energy
transport (or its absence) and several other factors vary widely from one frequency
to another. We will come back to this a little later in this chapter.

9.8 Energy Transport

When we discussed sound, we saw that a sound wave carry energy many metres
away from the source, although the molecules that contributed to the transmission
through oscillatory motion only moved back and forth over distances of the order of
1µm or less (when we ignore the diffusive motion of the molecules).
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Fig. 9.6 Electromagnetic waves can exist in an impressive range of frequencies (and corresponding
wavelengths). Surveys such as thismay, however, give an impression of a greater degree of similarity
between different phenomena than it is in practice. We will come back to this, for example, when
we discuss the difference between near field and far field later in the chapter

In a similar manner, an electromagnetic wave can carry energy, something we all
experience when we bask in the Easter sun on a mountain or when we lie on a sunny
beach in summer.

An electric field has an energy density given by:

uE (z, t) = 1
2 E(z, t)D(z, t) .

Similarly, the energy density of a magnetic field is given by:

uH (z, t) = 1
2 H(z, t)B(z, t) .

Whenaplane electromagneticwave (as described above) passes, the instantaneous
energy density will be:
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utot(z, t) = 1
2 E(z, t)D(z, t) + 1

2 H(z, t)B(z, t)

= 1

2
E0 cos() εE0 cos() + 1

2
B0 cos()

B0

μ
cos() .

The arguments of the cosine function have been omitted in order to avoid clutter.
But we know that E0 = cB0. In addition, we want to look at the time-averaged

energy density, and we know that the mean value of cos2() is equal to half. Conse-
quently, we find for the time-averaged energy density:

ūtot = 1

4
εE2

0 + 1

4μ

(
E0

c

)2

.

Now, energy density is energy per unit volume. How much energy will cross a
hypothetical surface A perpendicular to the direction of wave motion over a time
�t? Such a quantity defines the (time-averaged) wave intensity:

I = intensity = Energy passed by

Area × Time
= utot × c .

The expression is relevant only when we consider a long time compared to the
time a wavelength needs to pass our surface. Intended for the energy density we
found in town, we get:

I = 1

4

(
cεE2

0 + c
1

c2μ
E2
0

)
.

But we know that

c = 1√
εμ

from which follows the relation
1

c2μ
= ε

and we see that the energy contributions from the electric field and the from the
magnetic field are precisely equal!

Consequently, the intensity of an electromagnetic wave is given by the expres-
sion:

I = 1
2cεE2

0 = 1
2cE0D0 . (9.37)

By using the familiar ratio between electric and magnetic fields, the result can
also be written as follows:
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I = 1

2
c
1

μ
B2
0 = 1

2
cH0B0 . (9.38)

If we choose to specify the strength of the electric and magnetic fields in terms of the
effective values instead of the amplitudes, Eqs. (9.37) and (9.38) can be recast as:

I = cεE2
eff = cEeff Deff (9.39)

and
I = c

μ
B2
eff = cHeff Beff . (9.40)

A small digression: The term “effective value” can be traced to alternating current terminology.
We can then state the amplitudes of harmonically varying current and voltage, butwe can also specify
the equivalent value of direct current and direct voltage that supply the same power to a given load;
these direct current/voltage values are called effective values. In our case of electromagnetic waves,
it is rather artificial to speak of direct currents and suchlike, yet we speak of effective values in the
same way as for alternating currents and voltages in a wire.

We can also derive another expression that connects electrical and magnetic fields
to an electromagnetic wave in the remote field. Going back to Eqs. (9.39) and (9.40),
and using the relationship B = μH , we get:

cεE2
eff = c

μ
B2
eff = cμH 2

eff

and are led thereby to the relation:

Eeff

Heff
= √

μ/ε .

For vacuum, we obtain:

Eeff

Heff
= √

μ0/ε0 ≡ Z0 = 376.7Ω (9.41)

where Z0 is called the (intrinsic) impedance of free space.

The expressions have a greater scope than that warranted by our derivation. How-
ever, we must be careful about using the terms of electromagnetic waves in regions
near sources and near materials that can interfere with the waves. We refer to the
so-called near field and far field a little later in this chapter.
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9.8.1 Poynting Vector

There is a more elegant way to specify energy density (equivalent to intensity) than
the expressions presented in the previous section. The elegance is a consequence
of the fact that plane electromagnetic waves are transverse, with the electrical and
magnetic vectors perpendicular to each other and to the direction of propagation of
the wave.

We saw that if the electric field was directed in x-direction and magnetic field
in y-direction, the wave moved in z-direction. We know that for the cross-product,
the relation

#»

i × #»

j = #»

k holds, which suggests that we may be able to utilize this
relationship in a smart way.

We try to calculate:

#»
E × #»

B = E0 cos()
#»

i × E0

c
cos()

#»

j

= cE2
0

c2
cos2()

#»

k

= μ(cεE2
0) cos

2()
#»

k .

The time-averaged values are (using Eq. (9.37) in the last part):

#»
E × #»

B = μ(
1

2
cεE2

0)
#»

k = μI
#»

k .

Since B = μH , it follows that:

#»

i = #»
E × #»

H . (9.42)

Here, we have introduced an intensity vector that points in the same direction as the
energy flow.

More often,we operatewith the instantaneous intensity in the formof a “Poynt-
ing vector”. This is usually designated by the symbol S or P . We choose the
first variant and write:

#»

S = #»
E × #»

H . (9.43)

Poynting vector provides us with a nice expression of energy flow in an elec-
tromagnetic wave.

However, the Poynting vector can be used only in the trouble-free cases
where we have a simple plane electromagnetic wave far from the source and
far away from disturbing elements. Put in another way: it can only be used
in the far-field region (see below) where the electromagnetic fields are totally
dominated by pure electrodynamics.
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The English physicist John Henry Poynting (1852–1914) deduced this expression
in 1884, 20 years after Maxwell wrote his most famous work.

9.9 Radiation Pressure

The electric and magnetic fields will exert a force on particles/objects struck by
an electromagnetic wave. It is possible to argue that the electric field in the wave
causes “forced oscillations” of charges, and that moving charge, in turn, experiences
a force

#»
F = q #»v × #»

B. This force works in the same direction as that in which the
electromagnetic wave moves.

It can be shown that an electromagnetic wave causes a radiation pressure given
by:

pradiation = Stime-avg/c = I/c

if the wave is completely absorbed by the body being taken. If the body reflects
the waves completely, the radiation pressure becomes twice as large, i.e.

pradiation = 2Stime-avg/c = 2I/c .

In both of these terms, Stime-avg is the absolute value of the time-averaged
Poynting vector. The direction of the radiation pressure is usually identical to
the direction of the Poynting vector.

It is the radiation pressure that causes the dust in a comet to always turn away
from the sun. The gravitational pull exerted by sun on the dust is proportional to the
mass, which in turn is proportional to the cube of the radius. The force due to the
radiation pressure is proportional to the surface (cross section) that can absorb or
reflect the wave, and the cross section goes as the square of the radius. This results
in gravity dominating over radiation pressure for large particles, while the converse
happens for small particles.

It is possible to regard radiation pressure as a flow rate of electromagnetic momen-
tum. In such a picture, it can be said that the momentum per time and per unit surface
moving with the wave is equal

Stime-avg/c

which is the same expression as for radiation pressure when the body absorbs the
wave completely.

The description above applies in the event that light is either absorbed or totally reflected on
the surface of a material. The situation is different for light passing through a transparent medium.
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There are two different descriptions of how the momentum of light changes when light enters a
transparent medium. In one description, it is claimed that the momentum increases, and in another
description, the opposite is claimed. This is an optical dilemma that partly depends on whether light
is regarded as waves or as particles. In this way, there is a clear parallel between the dilemma we
have today and the dilemma that existed from the seventeenth century to about 1850 mentioned in
the previous chapter, where we wondered whether the group velocity of light in glass was larger or
smaller than the phase velocity.

If you want to learn a little more about today’s dilemma, start by reading a popular scientific
article by Edwin Cartlidge in Physics World.

9.10 Misconceptions

First: A small reminder …

Note that nothing actually protrudes from an electromagnetic wave. For any
arbitrary point in space, the field itself changes the value. The field has a
direction in space, but no arrows shoot out to the side and no sinusoidal
curves are found along the wave. It is therefore a totally different situation
than when, for example, we pluck a guitar string where the string actually
moves across the longitudinal direction.

9.10.1 Near Field and Far Field

We have repeatedly reminded the reader of this chapter that the electromagnetic
waves we have derived in Eq. (9.33) and illustrated in Fig. 9.5 are the simplest wave
solutions of Maxwell’s equations. Usually, these relationships do not apply to time-
dependent electromagnetic phenomena in general! To understand this, we need to
look more closely at the details in our derivation.

First, we ended up with inhomogeneous differential equations in Eqs. (9.20) and
(9.27) as a result of combining Maxwell’s equations. Only by ignoring the source
terms did we arrive at the simple homogeneous wave equations that became the
starting point for the plane-wave solution.

Even if there are no charges and currents in the region of our interest, fields from
nearby regions can have a big influence. For example, will electric fields from charge
distributions in an antenna and magnetic fields from electric currents in an antenna
dominate the electromagnetic fields pattern nearby the antenna, even if it is placed
in vacuum. This pattern is not what we find in an electromagnetic wave.

A rule of thumb in this context is that we use the word “nearby” for distances
up to a few times the calculated wavelength (λ = c/ f ), and/or up to several times

https://physicsworld.com/a/both-answers-correct-in-century-old-optics-dilemma/
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Fig. 9.7 “Near fields” dominate the electromagnetic field pattern at a distance up to the order of
a calculated wavelength λ = c/ f away from charges/electrical currents. In the near-field zone, the
solution of Maxwell’s equations is often very different from the solution in the far-field zone (far
from the source of the fields and far from disturbing elements)

the extent of the object in space away from a region where there are free charges
or currents. In regions that are influenced by boundary conditions in the broadest
sense, we find “near fields”, as opposed to “far fields”, which we find in areas where
boundary conditions have almost no influence (Fig. 9.7).

It may be useful to think about how far the near-field region extends from different
sources. For a light source, the wavelength is about 500nm. The near-field range
extends a few times this distance away from the source, i.e. of the order of a few
microns (thousands of millimetres) away from the source.

For a mobile phone that operates at 1800MHz, the calculated wavelength is about
16cm. A few times this distance takes one over to the far-field zone.

To sum up:

For the far-field region, the following relationships we have established for
simple plane electromagnetic waves are:
1. The electric and magnetic fields are perpendicular to each other.
2. There is a fixed ratio between electric and magnetic fields.
3. The Poynting vector provides a measure of transport of electromagnetic

energy.
4. The energy that passes a cross section has left the source once and for all

and does not (normally) return.
5. It may therefore be natural to use theword “radiation” for energy transport.
For the near-field zone, however, the following applies:

1. The electric and magnetic fields are normally not perpendicular to each
other.

2. There is no a fixed ratio between electrical and magnetic fields.
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3. The Poynting vector does not provide a measure of transport of electro-
magnetic energy.

4. Energy can build up in the vicinity of the source for some periods of time,
but retracts again in other periods of time. Only, a tiny part of the energy
that goes back and forth to the vicinity will leave the source like waves
(and this energy transport is generally not apparent before we get into the
far-field zone).

5. It is therefore not natural to use the word “radiation”. We describe the
situation more like “fields”.

9.10.2 The Concept of the Photon

I would like to append a few comments concerning the term “photon”.

Themajority of today’s physicists believe that light is best described as elementary
particles, called photons.

A photon is perceived as an “indivisible wave packet or energy packet” with a
limited extension in time and space. The word photon was originally used for visible
light where the wavelength is of the order of 500nm (the Greek word “phos” means
“light”). This means that even a wave packet containing quite a few wavelengths will
be tiny compared to macroscopic dimensions. In this case, then, it is not particularly
odd that we perceive this as a “particle”. The notion of the indivisible energy packet is
assigned the energy E = hνwhere h denotes Planck’s constant and ν is the frequency.

Problems soon arise with “photons” in the realm of mobile telephony (and radio
waves). In that case, a wave packet consisting of a few wavelengths will inevitably
occupy a spatial extent of several metres (up to kilometres). Does it make sense to
regard such a packet as “indivisible” and to think that energy is exchanged instanta-
neously from the antenna to the packet and from the latter to surrounding space?

For power lines and 50Hz fields, the problem is even worse. For 50Hz, a wave
packet of several times the wavelength would soon extend to dimensions comparable
to the perimeter of the earth! We then get serious problems imagining a photon that
extends several times thewavelength.And ifwe consider the photon as small particles
instead of an extended wave packet, it will be problematic to explain wavelengths
and a variety of other properties. Furthermore, the distribution of electrical and
magnetic fields near power lines is significantly different from that of light. This
can be grafted into a quantum mechanical description, but then one has to resort
to strange special variants where the quantum mechanical description really only
mimics classic electromagnetism.

A description based on Maxwell’s equations gives us a formalism that scales
smoothly from STATIC electric and magnetic fields to electromagnetic waves with
frequencies even larger than the frequency of visible light. Electromagnetism also
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provides a powerful explanation of the speed of light and what affects it, and the
transformations of the special theory of relativity also come naturally out of electro-
magnetism.

Nevertheless, problems arise with the description of the interaction between a
classical electromagnetic wave (or an electromagnetic field) and atomic processes.
This is because classical electromagnetism cannot be used to describe atomic tran-
sitions.

In spite of this, I am among the physicists who believe that Maxwell’s equations
and electromagnetism are by far preferable to the photon concept for describing
the vast majority of currently known phenomena, but not those involving atomic
transitions. In my opinion, we have so far not reviewed the interaction between elec-
tromagnetic waves and atomic transitions with sufficient thoroughness. I represent a
minority, but this minority is not getting smaller—quite the contrary, in fact. I mean
that the last word has not been written about how physicists will think in the coming
50 years.

In a separate tract, I will explore this knotty issue and will not delve into it here.

9.10.3 A Challenge

Hitherto, we have seen that for both oscillations and mechanical waves there is an
alternation between two energy forms as the oscillation/wave evolves. For example,
for the mass–spring oscillator the energy changed in time between potential and
kinetic energy, and the sum was always constant. In a travelling sound wave, at
every point in space where the wave is passing, the energy density changes between
potential energy (pressure) and kinetic energy, and the sum is always constant. For
a travelling wave along a string, it is likewise.

For a travelling electromagnetic wave, it is not easy to see the same pattern. The
electric field has the maximum at the same time and place as the magnetic field, at
least for a plane. Have we overlooked something?

I suspect something is missing in our standard descriptions of electromagnetic
waves. I have an idea I will follow up in the coming years. Perhaps this is a gauntlet
you too want to take up?

9.11 Helpful Material

9.11.1 Useful Mathematical Relations

Here, we list some useful relationships from the mathematics you have hopefully
met earlier:

Common to all expressions is that we operate with a scale field:

φ = φ(x, y, z)
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and a vector field
#»a = ax

#»

i + ay
#»

j + az
#»

k .

A gradient is defined as:

gradφ ≡ ∇φ ≡ ∂φ

∂x
#»

i + ∂φ

∂y
#»

j + ∂φ

∂z

#»

k .

The divergence is defined as:

div #»a ≡ ∇ · #»a ≡ ∂ax

∂x
+ ∂ay

∂y
+ ∂az

∂z
.

The divergence of a gradient is:

div grad φ ≡ ∇ · (∇φ) ≡ ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
≡ �φ .

The curl is defined as:
curl #»a ≡ ∇ × #»a ≡

∣∣∣∣∣∣∣∣

#»

i
#»

j
#»

k
∂

∂x

∂

∂y

∂

∂z
ax ay az

∣∣∣∣∣∣∣∣
=

(
∂az

∂y
− ∂ay

∂z

)
#»

i +
(

∂ax

∂z
− ∂az

∂x

)
#»

j +
(

∂ay

∂x
− ∂ax

∂y

)
#»

k .

Notice what are vector fields and what are scalar fields. In general:

• A gradient converts a scalar field into a vector field.
• A divergence works the other way.
• Div-grad starts with a scalar field, passes through a vector field and ends with a
scalar field again.

• A curl, in contrast, starts with a vector field and ends with a vector field.

The symbol ∇ is involved in different operations depending on whether it works
on a scalar field or a vector field, and it is especially challenging to use ∇2 on a
vector since we must then use the Laplacian on each of the components in the vector
separately:

∇2a =
(

∂2ax

∂x2
+ ∂2ax

∂y2
+ ∂2ax

∂z2

)
#»

i

+
(

∂2ay

∂x2
+ ∂2ay

∂y2
+ ∂2ay

∂z2

)
#»

j
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+
(

∂2az

∂x2
+ ∂2az

∂y2
+ ∂2az

∂z2

)
#»

k .

Some other useful relations appear below:

curl gradφ = ∇ × (∇φ) = 0 ,

div curl a = ∇(∇ × a) = 0 ,

curl(curla) = grad(diva) − �a = ∇ × (∇ × a) = ∇(∇ · a) − ∇2a .

9.11.2 Useful Relations and Quantities in Electromagnetism

Here are some relationships fromelectromagnetismas a refresher of prior knowledge:

• Electric field strength
#»
E is measured in V/m.

• Electric flux density
#»
D is measured in C/m2.

• Magnetic field strength
#»
H is measured in A/m.

• Magnetic flux density
#»
B is measured in T.

• E-flux density is also often referred to as electric displacement.
• Free space electrical permittivity ε0 is measured in F/m = (As)/(Vm) and defined
as

ε0 ≡ 1

μ0c20
≈ 8.854188 × 10−12 F/m

• The relative permittivity εr is usually a number larger than 1.0.
• Free space magnetic permeability μ0 is measured in H/m and defined as:

μ0 ≡ 4π × 10−7 H/m ≈ 1.256637 × 10−6 H/m

• The relative permeability μr is close to 1.0 for most materials. Ferromagnetic
materials are an exception.

• The speed of light in vacuum is given exactly as:

c0 ≡ 299,792,458m/s

The SI basic units are now the speed of light in vacuum and the second. The length
1 metre is no longer one of the basic units!

• The relation between field strengths and flux densities is as follows:

#»
D = εrε0

#»
E

#»
B = μrμ0

#»
H
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9.12 Learning Objectives

After working through this chapter, you should be able to:
• Convert Maxwell’s equations from integral to differential form (assuming
Stokes’s theorem and divergence theorem are given).

• Derive the wave equation for electromagnetic field in vacuum provided that
Eq. (9.16) is given.

• Explain what simplifications are introduced in the derivation of the wave
equation for electromagnetic fields in vacuum.

• Explain which part of Maxwell’s equations is responsible for an electro-
magnetic wave to travel through free space.

• Explain carefully the difference between “plane wave” and polarization.
• Specify the amount of energy transport in a plane electromagnetic wave.
• Apply the Poynting vector and know the limitations of this concept.
• State and apply expression of radiation pressure in an electromagnetic field
in a plane wave.

• Explain what we mean by near field and far field and why these sometimes
are very different.

• Explain the characteristics of electromagnetic fields that differ in the two
zones.

• Explain some problems using the photon term for all electromagnetic
fields/waves.

9.13 Exercises

Suggested concepts for student active learning activities: Electromagnetic wave,
line integral, surface integral, vector field, near field, far field, pure electrodynam-
ics, polarization, dielectric, index of refraction, relative permittivity, electromagnetic
spectrum, energy density, energy transport, radiation pressure.

Comprehension/discussion questions

1. It is not easy to comprehend Fig. 9.5 correctly. It is so easy to think of waves in
a material way, similar to surface waves on water. However, an electromagnetic
wave is much more abstract, since it is just the abstract quantities of electric and
magnetic fields that changes with position and time. Discuss if it becomes easier
to comprehend Fig. 9.5 if we state that an electric and magnetic field actually
change the property of the space locally (even in vacuum) and that it is this
changed property of space that moves as the electromagnetic wave passes by.

2. Explain briefly how to characterize a region in space where the divergence of the
electric field is different from zero. Similarly, explain briefly how to characterize
a region in space where the curl of the electric field is different from zero.
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3. In going from the integral form of Maxwell’s equations to the differential form,
we use an argument based on the “intermediate” scale of length/volume. What
do we mean by this?

4. Suppose wemeasure the electric and magnetic fields in an electromagnetic wave
in the far-field zone. Can we determine the direction of the waves from these
measurements?

5. We apply an alternating voltage across a capacitor, or we send an alternating
current through a solenoid. Attempt to find the direction of the electric and
magnetic fields and relative magnitudes. Will these fields follow the well-known
laws that apply to the electric and magnetic fields for plane electromagnetic
waves?

6. It is sometimes said that for an electromagnetic wave in vacuum, the electric
and magnetic fields are perpendicular to each other. Magnetic fields and electric
fields do not have this relationship to one another a short distance from a solenoid
(“coil”), even if it is in vacuum and high-frequency electric and magnetic fields
are present. What causes this?

7. Is polarization a property of all electromagnetic waves, not just light waves? Can
sound waves have a polarization? By the way: What do we mean by “polariza-
tion”?

8. An electromagnetic wave (e.g. strong light) may have an electric field of about
1000V/m. Could it lead to electric shock if one is exposed to this powerful light?

9. The magnetic field in intense laser light can be up to 100 times as powerful as
the earth’s magnet field. What will happen if we shine with this laser light on
the needle of a compass?

10. Poynting vector indicates the power in an electromagnetic wave. Can we use the
Poynting vector to calculate the power that springs from a power line to residents
nearby? Explain your answer.

11. If you flash with the light from an electric torch, would you experience a recoil
similar to that one gets on firing a gun? Discuss your answer.

12. In any physical system/phenomenon, one may identify a length scale and a
timescale.What is meant by such a statement when we consider electromagnetic
waves?

13. A person measures the electric field E and the magnetic field B in vacuum for
the same frequency f and position, but finds that E/c � B. Is this an indication
of malfunction for one of the two instruments used in the measurements?

14. In several equations in this chapter, the relative electrical permittivity εr is
included.
(a) The speed of light is linked to this quantity. How?
(b) The relative permittivity tells us something about what physical processes
take place when light travels through glass. What processes are we thinking
about?
(c) Many think that it makes sense that light slows down on going from air or
vacuum to glass, but they find it hard to understand that light regains the original
speed upon leaving the glass.What, in your opinion, accounts for their difficulty?
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Problems

15. Show that a plane electromagnetic wave in vacuum satisfies all four Maxwell’s
equations.

16. Write down Maxwell’s equations in integral form, and state the correct names
for them. Give a detailed derivation of Ampére’s law in differential form.

17. The derivation of the wave equation fromMaxwell’s equations follows about the
same tricks whether one uses them to arrive at the wave equation for the electric
field or for the magnetic field. Make a list showing which steps/tricks are used (a
relatively short account based on essential points without going into detail will
suffice).

18. Find the frequency of yellow light of wavelength 580nm. Do the same with
wavelength of about 1 nm. The fastest oscilloscopes available now have a sam-
pling rate in the range of 10–100GHz. Can we use this kind of oscilloscope
to see the oscillations in electric fields in the X-ray waves? What about yellow
light?

19. An electromagnetic wave has an electric field given by
#»
E(y, t) = E0 cos(ky −

ωt)
#»

k . E0 = 6.3 × 104 V/m, and ω = 4.33 × 1013 rad/s. Determine the wave-
length of the wave. In which direction does the wave move? Determine

#»
B (vec-

tor). If you make any particular assumptions in the calculations, these must be
stated.

20. An electromagnetic wave of frequency 65.0Hz passes through an insulating
material with a relative permittivity of 3.64 and relative permeability of 5.18 for
this frequency. The electric field has an amplitude of 7.20 × 10−3 V/m. What is
the wave speed in this medium? What is the wavelength in the medium? What
is the amplitude of the magnetic field? What is the intensity of the wave? Are
the calculations you have made really valid? Explain your answer.

21. An intense light source radiates light equally in all directions. At a distance of
5.0m from the source, the radiation pressure on a surface that absorbs the light
is approximately 9.0 × 10−9 Pa. What is the power of the emitted light?

22. Aground surfacemeasurement shows that the intensity of sunlight is 0.78 kW/m2.
Estimate the power the radiation pressure will exert on a 1m2 large solar panel?
State the assumptions you make. As a matter of interest, we may mention that
the atmospheric pressure is about 101,325Pa (about 105 Pa).

23. For an electromagnetic wave, it is assumed that the electric field at one point
is aligned in the x-direction and magnetic field in the −z-direction. What is
the direction of propagation of the wave? What if the fields were in the −z- and
y-direction, respectively?Did youmake any assumption for finding the answers?

24. An ordinary helium–neon laser in the laboratory has a power of 12mW, and the
beam has a diameter of 2.0mm. Suppose the intensity is uniform over the cross
section (which is completely wrong, but it can simplify the calculations). What
are the amplitudes of the electric and magnetic fields in the beam? What is the
average energy density of the electric field in the beam? What about the energy
density in the magnetic field? How much energy do we have in a 1.0m long
section of the beam?
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25. Measurements made a few hundred metres from a base station indicated an elec-
tric field of 1.9V/m and a magnetic field of 1.2mA/m (both at about 900MHz).
A knowledgeable person concluded that the measurements were not mutually
consistent. What do you think was the reason for this conclusion?

26. Measurements at the ground just a few tens ofmetres from a power line registered
an electric field of 1.2kV/mand a “magnetic field” of 2.6µT (microtesla) (both at
50Hz). In practice, it is often magnetic flux density reported at low frequencies,
but we can convert from B to H , and then find that 2.6µT corresponds to the
magnetic field value 2.1A/m. Is there correspondence between electric field and
magnetic field in this case? Comment on similarities/differences between the
situations in the previous task and in this task.

27. One day, the electric and magnetic fields are measured at the same location near
the power line as in the previous task, and the values are found to be 1.2kV/m
and 0.04A/m. Can we conclude that there is something wrong with one of the
measuring instruments in this case?

28. According to Radiation Protection Info 10–11: Radio Frequency Fields
in our Environment (Norwegian Radiation Protection Agency)
(http://www.nrpa.no/filer/5c7f10ca06.pdf, available 10 May 2018), the “radi-
ation” from base stations, wireless networks, radio, etc., is less than 0.01W/m2

across our country. Calculate the electric field and magnetic field equivalent to
0.01W/m2 if we think that the radiation is dominated by mobile phone commu-
nications from a base station at 1800MHz.

29. When we use a mobile phone somewhere where the coverage is poor so that
the phone gives maximum power, the mobile phone supplies about 0.7–1.0W
power while communicating. Calculate the intensity 5cm from themobile phone
if you assume an isotropic intensity around the phone. Compare the value with
measured intensities from base stations, wireless networks, etc., given in the
previous task.

30. It is not customary to report the “radiation” from a mobile phone in terms of
power density (intensity) measured in W/m2, but in Specific Absorption Rate
(SAR).
(a) Search the Web to find out about SAR. State the URL for the source you are
using.
(b) Explain what SAR implies and what is the SAR unit?
(c) What do you think is the reason why such a unit has been adopted in this
case, even though we use power density from base stations and suchlike, with
about the same frequency as the mobile phone?

31. Let us consider interplanetary dust in our solar system. Suppose the dust is
spherical and has a radius of r and a density of ρ. Suppose all radiation that
hits the dust grain is absorbed. The sun has a total radiated power of P0 and
a mass M . The gravity constant is G. The distance from the sun is R. Derive
an expression that indicates the relationship between the power exerted by the
radiation pressure from the sun rays to the dust grain and the gravitational force
between the sun and the dust grain. Determine the radius of the dust when
the two forces are equal as we insert realistic values for the quantities that are

http://www.nrpa.no/filer/5c7f10ca06.pdf
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involved. (ρ = 2.5 × 103 kg/m, P0 = 3.9 × 1026W, M = 1.99 × 1030 kg, G =
6.67 × 10−11 Nm2/kg2).

32. Relate the gravitational force between the earth and the sun, and the force on
the earth due to the radiation pressure from the sun. The earth’s mass is 5.98 ×
1024 kg. You can estimate the radius of the earth by recalling that the distance
between a pole and the equator is about 10,000km.

Reference

1. PD, https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell_big.jpg. Accessed April
2018

https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell_big.jpg


Chapter 10
Reflection, Transmission and Polarization

Abstract In this chapter, Maxwell’s equations are used for deducing laws of
reflection/transmission of an electromagnetic wave entering an idealized plane
boundary between two insulators, e.g. air (or vacuum) and glass. The expression
for the Brewster angle is derived and Fresnel’s equations are presented. Snel’s law is
derived using the principle of minimum time. Emphasis in the last part of the chapter
is put on polarization and how it may be changed by the use of birefringent material
like calcite or polarization filters. Use of polarization in polariometry as well as in
stereoscopy is mentioned, and a brief comment on evanescent waves is given.

10.1 Introduction

In Chap. 9, we found that a plane electromagnetic wave with the phase velocity

c = 1√
ε0εrμ0μr

= 1√
ε0μ0

1√
εrμr

= c0√
εrμr

is a possible solution of Maxwell’s equations in an infinite homogeneous medium
containing no “free charges”. The symbols have their usual meanings.

The speed of light in a medium (without free charges) is the quotient of the speed
of light in vacuum c0 and the refractive index n for the medium:

c ≡ c0
n

.

The vastmajority ofmediawe are going to consider are diamagnetic or paramagnetic.
This applies, for example, to optical glass, for which μr ≈ 1.00. As a result, we may
write:

n ≈ √
εr .
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In other words, the index of refraction is, in a manner of speaking, directly related
to the “polarization susceptibility” of the medium, and the relative permittivity is a
measure of this. The more easily an external electric field can distort the electron
cloud around the atoms from their equilibrium positions, the slower is the speed of
light in that medium.

For substances whose atoms are arranged in a regular and special way, as in a
calcite crystal, it is easier to displace the electron clouds away from equilibrium
when the electric field has one particular direction relative to the crystal than other
directions. This causes light to travel more slowly (through the crystal) for one
orientation of the crystal relative to the direction of light polarization than for other
orientations. Calcite crystals, which have this property, are said to be birefringent.
Doubly refracting materials are widely used in modern optics.

Other substances have the property that they only transmit light with the electric
field in a particular orientation. Such substances can be used as so-called polarization
filters, which are used in photography, material characterization, viewing 3Dmovies,
and in astronomy.

We will treat birefringence and polarization filters in this chapter, but we start
by analyzing how waves are partially reflected and partially transmitted when they
strike an interface between two different media (in contact with each other). Again,
Maxwell’s equations are central to the calculations.

A running topic throughout the chapter is polarization, but polarization appears
in two quite different contexts. Be careful not to confuse them!

10.2 Electromagnetic Wave Normally Incident
on An Interface

Generally, there are infinitely many different geometries and as many different solu-
tions of Maxwell’s equations when an electromagnetic wave reaches an interface
between two media. We need to simplify enormously in order to extract regularities
that can be described in a mathematically closed form.

In this section, we will use the Faraday–Henry law together with an energy
balance sheet to find out what fraction of an electromagnetic wave is reflected
and what is transmitted when the wave enters, for example, from air into glass.
We assume that the electromagnetic wave is approximately plane and strikes
normally a plane interface between two different homogeneous media without
free charges. We make the following assumptions for the second medium and
the interface:
1. Assume that the medium itself is homogeneous within a volume of λ3

where λ is the wavelength.
2. Assume that the interface is flat over an area much greater than λ2.
3. Assume that the thickness of the interface ismuch less than thewavelength

λ.
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As long as we consider light of wavelength in the 400–800nm range travelling
through glass, where the atoms are a few tenths of a nanometre apart, these three
assumptions are reasonably well fulfilled. But the conditions are certainly not met in
all common cases. When light goes through raindrops, the drops are often so large
that we can almost use the formalism that will be derived presently. But when the
drops are so small that the above conditions are not met, Maxwell’s equations must
be used directly. For drops that are small, we get the so-called Mie scattering, which
produces not a regular rainbow but an almost colourless arc.

Also for electromagnetic waves in completely different wavelength ranges than
light, it is difficult to satisfy the three assumptions. Take for example X-rays with
wavelength around 0.1nm. Then, the wavelength is about the same as the distance
between the atoms. For radio waves as well, the assumptions cannot be easily sat-
isfied. This means that the laws to be deduced in this chapter are often limited in
practice to electromagnetic waves in the form of visible light, or in any case nearby
wavelengths.

The purpose of the followingmathematics in this chapter is to derive useful expres-
sions, but also to point out clearly the assumptions we base the calculation on. This
is important so that we can judge the validity of the formulas in different contexts.
Within the rapid growing field of nanotechnology, it becomes clear that common
expressions are not applicable everywhere.

So, let us study what happens when an electromagnetic wave meets an interface
head on. Let us suppose that the three above assumptions are satisfied and thatwe send
electromagnetic waves normally to the interface. Part of the wave will be reflected
at the interface and travel back in the original medium, while the rest of the wave is
transmitted into the next medium and continues there. In Fig. 10.1, the three waves
are drawn in a manner that brings out their main features. The waves that are drawn
in can be considered, for example, as one component of the electric field (in a given
direction perpendicular to the normal to the interface). The index of refraction on
the left side of the figure is n1 and that on the right side n2, and we have not yet
said anything about which of these is the larger. For the same reason, we have not
considered whether the reflected wave would have the opposite sign to the incoming

Fig. 10.1 An
electromagnetic wave
travelling perpendicular to
another medium is partially
reflected and partially
transmitted. The waves are
depicted separately in order
to indicate instantaneous
electric fields for each of
them

E i

E t

E r

1n 2n
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Fig. 10.2 Integration path
(blue arrows) and electric
field (red arrows) defining
positive directions when
applying Faraday’s law to
find relations between
electric fields from different
components. See the text for
details

Ei

Et
Er

1n 2n

dl

dl

a

b

d

c

L
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wave at the interface itself. We proceed tentatively, and calculate the signs shown in
the figure, and we will discuss the details later.

First step: Faraday’s law

We choose the rectangular integration path shown in Fig. 10.2 with a length L and
width w. The integration path is oriented so that the long sides are parallel to the
electric fields of the electromagnetic wave. We are ready to apply Faraday’s law:

∮
#»
E · d #»l = −

(
dΦB

dt

)
inside

. (10.1)

We deal with the line integral first:

∮
#»
E · d #»l =

∫
ab

+
∫
bc

=0

+
∫
cd

+
∫
da

=0

= (Ei + Er )L − Et L .

The integrals along bc and da contribute nothing because the paths are perpendicular
to the electric fields; the first integral is positive, and the last negative, because, as
shown in Fig. 10.2, the field is oppositely directed to the line element in the latter
case.

As for the right-hand side of Eq. (10.1), our assumption that the interface is
infinitely thin makes it permissible to choose w, and therefore the area A = Lw, to
be arbitrarily small. Next, we express ΦB as a surface integral, and get the simple
result:

−
(
dΦB

dt

)
inside

= − d

dt

∫
A

#»
B · d #»A ≈ 0

the last step being a consequence of the smallness of the area A.
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The foregoing manipulations of Eq. (10.1) lead us to the result:

Ei L + Er L − Et L = 0

which implies that

Ei + Er = Et . (10.2)

We can apply a similar reasoning to the Ampére-Maxwell law to get

Hi + Hr = Ht .

Second step: Energy conservation

We can also set up an energy balance sheet: All energy incident per unit time on the
interface must be equal to the energy that leaves the interface per unit time. We know
from Chap. 9, that the intensity of an electromagnetic wave is given by:

I = cutot = 1
2c

#»
E · #»D = 1

2cε0εr E
2

where utot is the energy density in the wave, and c is the speed of light in the medium
under consideration. The energy balance sheet comes out to be:

1
2c1ε0εr1E

2
i = 1

2c1ε0εr1E
2
r + 1

2c2ε0εr2E
2
t ,

c1εr1(E
2
i − E2

r ) = c2εr2E
2
t ,

c1εr1(Ei + Er )(Ei − Er ) = c2εr2E
2
t .

But, since Ei + Er = Et :

c1εr1(Ei − Er ) = c2εr2Et .

Let us examine the constants appearing above. To this end, we recall the expression,
given earlier in this chapter, for the speed of light:

c1 = c0
n1

≈ c0√
εr1

.

Multiplying by εr1 and replacing the ≈ sign with equality, we get
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c1εr1 = c0√
εr1

εr1

= c0
√

εr1 = c0n1 .

Substituting this expression (and its counterpart for medium 2) in Eq. (10.2), we
obtain

n1(Ei − Er ) = n2Et . (10.3)

Third step: Combine

We combine now Eqs. (10.2) and (10.3) and eliminate, to begin with, Et in order to
find a relation between Ei and Er :

n1Ei − n1Er = n2Ei + n2Er

(n1 − n2)Ei = (n1 + n2)Er .

The ratio between the amplitudes of the reflected and transmitted waves is
found to be:

Er

Ei
= n1 − n2

n1 + n2
. (10.4)

We see that the right-hand side can be positive (n1 > n2), negative (n1 < n2)
or zero (n1 = n2).

For n2 > n1, the ratio is negative, which means that Er has a sign opposite
to that of Ei (i.e. to say, Er is in the opposite direction to that indicated in
Fig. 10.1).

For n2 < n1, the expression in Eq. (10.4) is positive, which means that Er has the
same sign as Ei (i.e. Er has the direction shown in Fig. 10.1).

Let us conclude by combining Eqs. (10.2) and (10.3) by eliminating Er in order
to find a relation between Ei and Et . This gives:

n1Ei − n1Et + n1Ei = n2Et .

The ratio between the amplitudes of transmitted and incident waves is easily
found:

Et

Ei
= 2n1

n1 + n2
. (10.5)
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We see that the electric field of transmitted wave has always the same sign as
that of the incident wave.

Equations (10.4) and (10.5) provide the relationship between electric fields on
both sides of the interface. When we judge how much of the light is reflected and
transmitted,wewant to look at the intensities.Wehave already seen that the intensities
are given by expressions of the type:

Ii = 1

2
c1ε0εr,1E

2
i ≈ 1

2
c0ε0n1E

2
i .

We are led to the following relation between the intensities:

Ir
Ii

= n1E2
r

n1E2
i

=
(
n1 − n2
n1 + n2

)2

(10.6)

and
It
Ii

= n2E2
t

n1E2
i

=
(

2n1
n1 + n2

)2

× n2
n1

. (10.7)

If we choose to look at what happens at the interface between air and glass
(refractive index 1.00 and 1.54, respectively), we get:

Reflected:
Ir
Ii

=
(
0.54

2.54

)2

≈ 0.045 .

Transmitted:
It
Ii

=
(

2

2.54

)2

× 1.54 ≈ 0.955 .

Thus, we see that about 4.5% of the intensity of light normally incident on an
air–glass surface is reflected, while about 95.5% is transmitted. This is the case
when the glass surface has not received any special treatment (“anti-reflection
coating”).

Finally, it may be noted that the reflection at the surface leads to the creation of
some standing waves in the area in front of the interface.
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10.3 Obliquely Incident Waves

10.3.1 Snel’s Law of Refraction

Willebrord Snel of Royen was born in the Netherlands in 1580. He later changed his name to
Willebrord Snellius and died in 1626. His name should be written either as Snel or Snellius, but it
is most commonly spelled as Snell. We have chosen the original name Snel.

Snel’s law of refraction gives us the relation between the inclination of a light
ray before it strikes an interface between two materials and its inclination after
the interface.

The law of refraction can be derived in several ways. We will use “Fermat’s
principle” which is also called principle of minimum time. Fermat’s principle is
expressed in our times by saying that the optical path lengthmust be stationary.
Speaking a little imprecisely, this means that for the route along which light
transports energy (“where light actually goes”), optical path length is the same
(in the first approximation) for an array of optical paths that are close to one
another. Thismeans that the optical path lengthmust be amaximum,minimum
or stationary for small variations in the selected path. When we deduce Snel’s
law of refraction, we use the minimum as the criterion.

We refer to Fig. 10.3. A beam of light is sent from the point P in a medium
with refractive index n1 to P ′ in a medium with refractive index n2. We assume in
the figure that n2 > n1. Since light travels faster in medium 1 than in medium 2,
the shortest time to cover the distance between the two points will be achieved by
travelling a little longer in medium 1, instead of travelling along the straight line
connecting the two points. If we use the symbols in the figure, it follows that the time
for travel is:

Fig. 10.3 In the derivation
of Snel’s law of refraction,
we use the coordinates given
in this figure. The angles θ1
and θ2 are called the
“incident angle” and the
“refraction angle”,
respectively. See also the text

P

P´

(0,y)

(x,0)

(X,Y)

n1

n2

1

2
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t =
√
x2 + y2

c0/n1
+

√
(X − x)2 + Y 2

c0/n2

= 1

c0

(
n1

√
x2 + y2 + n2

√
(X − x)2 + Y 2

)
.

The independent variable here is x and the minimum time can be determined by
setting dt/dx = 0, and this gives:

dt

dx
= 1

c0

(
n1

1
2 × 2x√
x2 + y2

+ n2
1
2 (X − x) × 2 × (−1)√

(X − x)2 + Y 2

)
= 0 ,

n1x
√

(X − x)2 + Y 2 − n2(X − x)
√
x2 + y2 = 0 ,

n1
n2

= (X − x)
√
x2 + y2

x
√

(X − x)2 + Y 2
= X − x√

(X − x)2 + Y 2

sin θ2

×
√
x2 + y2

x

1/ sin θ1

.

We arrive finally at the refraction law commonly attributed to Snel:

n1
n2

= sin θ2

sin θ1

or
n1 sin θ1 = n2 sin θ2 . (10.8)

Fermat’s principle has clear links to Huygen’s principle and also the thinking
behind quantum electrodynamics (CED). The waves follow all possible ways, but
in some cases the waves reinforce each other, and in other cases, they will oppose
each other. In other words, it is interference that is actually running the show, and
the central idea behind this phenomenon is the role played by the relative phases
of the different contributions. The “minimum time” criterion achieves the desired
result automatically, since minimum time means that many waves, which we can
imagine to have been sent from P , will take close to the minimum travel time
and all these waves will automatically have the same phase and therefore interfere
constructively.
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10.3.2 Total Reflection

Total reflection is of course an important effect that anyone who likes to dive under-
water knows well. The point is that if light goes from a medium with refractive
index n1 to a medium with index n2 and n1 > n2, the “incidence angle” θ1 will be
smaller than the “refraction angle” θ2 for the transmitted beam. We can first send the
beam normally to the interface and then gradually increase the angle of incidence.
The refraction angle will then gradually increase and will always be greater than the
incidence angle.

Sooner or later, we will have an angle of incidence that leads to a refraction angle
of almost 90◦. If we increase the angle of incidence further, we will not be able to
satisfy Snel’s law, because the sine of an angle cannot exceed unity.

The incidence angle (θc) forwhich the angle of refraction is 90◦, called the “critical
angle”, is found by setting θ1 = θc and θ2 = 90◦ in Snel’s law:

n1 sin θc = n2 sin θ2 = n2 sin 90
◦ = n2 .

The critical angle of incidence can be expressed as:

sin θc = n2
n1

. (10.9)

If the angle of incidence is increased beyond the critical angle, there will no
longer be a transmitted beam. Everything will be reflected from the interface
back into the originalmedium, leading to a phenomenon called total reflection.

If we are underwater and look up at the surface, the critical angle will be given
by:

sin θc = 1.00

1.33
θc = 48.8◦ .

If we try to look at the surface along a greater angle than this (relative to the
vertical), the water surface will merely act as a mirror.

Total reflection is used to a large extent in today’s society. Signal cables for the
Internet and telephony and almost all information transfer now largely take place via
optical fibres. For optical fibres having a diameter that is many times the wavelength
(so-called multimode fibres), it is permissible to say that total reflection is at work
here.

An optical fibre consists of a thin core of super-clean glass. Outside this core is
a layer of glass whose refractive index is very close to, but slightly less than that of
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the core, the difference being about 1%. The consequence is that the critical angle
becomes very close to 90◦. This means that only the light that moves very nearly
parallel to the fibre axis is reflected at the interface between the inner core and the
next layer of glass outside. It is important that the waves are as parallel as possible
to the axis so that pulses transmitted into the fibre should retain their shape before
being relayed.

In many optical fibres, the diameter of the inner glass core is only a few times
the wavelength. Such fibres are called single-mode fibres, and most are used in
telecommunications and similar applications. For single-mode fibres, it is really
misleading to explain the waveform in the fibre with total reflection. Instead, we
must use Maxwell’s equations directly with the given geometry. The wave image
inside the fibre can no longer be considered a plane wave as we find it in vacuum far
from the source and from disturbing boundary conditions. The boundary conditions
imply a completely different solution. We will come back to this when we deal with
waveguides in Chap. 16.

Single-mode fibres are challenging to work with because the cross section of the
fibre is very small and the light entering thefibremust have adirectionvery close to the
fibre direction. It is therefore difficult to get light into the fibre without too much loss.
Standardization of coupling devices, however, makes it easy for telecommunication
equipment, but it is quite a challenge to connect light into a fibre from a beam in air
in a laboratory.

It is much easier to get light into multimode fibres because they have larger cross
sections and the direction of the incoming light is not as critical. Multimode fibres,
however, are not suitable for long-distance communications since pulses “fade out”
after travelling relatively short distances.

10.3.3 More Thorough Analysis of Reflection

We will now look more closely at reflection and transmission when a (more or less)
plane electromagnetic wave strikes obliquely an interface between two media. We
make the same assumptions as mentioned in the beginning of the chapter that the
interface is plane, “infinitely large and infinitely thin”.

Amajor challenge in the derivation that will follow consists of keeping track of
geometry. Waves are inclined towards the interface, and the outcome depends
on whether the electric field that meets the interface is parallel to the interface
or inclined obliquely with respect to it. You may want to spend some time to
understand the decomposition of the electric field vector E in Fig. 10.4 before
reading further.
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Fig. 10.4 Geometrical details for discussing the propagation of an electromagnetic ray inclined
obliquely towards a plane interface between two media. The electrical field vector of the ray is
resolved into a component normal to the incidence plane and a component parallel to this plane
(lying in the plane of incidence). The latter component is further resolved into a component that is
parallel to the interface and one that is normal to the interface. See the text for details

We draw a “ray” travelling obliquely towards the interface. We draw a normal to
the interface at the point where the ray meets the interface. The plane containing the
incident ray and the normal will be called the plane of incidence. The angle between
the incident beam and the normal will be denoted by θi . See Fig. 10.4.

The reflected beam will lie in the input plane and have the same angle with the
incident ray as the incident beam, i.e. θi = θr . The transmitted beam will also be in
the same plane as the other rays, but it makes an angle θt with the normal (extended
into medium 2).

We shall not go into any detailed proof that the three rays are in the same plane, but Maxwell’s
equations are symmetrical with regard to time. It is believed that if one solution of Maxwell’s
equations is an incident beam that divides into a reflected and a transmitted beams, then another
solution is that where the reflected and transmitted waves can be considered as two incident rays
coming against the interface and combining into a single output ray (similar to the original incident
ray, but with the opposite direction of motion).

Since we can reverse, at least hypothetically, the time course for what is happening, it means
that the solution must have a certain degree of symmetry. One consequence is that the three rays
must lie in the incidence plane.

We start by assuming that all three rays lie in the incidence plane and θi = θr in
Fig. 10.4, and then use Maxwell’s equations to determine howmuch of the incoming
energy that is reflected and transmitted at the interface.

However, the wave has an arbitrary polarization. This means that the electric
field

#»
E, which is perpendicular to the incident beam, may have any angle relative to

the incidence plane. The result for the component of electric field which lies in the
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incidence plane E‖ is slightly different from that for the component perpendicular
to the incidence plane E⊥.

First step: E⊥
We start by treating the component of electric field perpendicular to the incidence
plane. This component will at the same time be parallel to the interface, which was
also the case for the wave incident at the interface (discussed in the previous section).
Faraday’s law used as in Fig. 10.2 gives as before:

Ei,⊥ + Er,⊥ = Et,⊥

where i , r and t again represents incoming, reflected and transmitted. ⊥ indicates
the component that is perpendicular to the incident plane, which in turn is parallel
to the interface. However, we do not pursue this component in detail.

It is more interesting to look at the component that lies in the incidence plane, but
the treatment here is a little more complicated. The component lying in the incidence
plane can be resolved into a component that is normal to the interface and one that
is parallel to the interface.

In Fig. 10.4, we have tried to indicate that the electric field of the incoming
wave has components both normal and parallel to the incidence plane, and that
the latter component, E‖, can in turn be resolved into a component E‖,‖ parallel to
and a component E‖,⊥ perpendicular to the interface/boundary surface (Note: For
simplicity reasons, we drop the vector notation for all components of the electric
fields.).

In Fig. 10.5, only the component of the electric field parallel to the incident plane
is drawn. Decomposition of this component is, respectively, E‖,‖ and E‖,⊥. The first
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Fig. 10.5 Components of the electric field in the incoming plane for incoming, reflected and
transmitted rays. The field decomposition on the left is drawn separately for the incoming, reflected
and transmitted rays so as to avoid clutter. The diagrams on the right specify the positive directions
of the components in the mathematical treatment. See also the text for details
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part of the subscript indicates component relative to the incidence plane, and the
second part indicates the component with respect to the interface.

From Fig. 10.4, we see that E‖,‖ is perpendicular to E⊥ (the component of electric
field normal to the incidence plane), although both are parallel to the interface. Also
note that E‖,⊥ is perpendicular to the interface and thus parallel to thenormal (defining
the plane of incidence).

Second step: E‖,‖
We can apply Faraday’s law to the E‖,‖ components of incident, reflected and trans-
mitted waves, and we find, just as for waves incident normally on the interface:

Ei,‖,‖ + Er,‖,‖ = Et,‖,‖ .

The positive direction is defined in the right part of the figure. It follows then that:

Ei,‖ cos θi + Er,‖ cos θr = Et,‖ cos θt .

Since θi = θr , we are finally led to state:

Ei,‖ + Er,‖ = cos θt

cos θi
Et,‖ . (10.10)

Third step: Gauss’ law

We need yet another equation to eliminate one of the three quantities in order to
find a relation between the other two. For the case where the ray was normal to the
interface, we used an energy balance sheet to get an equation. In the present case of
oblique incidence, it will not be so easy, since we have to take into account many
components at the same time. Instead, we choose to use Gauss’s law for electric
fields on a small cube with surfaces parallel to the interface and the incidence plane.
The cube has sides with area A and normal to the d

#»

A, and we write:

∮
#»
D · d #»A = Qfree,enclosed .

The advantage of this choice is that all components of the electric field that are
parallel to the interface will give zero net contribution to the integral. They enter
and leave the side surfaces in the same medium, and these field components are
approximately constant along the surface as long as we allow the cube to have a side
length small compared with the wavelength. On the other hand, we get contributions
from the component that is normal to the end faces of the cube that are parallel to
the interface; see Fig. 10.5. By specifying how we define positive field directions in
the right part of the same figure, follow:
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Di,‖,⊥ + Dr,‖,⊥ = Dt,‖,⊥ ,

ε0εr1Ei,‖,⊥ + ε0εr1Er,‖,⊥ = ε0εr2Et,‖,⊥ .

We use now the relation n ≈ √
εr , and get:

n21Ei,‖,⊥ + n21Er,‖,⊥ = n22Et,‖,⊥ .

Using the definition of positive directions for the vectors in the right part of Fig. 10.5,
it follows that:

−n21Ei,‖ sin θi + n21Er,‖ sin θr = −n22Et,‖ sin θt .

We invoked Snel’s law of refraction (derived above):

n1 sin θi = n2 sin θt

and moreover θi = θr . We then eliminate θt and get:

−n21Ei,‖ sin θi + n21Er,‖ sin θi = −n2Et,‖n1 sin θi .

Dividing throughout by n21 sin θi , we get:

Ei,‖ − Er,‖ = n2
n1

Et,‖ . (10.11)

Fourth step: Combining

We now have two equations that connect E‖ for incoming, reflected and transmit-
ted waves. One equation can be used for eliminating one of the three quantities
and obtaining the relationship between the two others. For example, if we subtract
Eq. (10.10) from Eq. (10.11), we get:

2Er,‖ =
(
cos θt

cos θi
− n2

n1

)
Et,‖ . (10.12)

Details, Brewster angle

Equation (10.12) is in fact interesting in itself, because it shows that the contents of
the parenthesis can be made to vanish. When this happens, no part of the incident
wave will be reflected if E lies in the incidence plane (because then E⊥ = 0). The
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incident angle θi where this happens is called the Brewster angle. Let us explore this
special case in some detail. The condition is that:

cos θt

cos θi
= n2

n1
.

Using Snel’s law once again, we get:

cos θt

cos θi
= sin θi

sin θt

sin θi cos θi = sin θt cos θt .

We know that sin(2x) = 2 sin x cos x , thus

sin(2θi ) = sin(2θt ) .

We also know that sin x = sin(π − x), which implies

sin(2θi ) = sin(π − 2θt ) .

This relation will be satisfied if

2θi = π − 2θt or θi = π/2 − θt .

With θi = θr , we are finally led to the result:

If
θr + θt = π/2 (10.13)

there will be no reflected light with polarization parallel to the incidence plane.
Then, the angle between the reflected and transmitted rays equals π/2 as
indicated in Fig. 10.6.

Since the angles of incidence and reflection are equal, it is easy to show that the
angle where we have no reflected light with polarization in the incidence plane
is characterized by the angle between reflected and transmitted rays being 90◦.

We wish to find an expression for the angle (θi ≡ θB) for which this holds,
and start with:

n2
n1

= cos θt

cos θi
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Fig. 10.6 When the angle
between the reflected and
transmitted rays is 90◦, there
is no electric field parallel to
the incident plane in the
reflected ray

n1

n2

i r

t


2

E   = 0r,

E   = 0r,

and combine this with cos θt = cos(π/2 − θi ) = sin θi to get:

tan θi = n2
n1

≡ tan θB . (10.14)

The angle θB is called Brewster’s angle. At the interface between air and
glass with refractive index 1.54, we find:

tan θB = 1.54

1.00
θB ≈ 57◦ .

Since θr + θt = π/2, we can easily determine θt . The result is about 33◦.

It may be worth noting that there will also be no reflection (for light with
electric vector parallel to the incidence plane) if the light goes from glass to
air. For this case, we have:

tan θB = 1.00

1.54
θB ≈ 33◦ .

In other words, the Brewster effect can occur when light enters a newmedium,
regardless of whether the refractive index becomes higher or lower! By com-
parison, total reflection (which we will return to if a little) occurs only when
the light hits a medium with a lower refractive index.
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Fig. 10.7 Unpolarized light reflected at an air–glass interface can be fully polarized when the angle
of incidence is equal to the Brewster angle. These photographs show this. The picture on the left is
taken without a polarization filter. The picture on the right is taken with a polarization filter oriented
so as to let only light polarized parallel to the incidence plane. All reflection is removed at the
Brewster angle, and we look directly at the curtains behind the glass window practically without
any reflection. This means that, at the Brewster angle, all the reflected light is fully polarized
in a direction perpendicular to the incidence plane (parallel to the air–glass interface). Note that
reflections on the painted surface are affected similarly to reflections from the glass. NB: Many
modern windows are now surface treated in different ways. Then, we do not get any direct interface
between air and glass, and the Brewster effect as described disappears totally or in part

10.3.4 Brewster Angle Phenomenon in Practice

It is actually relatively easy to observe that light reflected from a surface at some
angles is fully polarized.

The essential point is that ordinary unpolarized light can be decomposed into
light with polarization parallel to the incidence plane and perpendicular to it. For the
component parallel to the incidence plane, we can achieve zero reflection if the light
comes in at the Brewster angle. In that case, the reflected light will be completely
polarized normal to the incidence plane. We can observe this by using a polarization
filter that only lets through light polarized in a certain direction. Figure 10.7 shows
an example of this effect.

10.3.5 Fresnel’s Equations

In order to arrive at relations involving reflection and transmission,weusedMaxwell’s
equations, but these laws were derived long before Maxwell systematized electro-
magnetic phenomena in his equations. Fresnel derived equations which describe
reflection and transmission already in the first half of the nineteenth century. You can
read more about this e.g. in Wikipedia under the keyword “Fresnel equations”. Here
we will present only two formulas and a graph. In Eqs. (10.15) and (10.16), and in
Fig. 10.8, the reflection coefficient is given for light fully polarized perpendicular to
the incidence plane (Rs) and fully polarized parallel to the incidence plane (Rp) [The
suffixes s and p are from German: Senkrecht (vertical) and parallel, respectively.].
The reflection coefficient refers to intensities, so in our language use, for example,
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Fig. 10.8 Reflection and
transmission coefficients of
electromagnetic waves
directed obliquely at an
interface between two media
with refractive index
n1 = 1.0 and n2 = 2.0. The
subscript s indicates that the
electric field component of
the wave is normal to the
incidence plane, and the
index p that the component
is parallel to the incidence
plane

Incident angle   (deg)i

R
ef

le
ct

io
n 

co
ef

fic
ie

nt
  (

 %
 )

0

20

40

60

80

100

0 30 402010 50 60 9070 80

Br
ew

st
er

 a
ng

le

Rs
Rp

Rs =
(
Er,⊥
Ei,⊥

)2

.

The complete expressions can be written as follows:

Rs =

⎛
⎜⎜⎜⎜⎝
n1 cos θi − n2

√
1 −

(
n1
n2

sin θi

)2

n1 cos θi + n2

√
1 −

(
n1
n2

sin θi

)2

⎞
⎟⎟⎟⎟⎠

2

, (10.15)

and

Rp =

⎛
⎜⎜⎜⎜⎝
n2 cos θi − n1

√
1 −

(
n1
n2

sin θi

)2

n2 cos θi + n1

√
1 −

(
n1
n2

sin θi

)2

⎞
⎟⎟⎟⎟⎠

2

. (10.16)

The transmission can be found by using the relations Ts = 1 − Rs and
Tp = 1 − Rp.

If the light falling on the surface is totally unpolarized (with all polarizations
equally present), the total reflection is given by R = (Rs + Rp)/2.

Figure 10.8 gives the reflection as a percentage for different angles of incidence.
The figure applies to n1 = 1.0 and n2 = 2.0. For a wave that approaches the interface
normally, the reflection is about 11% and of course independent of the polarization
direction. The Brewster angle for these refractive indices is about 63◦, and for this



312 10 Reflection, Transmission and Polarization

angle, the reflection is about 36% for waves polarized normally to the incidence
plane.

Note further that the reflection coefficient goes to 1.0 (100%) when the angle of
incidence goes to 90◦. This applies to both components of the electric field.

10.4 Polarization

We have already mentioned polarization a great deal in this chapter, meaning the
direction of the electric field vector when an electromagnetic wave travels through
space.

However, polarization is not always in a particular plane. The electric field
of an electromagnetic wave may change direction in a systematic manner as
the wave moves. If we draw an electric field vector at closely spaced points
along the line of propagation, the tip of all the field vectors may describe, for
example, a helix with one turn per wavelength. In that case, the wave is said
to be circularly polarized.

Figure 10.9 shows four different forms for polarization, where elliptical polariza-
tion is intermediate between linear polarization (polarization in a plane) and circular
polarization.

It might seem that linear polarization is very different from circular, but the fact
is that it is quite simple to switch from one to the other. Start by considering a plane

xy

z

. xy

z

. xy

z

.xy

z

.

(a) (b) (c) (d)

Fig. 10.9 Four different polarizations of a plane electromagnetic wave travelling in the z-direction.
The green bars perpendicular to the z-axis indicate the size and the direction of the electric field at
some z-values, all at the same time. The blue curves mark the tip of the electric field vector drawn
from every point along the z-axis. The red curve shows the projection of the blue curve onto the
xy-plane. a Plane polarized wave with the polarization plane −60◦ relative to the xz-plane. b Left-
handed circular polarized wave. c Right-handed circular polarized wave. d Elliptically polarized
wave, in this case 45% circular, 55% linear, the plane for the linear polarization is −30◦ relative to
the xz-plane
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linearly polarized electromagnetic wave moving in the z-direction. The polarization
lies in a plane between the xz-plane and the yz-plane (similar orientation as in part
a of Fig. 10.9). We can say that Ex (t) and Ey(t) vary “in step” or “in phase”.

Mathematically, we can describe the wave on the left of Fig. 10.9 in the following
way:

#»
E = Ex cos(kz − ωt)

#»

i + Ey cos(kz − ωt)
#»

j

where Ex < Ey .
If we delay the x-component by a quarter period compared to y-component (e.g.

by using a quarter wave plate), and the amplitudes are equally large, polarization
is circular (similar to c in Fig. 10.9), and the polarization follows a spiral as on a
normal screw. We say that we have a right-handed circular polarization because the
polarization direction follows our fingers on the right hand if we grasp the axis that
indicates the direction of propagation, with the thumb pointing in this direction.

However, if we advance x-component by a quarter of a period compared to y-
component, the polarization is left-handed circular (as for b in Fig. 10.9).

Mathematically, we can describe a left-handed circularly polarized wave (as
b in Fig. 10.9) as follows:

#»
E = Ex cos(kz − ωt)

#»

i + Ey sin(kz − ωt)
#»

j

where Ex = Ey . The electric field in the x-direction is, as we see, shifted a
quarter period (or a quarter wavelength) relative to the electric field in the
y-direction.

The polarization of a plane electromagnetic wave can be specified either
in terms of two plane polarized waves with orthogonal polarizations as basis
vectors, or with a right-handed and a left-handed circularly polarized wave as
basis vectors.

Be sure that you understand what is meant by a “plane, electromagnetic wave
with (e.g. right-handed) circular polarization”.

10.4.1 Birefringence

In the previous section, we claimed that it is easy to change from linear polarization to
circular or vice versa. All that is needed is to change the phase of the time variation of
one component of the electric field with respect to the other. But how do we achieve
such a phase change in practice? Change in phase corresponds to a time delay, and
a delay can be achieved if the wave moves more slowly when the electric field
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vector has one direction in space compared to when the field vector has a direction
perpendicular to the first.

There exist materials in whichwaves polarized in one direction have a different
velocity than waves polarized in a direction perpendicular to the first. This
means that the refractive index is different for the two polarizations. Such
materials are called birefringent (meaning doubly refracting).

A glass cannot be birefringent because it is matter in a disordered state, where
bonds between atoms have all possible directions in space. To get a birefringent
material, theremust be a systematic difference betweenone direction and another, and
this difference must be constant within macroscopic parts of the material (preferably
an entire piece of the material). A birefringent material is therefore most often a
crystal. Calcite crystals are a well-known example of birefringent material and will
be described in some detail in the next sub-chapter.

It is interesting to note that birefringence was first described by Danish scientist
Rasmus Bartholin in 1669.

It is possible to make a thin slice of a calcite crystal that has just the thickness
required to delay the waveform by a quarter period in one component of electric field
vector as compared to the perpendicular component perpendicular. Such a disc is
called a “quarter wave plate”. A quarter wave plate will ensure that linearly polarized
light is transformed into circularly polarized or vice versa. A quarter wave plate will
only work optimally for a relatively narrow wavelength range. When such a plate is
bought, the wavelength for which it is to be used must be specified.

Two different refractive indices in one and the samematerial give rise to a peculiar
phenomenon. The upper part of Fig. 10.10 shows how a straight line looks when we
see it through a calcite crystal oriented in a special way. The orientation is such
that we see two lines instead of one. It is easy to understand the term “birefringent
material” when we see such a splitting of an image.

We can imagine that the light from the line (surrounding area) has all possible
linear polarization directions. Light with a particular polarization travels at a differ-
ent speed compared to light polarized along a perpendicular direction. That is, the
refractive indices for light with these two polarizations are different, which is why
we see two lines through the crystal.

The last two pictures in the figure show how the line looks when we interpose a
polarization filter between the crystal and our eyes. For a specific orientation of the
filter, we allow the passage of light with only one polarization direction. By rotating
the filter in one direction, we only see one line through the crystal. If we rotate the
filter 90◦, we only see the other line through the crystal. This is a good indication
that the two refractive indices are linked to the polarization of the light through the
crystal.
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Fig. 10.10 Upper part of the figure shows a straight line viewed through a birefringent substance
(oriented in a well-chosen manner). We see two lines! These are due to the fact that light with
different polarization has different refractive indexes through the crystal. This can be demonstrated
by holding a linear polarization filter in front of the crystal. If we orient the polarization filter in one
way, we only see one of the two lines, but if we rotate the polarization filter by 90◦, we see only the
other line. A mark is made on the filter to show the rotation made between the two lower pictures

Remark: So far, we have set the relationship between electric field strength
#»

E and electric flux
density (or the displacement vector)

#»

D as follows:

#»

D = ε0εr
#»

E

where ε0 is the permittivity in empty space, and εr is the relative permittivity (also called the
dielectric constant). Both of these quantities have been simple scalars, and therefore, the vectors

#»

D
and

#»

E have been parallel.
In terms of the components, the equation can be written as:

Di = ε0εr Ei (10.17)

where i = x, y, or z.
In birefringent materials, this simple description no longer holds. Electric field directed in one

direction could provide the polarization of a material (e.g. calcite) also in a different direction. To
incorporate this behaviour intomathematical formalism, the scalar εr must be replaced with a tensor
with elements εr,i, j where i and j correspond to x , y and z. Then, Eq. (10.17) is replaced by:

Dj = ε0εr,i, j Ei . (10.18)

This is just one example of how a simple description needs refinement when a physical system
displays properties that lie beyond the realms of the most elementary.

We mention these details to remind you that one of the tasks of physics is to provide math-
ematical modelling of the processes we observe. When the processes in nature are complicated,
correspondingly complicated mathematical formalism is needed.
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10.4.2 The Interaction of Light with a Calcite Crystal

All light originates in someprocess involvingmatter.When it is created, light acquires
a polarization determined by the geometric constraints that are a part of the process
whereby light is created.When light passes through vacuum, its polarization does not
change, but as soon as it interacts with matter again, polarization can change. There
are many different mechanisms that affect the polarization of light. This means that
by studying change of polarization that accompanies the passage of light through
matter, we can gain more knowledge of the material. A collective name for all such
studies is “polariometry”.

To get an idea of the mechanism responsible for the change in the state of polar-
ization, let us discuss what happens when light is sent through a piece of mineral
calcite. The chemical formula of calcite is CaCO3, and we will consider calcite crys-
tals. These are “birefringent”; that is, when we consider an object through a clear
calcite crystal, the object looks double. The unit cell in a calcite crystal is relatively
complicated.1 Figure 10.11 is a perspective sketch of four CaCO3 as some of the
molecules are located within the unit cell. All the CaCO3 molecules in the crystal are
oriented so that the carbonate groups (CO2−

3 ) are approximately in a plane perpen-
dicular to a preferred direction called the optic axis. The orientation of the carbonate
groups is such that there is a significant degree of rotational symmetry around the
optic axis.

In Fig. 10.11b, we have indicated what happens when light passes the crystal with
a polarization parallel to the carbonate plane. When the electric field is aligned as
shown, the electron clouds around each atomic core will undergo a slight displace-
ment relative to the core. Each atom then acquires a polarization (redistribution of
electrical charge). Energy is stolen from the electromagnetic field of the light and
temporarily stored in the polarization of the crystal. When the electric field then goes
to zero and increases again in the opposite direction, it will induce polarization of the
crystal again, but nowwith the opposite displacements of the electron clouds relative
to the atomic nuclei.

However, we do not build more and more polarization as time passes. The stored
energy in the polarization of the material will in some way act as “antennas” and
generate electromagnetic waves. These waves have the same frequency as those
which created the polarization originally. It is this polarization of the material and
re-emitting of electromagnetic waves from the small induced dipoles in the material
which causes light to move at a slower speed in the crystal compared with vacuum.
As soon as the wave goes out of the crystal, there is no matter to polarize (when we
ignore air) and the light velocity becomes the same as in vacuum.

Now comes something exciting! If we send light into the calcite crystal so that the
electric field in the light wave has a direction perpendicular to the carbonate planes as
in Fig. 10.11c, we will, as before, have displacement of the electron clouds relative to
the atomic nuclei. But now the electron cloud is shifted across the carbonate planes.

1See for example Wikipedia for “calcite”.
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Fig. 10.11 Calcite is built up by the atomic groups CaCO3. Part a gives a perspective drawing that
indicates how these groups are oriented relative to each other. There is a large degree of symmetry
around the direction marked with the dashed line, the so-called optic axis. In b and c, a snapshot
of how an external electric field from passing light will polarize the atoms. Dashed circles indicate
the location of the electron clouds when there is no external electric field. In b, the polarization is
across the optic axis, whereas in c the polarization is along the optic axis

Due to the special symmetry of the crystal, light polarized in the direction of the
symmetry axis will have a smaller charge polarization than when the polarization of
light is perpendicular to the symmetry axis.

The result is that when light is transmitted through the crystal, the beam will be
split into two, an “ordinary ray” with polarization normal to the optic axis and an
“extraordinary ray” with a polarization perpendicular to the former. Snel’s law does
not apply. At about 590nm, the refractive index for the ordinary ray is no = 1.658
and for the extraordinary ray ne = 1.486.

It is quite natural that effects similar to that seen in calcite are observed only in
crystalline materials, or at least materials with different properties in one direction
compared to another (anisotropic media). However, we can have similar effects also
for an initially isotropic material if it has been exposed to stress in a certain direction
on account of which it is no longer isotropic. An isotropic plastic material can be
made slightly anisotropic by, for example, bending or stretching it. By the way, some
types of plastics are often slightly anisotropic if they are made by moulding where
the molecules have been given a certain uniformity locally as the plastic was pressed
into the mould from a particular point of feeding.
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A Challenge
In this chapter, we have used the word “polarization” for two widely different condi-
tions. We used the word when we mentioned different electric permittivities (which
are connected with the difference between the electric field

#»
E and the electric field

strength
#»
D). This reflects howmuch we can deform the electron clouds relative to the

nuclei of the atoms and generate a polarization (asymmetry) in charge distributions.
We also used the word when we distinguished between e.g. linear and circular polar-
ization. Make sure you fully understand the difference between these two different
(but still related) terms with the same name. Otherwise, you should discuss with
fellow students and/or teaching-assistant/lecturer.

10.4.3 Polarization Filters

Linear polarization filters
When we discussed the Brewster angle, we saw an example of a linear polarization
filter. Roughly speaking, we can say that such a filter (if it is thick enough) peels
off one component of the electric field vector in the electromagnetic waves (visible
light). If the light is totally unpolarized initially, the intensity will be halved after the
light has passes through a linear polarization filter.

What does the term “unpolarized light” mean? It is actually a little difficult to
explain. We have seen that Maxwell’s equations can give us plane and polarized (or
circularly polarized) waves. Is that not true for all electromagnetic waves? Well, it
is true, but light is usually generated from a very large number of sources that are
independent of each other. When we turn on the light in a room, for example, light
is generated from every fraction of a millimetre of filament in an old-fashioned light
bulb and the light emitted from each part is independent of the other parts. All the
waves pass through the room and the contributions will, to a large degree, overlap in
time and space. The result is that if we follow the polarization at a tiny point in the
room, polarization will still change during a fraction of a millisecond. There is also
quite a different time development at a small point in the room and at another point
just a few millimetres away from the first.

We shall describe such more or less chaotic waves in Chap. 15 when we refer to
coherence. Unlike chaotic light (unpolarized light), for example, we have laser light
and it is exciting to see how waves are added to each other, but that will come later.

Let us assume for now that we have a horizontal light ray with unpolarized light.
Using a linear polarizing filter, we can make sure all the transmitted light has electric
field that is aligned horizontally.

If we insert another such filter, and orient it just like the previous one, any light
transmitted by filter 1 will be transmitted also by filter 2.

If filter 2 is rotated 90◦ so that it can only let through vertically polarized light,
there will be no such light coming through filter 1. Then, no light will emerge from
filter 2 (left part of Fig. 10.12).
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Fig. 10.12 Two sequential linear polarization filters aligned 90◦ apart, transmit no light (left part).
If a third filter is placed between the first two, with the polarization direction different from the
other two, some light will in fact go through the filters (right part)

However, if we, for example, rotate filter 2 by 45◦ relative to filter 1, light with
horizontal polarization after filter 1 will actually have a component also in the direc-
tion of filter 2. Light that now passes filter 2 acquires polarization 45◦ relative to the
polarization it had after filter 1. We change polarization, but the amplitude of the
electric field is now less than what it was before filter 2 (Only the E field component
in the direction of filter 2 is transmitted).

The intensity of the light passing through filter 2 is given by Malus’s law:

I = I0 cos
2(θ2 − θ1) . (10.19)

Here, I0 is the intensity of the light after it has passed filter 1. The argument
for the cosine function is the difference in the angle of rotation between filters
1 and 2. Malus’s law only applies to linear polarization filters!

Now let us start with two polarizers with polarization axes perpendicular to each
other, and place a third polarization filter between the first two. If we choose an
orientation other than 90◦ relative to the first, we get light through all three filters
(right part of Fig. 10.12). This is because themiddle filter has changed the polarization
of the light before it hits the last filter.

It is important to note that a polarization filter of this type actually plays an active
role as it changes the polarization of light passing through it.

Remarks:
We will now present a picture that might serve as a useful analogue to what is happening in a
linear polarization filter. Imagine that the filter consists of pendulums that can swing in only one
plane. If we attempt to push the pendulums in a direction along which they can actually swing, the
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pendulums will swing. A swinging pendulum can propagate its motion to a neighbouring pendulum
of the same type, and so a wave can propagate through the material.

However, if we try to push the pendulums in a direction in which they cannot swing, there
will be no oscillations. No wave can then propagate through the medium. If we push obliquely, the
pendulums will swing, but only in the direction along which they can actually swing. This means
that the swing direction in the wave will change when the wave propagates through the medium, but
we get a reduction in the wave because only the component of our push that is along the swinging
plane will be utilized in the oscillations.

10.4.3.1 Circular Polarization Filters in Photography *

A circular polarization filter is basically a filter that only lets through circularly
polarized light. There are two variants of such filters, one type that allows right-
handed circularly polarized light to pass through, and another type that passes through
the left-handed circularly polarized light. A purely circular polarization filter has the
same effect even if it is rotated around the optic axis.

Today, however, there is a completely different type of filter called the circular
polarizationfilter.We are thinking of polarizationfilters used in photography. Inmany
photographic devices, autofocus is based on circularly polarized light. If we want
a polarization filter in front of the lens, the filter must be made such that circularly
polarized light reaches a detector inside the device.

Such a circular polarization filter is assembled in a very special way. When light
enters the filter, it first meets an ordinary linear polarization filter. Just behind this
filter is a so-called quarter wave plate with a special orientation. As a result, the
light is first converted into pure linearly polarized light, and subsequently converted
into almost completely circularly polarized light. The light that enters the camera is
therefore circularly polarized and the autofocus works.

We will look closely at the details in this context.
A quartz wave plate is made of a birefringent material, for example calcite. We

have already seen that in a birefringent substance the phase velocity of light polarized
in a certain direction differs from the phase velocity of light polarized perpendicular
to the aforementioned orientation.

In polarization filter used in photography, the orientation of the birefringent sub-
stance is chosen so that the electric vector after the linear polarization filter forms 45◦
with each of the two special directions in the birefringent substance. We decompose
the electrical vector as shown in Fig. 10.13. The Eo component will go through the
substance with a certain phase velocity (i.e. a certain wavelength), while the Ee com-
ponent passes through the substance at a different phase velocity (and wavelength).

By choosing a certain thickness of the birefringent substance, we can arrange
Eo to have just one-quarter wavelength difference from what Ee has when it
leaves the filter. In that case, we achieve exactly what we want, namely that
linearly polarized light is transformed into circularly polarized light.
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Fig. 10.13 Schematic
drawing of a so-called
circular polarization filter
used in photography. The
light passes through an
ordinary linear polarization
filter and then through a
quarter wave plate. The two
parts are close to each other.
The orientation of the plate is
chosen so that mean
wavelengths are converted
from linear to circular
polarized light Unpolarized 
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Looking further at this argument, we discover that we cannot get a perfect trans-
formation from linear to circular light for all wavelengths in the visible range at the
same time. In practice, therefore, the thickness of the birefringent substance will be
chosen such that the centre wavelengths (around spectral green) get optimal conver-
sion while other wavelengths get a less perfect transformation. It does not matter
because autofocus must have some light that is circularly polarized and does not
need perfect circular polarization for all wavelengths.

Remarks:
A linearly polarized wave can be considered as a sum of a right-handed and a left-handed circularly
polarized wave, and a circular polarized wave can be considered as a sum of two linearly polarized
waves with polarization perpendicular to each other (and phase shifted). This means that we can
combine circular polarization filters and linear polarization filters in different ways.

However, filter combinations in which the photographic circular polarization filters are included
give a lot of surprises just because these filters are composed of two elements.

If we place two photographic circular polarizing filters with the inner surfaces facing each other,
the light will pass through both filters with approximately the same intensity as after the first filter.
Intensity is almost independent of the angle of rotation of one filter relative to the other. This is due
to the fact that the light after passing the first filter is approximately circularly polarized and thus
has a circularly symmetrical E-field distribution (when considering intensity).

If, on the other hand, we place two such filters with the outer surfaces against each other, two
linear polarization filters will follow in succession in the light path. The pair of filters will then
behave like two ordinary linear polarization filters, and the intensity of the emerging light is given
by Malus’s law (Eq. 10.19).

The special construction of the filters means that in photography, we achieve the same effect
as with linear polarization filters, from the photographic point of view. Polarizing filters are used
to remove reflection (as shown in Fig. 10.7) and to remove the effect of haze in the atmosphere
(since light from the haze is partially linearly polarized). With the help of polarizing filters, we can
achieve a big contrast between blue sky and white clouds, which adds extra life to the pictures (see
Fig. 10.22).
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10.4.4 Polariometry

We have previously seen that a polarization filter sandwiched between two crossed
polarization filters causes light to escape through the combination of three filters.
This gives us an excellent starting point for studying certain material properties. Any
material that changes the polarization of light will ensure, when interposed between
crossed polarizers, that some light passes through the arrangement. For example,
many plastic objects will have differences in optical properties in different parts of
the article depending on how the plastic material flowed into a mould prior to and
during curing. Anisotropy in different parts of the material causes the polarization
direction of light to rotate slightly or the conversion of some plane polarized light
to circularly polarized light. The effect is often dependent on the wavelength. As a
result, we can get beautiful coloured images through the crossed polarization filters
if we send white light through the arrangement.

Figure 10.14 shows the image of a plastic box for small video cassettes in the crossed configu-
ration. I could have used white light (e.g. from the sun or from a filament lamp), two crossed linear
polarization filters and the plastic cassette holder between the filters. However, since the filters
available to me were not as big as the cassette holder, I chose instead to use a computer screen as
the source of plane polarized light. Many data monitors, cellular phone monitors and some other
displays based on liquid crystal technology, give rise to plane polarized light. I placed the plastic
holder directly against the computer screen and used a polarization filter just in front of the camera
lens.

As shown in Fig. 10.14, anisotropies in the plastic are revealed well by polari-
ometry. Variants of this method are used for many different materials and in many
different contexts in industry and research. You can purchase specialized equipment
for this type of analysis.

It may be useful to remember that light from, for example, mobile phones is
usually linearly polarized. If you wear polarized glasses, you may experience a black
screen and think something is wrong with your mobile phone, while the picture is
completely normal when you do not wear the glasses!

10.4.5 Polarization in Astronomy

In recent years, several studies have been conducted on the polarization of the light
from the sun and from distant light sources in the universe. Admittedly, it is not
exactly what astronomers are primarily occupied with. Usually, the challenge is
to gather enough light to get good pictures or spectroscopic data. If we insert a
polarization filter, we lose half the intensity of light. And if we want information
about the polarization of the light, we would like to have at least two photographs
taken with light polarized along perpendicular directions. This means that a study
based on a straightforward procedure will take at least four times as long as one
image taken without paying any regard to polarization.
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Fig. 10.14 Photography of a plastic box for small video cassettes in polarized light (top), and when
sandwiched between two crossed linear polarizers (bottom). Light can be transmitted only if the
polarization of the light transmitted by the first polarizer changes as it passes the plastic

The reason why polarization is still interesting in astronomy is much the same as
for the polariometry of different materials. For example, let us consider light from the
sun. The light may be emitted as unpolarized light in processes known as “blackbody
radiation” (radiation from a hot body). However, the light will interact with plasma
and atoms along its way to the earth. If the electrons in a plasma are influenced by
a strong “quasi-static magnetic field”, the movement of the electrons will not take
place equally easily in all directions (remember the cross-product in the expression
of the Lorentz force).

When for example the light from a part of the sun passes the electrons in a plasma,
the electromagnetic field of the electromagnetic wave (the light) will set the electrons
in the plasma into motion. Without any quasi-static magnetic field, the electrons will
oscillate in the same direction as the electric field in the light, and the polarization
will not change. But if there is a powerful quasi-static magnetic field present, the
electron oscillation could get a different direction than the electric field of the light.
The result is that a polarization is imparted to the light that is conveyed to us. The
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Fig. 10.15 Polarization in the electromagnetic waves originating from the Big Bang has recently
been mapped. Figure taken from [1] under a CC BY-SA 3.0 license

direction of polarization will tell us something about the magnitude and direction of
the quasi-static magnetic field in that part of the sun where the light came from.

A number of other factors can also affect the polarization of light from astro-
nomical objects, and there is much that needs to be mastered! In the coming years,
polariometry will undoubtedly give us information about astronomical processes that
until recently was unavailable by any other means. Please read the article “Polariza-
tion in astronomy” in Wikipedia. There are also many postings and YouTube videos
available on the Web that mention the so-called POLARBEAR Consortium project
that uses the polarization of electromagnetic waves in space exploration (Fig. 10.15).

10.5 Evanescent Waves

In Chap. 9, we distinguished between near field and far field and pointed out that
many known relationships between the electric andmagnetic field of electromagnetic
waves apply only in the far field. We mentioned that the near field extends no further
than a few calculated wavelengths beyond the sources or structures that cause the
near field.

This recognition has grown in the last decade and has had a big impact in e.g.
optics. When we derived the expression for total reflection above, we relied entirely
on Snel’s law and on manipulating a few mathematical expression.

However, if we use Maxwell’s equations in a more thorough analysis of total
reflection, we will realize that an electric field on the inside of the glass at

https://creativecommons.org/licenses/by-sa/3.0/
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Fig. 10.16 Evanescent waves at total reflection (right). The boundary line between two media with
different refractive indices is marked with a red line. Only incoming and transmitted/evanescent
waves are displayed; that is, the reflected wave is not shown. Aluminum, CC BY-SA 3.0 GNU Free
Documentation License 1.2. Modified from original [2]

total reflection cannot end abruptly at the interface between glass and air. The
electric field must decrease gradually.

A detailed solution of Maxwell’s equations for the region near the inter-
face shows some kind of standing wave where the amplitude (and inten-
sity) decreases exponentially when we move away from the interface (see
Fig. 10.16). This standing wave is called an evanescent wave, and it fades over
a distance of the order of a wavelength.

Evanescent waves are found in many situations, not only when total reflection
takes place. A very important example is the interface between metal and air or
metal and another dielectric. In the metal, however, electrons will move along the
interface in a special way. We call this phenomenon “plasmons” (“surface plasmon
polariton waves”). Plasmons (collective electron motion) are a powerful contributor
to how the electromagnetic field will change in the region near the interface between
the two materials, and consequently also the evanescent waves outside the metal.

Evanescent waves are now very popular in physics research, not least because
we have also had a significant development in nanotechnology recently. Today we
can make structures much smaller than the wavelength of light. The result is, among
other things, that smart ways have been found to improve resolution, for example, in
microscopy. In Chap. 13, we will describe diffraction, and according to the classical
analysis of diffraction, we could never achieve a better resolution than the so-called
diffraction-limited resolution. Today, however, for special geometries,we can surpass
this limit.

The evanescent waves are primarily significant in distances less than about λ/3
away from the interface. There is room for much creativity over the coming years in
the field of evanescent wave research and utilization of these!

https://en.wikipedia.org/wiki/Evanescent_field
https://creativecommons.org/licenses/by-sa/3.0/
https://www.gnu.org/licenses/old-licenses/fdl-1.2.html
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10.6 Stereoscopy

People have a well-developed “depth perception”. The two pictures captured by our
eyes are slightly different because the two eyes are 6–7cm apart. This means that
the viewing angle for nearby objects is different for each eye, but almost identical
for remote objects.

Ever since the infancy of photography, people have experimentedwith taking pairs
of photographs that correspond to the pictures formed on our retinas, the so-called
stereoscopic pair. We could look at the pictures individually through special stereo-
scopes (see Fig. 10.17). This technique was also used in commercial “ViewMaster”
binoculars that were highly popular in the 1970s. The technique is still employed in
modern Virtual Reality technology.

Three-dimensional images can also be created by placing a stereoscopic picture
pair on top of each other, where the image to the left eye is transmitted through a
blue-green colour filter while the image to the right eye is through a reddish colour
filter. The resulting image looks somewhat strange, with reddish and blue-green
objects side by side (see Fig. 10.18). When such an image is viewed through so-
called anaglyph glasses which are red on the left side and blue-green on the right,
the blue-green parts of the image will be visible through the red filter (little colour
drops and the object looks dark). The red parts of the image will pass through the
red filter as well as white light and will only look white and become “invisible”.

The use of a crude form of colour coding serves its purpose in anaglyph glasses,
but colour reproduction is not satisfactory for many purposes.

That is where polarization filters come in, and polarization of light is just perfect
for this purpose.We have two eyes and need to “code” two pictures so that one picture

Fig. 10.17 Stereoscopic
picture pairs with
accompanying lenses were
developed already over 100
years ago. The picture shows
a 1908 stereo viewer used for
looking at a pair of
stereoscopic photographs
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Fig. 10.18 Stereoscopic images can be made by adding two colour-coded images on top of each
other. The images are traversed through coloured glasses (“anaglyph glasses”) to ensure that a
stereoscopic pair of photographs is perceived only by the eye each image is made for

reaches one eye and another picture the other eye. If we allow the light from one
image to be horizontally polarized and the light from the other image is vertically
polarized (we assume that we now look horizontally against the pictures), by using a
horizontal axis polarization filter on one glass and vertical axis on the second glass,
we will achieve exactly what we want.

The use of linearly polarized light works well as long as we see a movie and the
head is held straight up (so that the interocular axis is horizontal). But if we cock our
head at 45◦, each of the eyes will get as much light from each of the two pictures. In
that case, we will see double images on both eyes.

However, if we use circularly polarized light, we will forego this disadvantage.
The twoprojectors needed for stereoscopymust provide right-handed and left-handed
circularly polarized light. The glasses must have the corresponding polarization fil-
ters.

Several hundred movies have been recorded with stereoscopic techniques so far
(see list on Wikipedia under “List of 3D movies”). Many stereoscopic televisions
have been on the market. They are based on spectacles that makes sure that every
alternate picture is presented to only one eye. Commercial photographic appliances
and camcorders intended for the consumer market already exist. Only the future will
show how large a share will stereoscopic images/movies get.

For the sake of curiosity, we conclude with a stereoscopic image that can be
viewed without any aids (see next page). It is formed by many point pairs that are
positioned so that one point in each pair fits one eye and the other point in the pair
fits the other eye. A variety of books based on this principle have been made in many
variants and with different effects (Fig. 10.19).
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Fig. 10.19 Stereoscopic image made using dots. The illustration was made by Niklas En [3].
Reproduced with permissions. Bring the book (or screen) all the way up to the nose and let the
book (screen) recede slowly, very slowly from the face. Do not try to focus on the dots in the image,
but let the actual stereoscopic overall image come into focus (perhaps focusing on “infinite” at the
start). This stereoscopic image will, when you finally notice it, appear to be almost as far back from
the paper (screen) as your eyes are in front of the paper

10.7 Learning Objectives

After working through this chapter, you should be able to:

• Using Maxwell’s equations to deduce on your own, the relationships
between incident, reflected and transmittedwaveswhen a planar electromag-
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netic wave strike normally a flat interface between two different dielectric
materials.

• Explain “Fermat’s principle” (also called the principle that optical distance
must be stationary). Apply this principle to derive Snel’s law of refraction
and the law according to which “the angle of incidence equals the angle of
emergence” when light is reflected from a flat surface.

• Explain the phenomenon “total reflection” and be able to give an example
of the use of total reflection in modern technology.

• Explain the calculation of reflection and transmission when a planar elec-
tromagnetic wave is incident obliquely at a flat interface between two media
(especially keeping track of the two components of the electric field in the
calculations).

• Explain the phenomenon associated with the Brewster angle, and set up a
mathematical expression for this angle.

• Define the reflection coefficient and transmission coefficient.
• Explain the difference between a linearly and a circularly polarized plane
electromagneticwave, and statemathematical expressions for the two exam-
ples.

• Explain what characterizes a birefringent material and explain how we can
use such a material to transform a linearly polarized wave into a circularly
polarized wave.

• Explain what happens when light is sent through several subsequent polar-
ization filters, and be able to state Malus’s law.

10.8 Exercises

Suggested concepts for student active learning activities: Homogeneous, thin
interface, Fermat’s principle, total reflection, optical fibre, incidence angle, refraction
angle, Brewster phenomena, birefringence, quarter wave plate, polariometry, rota-
tional symmetry, plane/circular/elliptical polarization, right-handed circular, linear
polarizing filter, crossed polarizers, circular polarizing filter in photography, evanes-
cent waves, stereoscopy, anaglyph glasses.

Comprehension/discussion questions

1. Can water waves and/or sound waves in the air be reflected and transmitted (as
we have seen for transverse waves)?

2. Whenwe see a reflection in awindow,we often see two images slightly displaced
in relation to each other. What causes this? Have you even seen more than two
pictures every now and then?

3. You direct a laser beam to a glass plate. Can you achieve total reflection? Explain.
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4. How can you decide if your sunglasses are of the polaroid type or not?
5. How can you determine the polarization axis of a single linear polarization filter?
6. Name two significant differences between total reflection and the Brewster angle

phenomenon.
7. The speed of sound waves in air increases with temperature, and the air tempera-

ture can vary appreciably with height. During the day, the ground often becomes
hotter than air, so that the temperature of the air near the ground is higher than
slightly further up. At night, the ground is cooled (by radiation) and we can end
upwith the temperature in the air being lowest near the ground and rising slightly
(before it gets cooler still further up). Can you use Fermat’s principle to explain
that we often hear sounds from distant sources better at night than in the day?

8. Why does the sea look bright and shiny when we look at a sunset in the ocean?
9. Is it possible to create a plane electromagnetic wave which is simultaneously

circularly polarized. As usual: Justify the answer!
10. When referring to Fig. 10.4, it was said thatMaxwell’s equations are symmetrical

with regard to time. If one solution is as given in Fig. 10.4, another solution will
be the one where all the rays go in the opposite direction. Would it be possible
to demonstrate this in practice? (Look especially at the light that comes from
the bottom towards a interface. Would there not be a reflected beam down in
this case?) Do you have any examples of experimental situations similar to this
case?

Problems

11. A light source has a wavelength of 650nm in vacuum. What is the velocity of
light in a liquid with refractive index 1.47? What is the wavelength in the fluid?

12. Light passes through a glass that is completely immersed in water. The angle
of incidence of a light beam that strikes the glass–water interface is 48.7◦. This
corresponds to the critical angle where the transition from some transmission
to pure total reflection occurs. Determine the refractive index of the glass. The
refractive index of water at 20 ◦C at 582nm is 1.333.

13. Assume that one (multimode) optical fibre has a difference in the refractive index
of 1% between the glass in the inner core where the light is and the surrounding
layer of glass. Determine the maximum angle (relative to the fibre axis) the light
may have and yet get total reflection. Determine the minimum and maximum
time a short pulse will use to travel 1.0km along the fibre (due to different
angles of the light beam in the fibre). What will be the largest bit rate (pulses per
second) that can be transmitted along the fibre (if we just consider this difference
in efficient path length only)?

14. When a parallel unpolarized light beam hits a glass surface with an angle of
54.5◦, the reflected beam is fully polarized. What is the value of the refractive
index for the glass? What angle does the transmitted beam have?

15. A horizontal unpolarized ray of light passes through a linear polarization filter
with polarization axis turned 25.0◦ from the vertical. The light ray continues
through a new, identical polarization filter whose axis is turned 62.0◦ from the
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vertical. What is the intensity of the light after it has gone through both filters
compared to the intensity before the first filter?

16. A horizontal unpolarized ray of light passes through a linear polarization filter
with polarization axis turned +15.0◦ from the vertical. The light ray continues
through a new, identical polarization filter whose axis is rotated −70.0◦ from
the vertical.
(a)What is the intensity of the light after it has gone through both filters compared
to the intensity before the first filter?
(b) A third polarization filter, identical with the other two, is then put in, but now
with the axis turned −32.0◦ from the vertical. The third filter is placed between
the other two. What is the intensity of the light now going through all three
filters?
(c) Would the result be different if the third filter was located after the other two
instead of between them?

17. Show that if we send a thin beam of light through a flat glass plate of uniform
thickness, the beam passing through the glass will have the same direction as
the incoming beam, but with a parallel displacement. Show that the parallel
displacement d is given by:

d = t sin(θa − θb)/ cos(θb)

where t is the thickness of the glass plate, θa is the angle of incidence, and θb is
the angle between the normal and the refracted ray in the glass.

18. Showmathematically that the angle of incidence is equal to “angle of reflection”
(angle between the reflected beam and the normal to the reflecting surface at the
point of incidence) using Fermat’s principle.

19. A birefringent material has a refractive index of n1 for light with a certain linear
polarization direction and n2 for light with polarization perpendicular to the
first. If this material is to be used as a quarter wave plate for light wavelengths
of 590nm, light with one polarization must travel a quarter wavelength more
within the plate than light with perpendicular polarization. Show that the plate
must have a (minimum) thickness given by:

d = λ0/[4(n1 − n2)]

where λ0 is the wavelength in vacuum (air). Find the minimum thickness of
a quarter wave plate made of calcite (no = 1.658 and ne = 1.486, where the
suffix o in no stands for “ordinary” and can correspond to our n2, while the
suffix e stands for “extraordinary” and can correspond to our n1). What is the
next thickness that will provide quartz wave plate function?What is the function
of a quarter wave plate?

20. Determine howmuch a beamof light is deviated if it passes through an equilateral
triangular glass prism in such away that the light beam inside the prism is parallel
to a side surface. The glass has a refractive index of n.
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Fig. 10.20 A “polarization
filter” for radio waves

Copper wire 
mounted on a 
wooden frame 

as shown

Fig. 10.21 Light that gives
us the rainbow goes through
the water droplets as shown
in this figure at an angle
φ ≈ 60◦

21. Show that Eq. (10.6) can be derived from Eqs. (10.15) and (10.16) in the event
that all are valid at the same time.

22. We can create a polarization filter for radio waves using a copper wire stretched
over a frame as shown in Fig. 10.20. Explain the mode of action and explain
which direction of polarization the radio waves must have to be stopped by the
filter and which direction has minimal influence on the waves. It may be that the
filter would be even more effective if the filter was made slightly differently. Do
you have any good ideas in this way?

23. The light paths in raindrops when we see a rainbow are described in the article
“ The rainbow as a student project involving numerical calculations” written by
David S. Amundsen, Camilla N. Kirkemo, Andreas Nakkerud, Jørgen Trømborg
and Arnt Inge Vistnes (Am. J. Phys. 77 (2009) 795–798).
Figure 10.21 shows the path of the ray. As stated in the figure, the angle φ ≈ 60◦
for the light rays gives us the rainbow (for details, read the original article).
(a) Calculate the angle θ , given the refractive index of water is approximately
1.333.
(b) Is there total reflection for the light that hits the rear boundary of the water
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Fig. 10.22 Scattered light from the sun is polarized in a band over the sky 90◦ away from the
direction of the sun. This can be used to remove a good part of the scattered light when we take a
photograph. The right part shows images without and with polarization filter

drop for this value of θ?

(c) Calculate the Brewster angle both for the light that goes from air to water
and at the interface water to air.
(d) Would you think that the light from a rainbow is highly polarized or not?
(e) How could we experiment experimentally if the light from the rainbow is
highly polarized or not? (See Fig. 1.1.)

24. Light from the sun is scattered in the atmosphere, and it is this scattering that
makes the sky blue during the day and red in the evening sky before the sun sets.
The scattering of light is called Rayleigh scattering, and when the atmosphere
is very clean and dry, the scattered light is polarized in a special way. Looking
towards the sky in a direction 90◦ from the direction to the sun, the light will be
significantly linearly polarized. The left part of Fig. 10.22 shows the direction of
polarization for the region where polarization is most pronounced for a situation
where the sun is on the horizon.
This polarization uses photographers occasionally to get a deep blue sky. In the
right part of Fig. 10.22, it is shown how the sky looks without polarization filter.
(a) How should the filter be set for maximum effect?
The right part of the Fig. 10.23 shows the photograph of a shining water surface.
Reflected sky light is strong for the water surface far away, but there is a pro-
nounced dark area near us (marked with a dashed oval), where almost no light is
reflected. We look straight down to the bottom of the water. The image is taken
without polarization filter (just as we see it by our eyes). The phenomenon can
be observed when the sun is near the horizon, and we look in a direction about
90◦ away from the sun (marked with dashed line in the image).
(b) Can you explain in detail the physical effects that conspire to create a “black
hole” in the reflected sky light?
(c) The phenomenon is easiest to see when we stand at least a few metres above
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Fig. 10.23 Wide angle image of a shining water surface. There is hardly any light from the dark
area (marked with a dashed oval with a centre). The sun is on the horizon in a direction 90◦ to
the right from the direction marked with a vertical dashed line. The sky was clear everywhere, but
brighter to the right (closer to the sun on the horizon, outside the field of view.)

the surface of thewater, as shown in the left part of Fig. 10.23. Can you determine
the θ angle in the figure that corresponds to the direction of the darkest part of
reflected sky light?
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Chapter 11
Measurements of Light, Dispersion,
Colours

Abstract Light and sound are the two most important wave phenomena people
experience in daily life. We start this chapter by defining various concepts and units
used for characterizing light and light sources, both in a purely physical setting and
as judged by human vision. We then give important characteristics of the wavelength
ranges of the various receptors in the human eye and how our colour visionmakes the
foundation of additive colour mixing in modern colour picture technology. We also
point out how dispersion leads to colour spectra and boundary colours for specific
boundary conditions. A few curious phenomena found in human colour vision are
also mentioned.

11.1 Photometry

When discussing sound, we mentioned the dB scales used for specifying sound
intensity and the like.We saw then that the sound volume could be given in terms of a
purely physical unit, such as the amplitudeof the averageoscillations of airmolecules,
or as the local pressure amplitude while a sound wave passes, or as dB(SPL). Such
measurements have a limited utility since oscillations with a frequency of less than
about 20Hz or higher than about 20kHz do not matter, no matter how powerful such
pressure oscillations in air is. Therefore, we had to introduce our own volume scale
related to how sensitive the human ear is to sound with different frequencies. We
weighed contributions at different frequencies according to the sensitivity curves for
our hearing and devised scales such as dB(A) and dB(C).

Similarly, two parallel measuring systems are employed when we want to specify
light levels/light intensities. A “radiometric” measurement system is based on phys-
ical energy measurements in units related to watt in one way or another. On the other
hand, the “photometric” measuring system is based on visual impression, i.e. on the
sensitivity curve for the human eye. Here the basic unit of measurement is lumen
(which is itself based on the SI unit candela).

There is no simple proportionality between radiometric values and brightness as
perceived by the eye. A pure infrared source may have a high radiometric intensity in
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Fig. 11.1 Curves showing how “bright” the human eye perceives different spectral colours to be
when the radiance to the eye is kept constant. The red curve (on the right) gives the “brightness
curve” for colour vision (cones), while the blue curve gives the corresponding information for night
vision (rods). The first has a peak at 555nm (green), while the other has a peak at about 505nm.
Curves of this type vary slightly from person to person, and a standard curve can be made from
many measurements. Dickyon, Public Domain, Modified from original [1]

W/m2, yet the eye will not perceive almost any light from such a source. Hence, we
need also units of measurement that are linked to human perception of light levels.

Figure 11.1 shows the sensitivity curve of the eye, for both colour vision (the cone
cells) and night vision (the rod cells). It is only the shape of the curve shown, not
absolute sensitivity (the peaks are normalized to 1.0).

The changeover between radiometry and photometry is completely analogous to
the changeover between sound intensity in W/m2 or dB(SPL) on one side and dB(A)
(or dB(C)) on the other (see Chap. 7 on sound and hearing). We must also integrate
physical measurements in W/m2 and weigh the contributions for different wave-
lengths with the eye’s sensitivity to brightness (Fig. 11.1) for the same wavelength.
For colour vision, this means, to take an example, that it takes twice the intensity of
light at 510nm (or 620nm) to contribute as much to the perceived brightness as light
at 555nm (see Fig. 11.1).

Absolute scale in photometric contexts is determined by setting a correlation
between radiometry and photometry for the peak of the curve. The context exists
in the definition of the base unit of photometry in the SI system, namely candela
(abbreviated cd):

Monochromatic lightwith frequency 540 × 1012Hz (wavelengthabout 555nm)
and radiant intensity 1/683W/sr, by definition, has a brightness of 1.0candela
(cd).
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Wewill definemorepreciselywhatwemeanby radiation intensity.At themoment,
it is enough to note that the definition connects a radiometric quantity with a photo-
metric quantity for just a single wavelength.

The number 1/683 seems strange, but is related to the fact that the unit used
previously was “normal light”, which corresponded approximately to the light from
a candle. Candela is chosen to match the old unit.

It may be noted that in the SI system there are only seven basic units, so candela
really plays a central role. It is basically rather odd when we notice that the unit is
so closely linked to human perception. On the other hand, the definition of candela
given in the SI system is approximately the same as if it were a radiometric quantity,
since the light source has only one wavelength.

Why do we see wavelengths around 500 nm?

Aswe saw inChap. 9, visual light is restricted to a very narrowwavelength interval
compared to the very impressive range of electromagnetic waves. One can wonder
why this is so.

From an evolution perspective for life on earth, the explanation is rather obvious.
Electromagnetic waves are strongly absorbed in water for a broad range of wave-
lengths (Fig. 11.2). Only for a relative narrow range around 500nm, the absorption
is much less than for electromagnetic waves in the infrared and ultraviolet range.
The absorption minimum is actually near 500 nm. This number should be compared
with the sensitivity curves in Fig. 11.1.
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Fig. 11.2 Electromagnetic waves are strongly absorbed in water for a broad range of wavelengths
except for the relatively narrow range 200–800nm. The range of visual light is marked with the
spectrum box at the bottom of this figure. See text for details. Kebes, CC BY-SA 3.0 GNU Free
Documentation License 1.2. Modified from original [2]
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Fig. 11.3 An angle between two lines in a plane is defined as the length of L to an arc (of a
circle with centre at the intersection of the lines) divided by the radius R to the circle. The unit of
measurement is radian. A solid angle is defined as an area of A of a spherical segment (part of a
sphere with a centre at the vertex of a conical surface that delimits the solid angle) divided by the
square of the radius R2. The unit for the measurement of a solid angle is steradian (sr)

Since all life on earth is based on aqueous media, vision and reflection of colour
pigments from within plants and animals would be severely hampered if our vision
was based on electromagnetic waves outside the 200–800nm.

The solid angle

Wewill shortly go through the most common concepts related to the measurement of
light, but we start by defining the concept called “solid angle”, since this is included
in several quantities in terms of which light is measured.

Figure 11.3 illustrates that the definition of the solid angle is a natural extension
of the definition of the plane angle. A plane angle is given as the length of a circular
arc divided by the radius of the circle. The angle is then independent of the chosen
radius.

A solid angle is the area of a spherical segment limited by the conical surface,
divided by the square of the radius of the shell.

Ω = A

R2
.

With this definition, the solid angle turns out to be independent of the choice of the
radius, which is what we want. A solid angle that includes a hemispherical shell will
have the value

Ωhemispherical shell = 4πR2/2

R2
= 2π .

A solid angle that includes the entire space (all possible directions from a point) will
then be 4π . The SI unit for the solid angle is a steradian (abbreviated sr).
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Fig. 11.4 A pocket torch emits light rays in the form of a divergent beamwith a certain solid angle.
The beam hits a surface, the illuminated part of which then acts as a secondary light source emitting
light more or less in all directions in front of the surface (but only a matt or Lambertian surface will
become an isotropic source). The figure forms a starting point for defining different photometric
quantities

Measurements based on solid angles are usually interesting only when they are
conducted far from the source compared with the physical size of the source.

The simple units of measurements

Measurement of light involves many more concepts than measurement of sound
does, possibly because the output of a light source can be everything from a narrow
beam to light travelling along almost all directions. A laser can produce a very
narrow beam of light, while an old-fashioned Edison-type filament lamp emits with
approximately equal brightness in any direction. It is not easy to generate narrow
sound beams, unlike the case of light beams, simply because the wavelength of sound
waves is much greater than the wavelength of light.

The Wikipedia article on “SI radiometry units” lists altogether 36 different radio-
metric quantities that are in use.Wewill content ourselves with the six most common
quantities used. We choose to provide both the radiometric and photometric quanti-
ties at the same time for each type of measurement, using the abbreviation “RAD”
and “PHOT” to distinguish what is what.

We choose to refer to Fig. 11.4 that shows a light beam from a pocket torch
(flashlight) that strikes a surface a short distance away.

We often wish to send a powerful beam of light from a torch. When companies
advertise that a flashlight reaches for example 800 m, the beam must have high
power and it must not be too wide. In order for us to see what the beam hits, the light
must have not only a high power, but a significant part of this power must lie in the
wavelength range that is perceivable to the eye.

Light sources, light intensities, illuminations, etc., are described through a number
of concepts and units. Let us describe the most important ones:
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How powerful light do we have within a defined solid angle?

• RAD: Radiant intensity Ie,Ω is measured in W/sr. Characterizes radiation
per unit solid angle in a given direction.

• FOT: Luminous intensity Iv (brightness/light intensity) is measured in can-
dela: cd = lm/sr. Characterizes visible light intensity from a light source (per
unit solid angle) in a given direction.

On a dark winter night, we wish to light our living room to make it a cosy place.
We would evidently use lamps that spread the light a lot. Lights with narrow beams
will not provide a pleasant lighting. We are then interested in how much light we
get from a light source, and in this case, we do not care how effective the lamp is
(how much current it draws). In the past, we switched from a 40W to a 60W bulb
when we wanted more light. Today, we look at how many lumens the lamp gives
since different types of lamps have different efficiencies in generating visible light.
To get more light, for example, we change from 500 to 800 lm, and then, following
consideration becomes important:

Total amount of light, summed over all directions:

• RAD: Radiant flux Φe is measured in W. Characterizes the power of light
from sources (note: not how much power is drawn from the supply!).

• FOT: Luminous flux/luminous current Φv is measured in lumen: lm ≡ cd sr.
Characterizes the flow of visible light coming from the source.
Here it is worth noting that the watt in radiometry corresponds to the lumen

within photometry!

The relationship between lumen and candela is that the lumen integrates light in
all directions, while candela indicates how much light goes within a chosen solid
angle. For a light source that emits approximately the same light in all directions, the
number of lumen will be 4π times the number of candela. For light sources with a
very narrow light beam, the candela value will be much greater than the lumen value.

A light bulb does not last forever. For example, some last for 500 h, and others
are claimed to last for several thousand hours. The cost of using different types of
light bulbs, of course, depends on the power consumption, but it also depends on
how much light we can get out of a bulb before it is exhausted. Therefore, the total
amount of light energy may be of interest in certain contexts:

Total amount of energy/light, summed up over time:

• RAD: Radiant energy Qe is measured in J. Characterizes the source.
• FOT: Luminous energy Qv is measured in cd sr s = lms (candela steradian
second = lumen second). Characterizes the source.
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Youmay have seen that the old Edison light bulbs often had amilky coating on the
inner surface of the outer glass envelope. The same is found on many modern LED
bulbs as well. There are several reasons for such a coating, but one of the reasons
is that the light bulb should not be too uncomfortable to look at directly. It is more
comfortable if a light source emits light from a large surface than a small one.

We cannot look directly at the sun since the intensity is so large compared to its
size. But the moon can be viewed directly without hurting the eyes. However, if all
the light from the moon had come from a tiny area in the sky, our eyes would feel
uncomfortable when looking directly at the moon.

In other words, it is not just the amount of light that comes from a light source
that matters, but also how large the area (seen by the observer) the light comes from.
This takes into account the following criterion:

How powerful is the light within a given solid angle, per unit surface of
the source:

• RAD: Radiance Le,Ω is measured in W/(srm2). Characterizes radiated
power per square metre of projected surface per steradian in a given direc-
tion.

• FOT: Luminance Lv is measured in cd/m2 (equivalent to lm/(srm2).) Char-
acterizes radiated visible light intensity from each (projected) square metre
of the source.

When we use a flashlight for, say, reading a map in the dark or when we have a
reading lamp and want to read a book, we need to ask for the amount of light that
illuminates the map or book. This is one of the simpler light measurement quantities,
and here are the definitions:

Light intensity that falls upon a surface:

• RAD: Irradiance Ee is measured inW/m2. Characterizes radiation intensity
towards a surface.

• FOT: Illuminance Ev is measured in lm/m2 ≡ lux. Characterizes luminous
flux towards a surface.

A book usually consists of black letters on a white paper. This is not accidental,
because the paper itself does not emit light, but it “reflects” light that falls on the
paper. In order for us to read a book, there is a requirement for how much light per
unit surface comes from the paper to our eyes.

There is a similar requirement for a mobile phone screen or a computer screen or
a TV. The quality of the image and how comfortable it is to view the screen depend
on how much light per unit area comes from the screen:
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Light intensity radiating from a surface:

• RAD: Radiant exitance Me is measured in W/m2. Characterizes radiation
intensity from a surface.

• FOT: Luminous emittance Mv is measured in lm/m2 ≡ lux. Characterizes
Luminous flux that radiates from a surface.

Now we are done with reviewing the quantities that are commonly used in light
measuring. In addition, there is another item that falls in the list of the photometric
quantities and is frequently used in connection with energy efficiency. This last
quantity is:

Efficiency to convert electric power into visible light:

• FOT: Luminous efficiency η is measured in lm/W. Characterizes how effec-
tive a light source is to convert physical power into visible brightness. In
this context, the number of watts is simply electrical power drawn from the
mains.

Some additional comments
Experience has shown that it is difficult for many people to grasp the difference
between radiation intensity and radiance. We will therefore try to concretize. Radi-
ation intensity tells us how much intensity emanates from a light source in a certain
direction, as compared to other directions. A spotlight bulb will provide significantly
higher intensity in the direction of the spot than in a direction beyond the cone where
most of the light is confined. We can describe this distribution by, for example, a
graph that shows the radiation intensity as a function of angle from the axis of the
luminous cone. The intensity (measured, e.g. as irradiance) at different distances
from the cone will vary with the distance, but the radiation intensity, which is the
power per unit solid angle, will be independent of the distance from the source.

Radiance, a quantity that closely resembles radiation intensity, is used in cases
where the light source is extended so that it is meaningful to specify the amount of
radiation intensity that comes from different parts of the source. Howmuch radiation
intensity there is, for example, from areas approximately in the middle of the sun
(seen from the earth) and how much radiation intensity do we get from areas further
out to the edge of sun (seen from us)? We normalize the intensity of radiation from
the projected surface and arrive at the radiance. Areas near the edge of the sun (seen
from the earth) are inclined in relation to the view from the earth. Then we divide the
radiation intensity with an apparent area seen from us, that is, an imaginary area that
is perpendicular to the direction of view from us that covers the area we calculate
the radiation intensity from. For areas at the centre of the solar disc, we do not need
to make such a correction since the solar surface in the middle of the solar panel
is perpendicular to the direction of vision for us. Then projected surface will be
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identical to real surface, which simplifies the calculation of the radiance (radiation
intensity per (projected) surface of the light source).

Lumen (lm) is a derived unit: candela multiplied by the solid angle. Lumen indi-
cates how much visible luminous intensity a source emits (integrated across all
directions). A source that provides many lumens will provide more visible light than
a source with few lumens (see Fig. 11.6).

Let us try to put place of the quantities in context:
Suppose that we have a spotlight source that has a light flux of 4π lumen in all.

This is an integrated brightness for the source (including all directions.)
The light intensity from this source is 1 candela in all directions (assuming a dot

light source). The brightness is 1 candela no matter how far away from the light
source we are, because the brightness characterizes the source and not the light at a
given location.

However, if we set up a screen across the light direction, the illumination den-
sity/illuminance on the screen will decrease with the distance from the source. Our
spotlight source with light flux 4π lumen will have an illuminance of 1 lux on the
inside of a spherical shell with radius 1 m centred on the light source. If we double
the radius of the spherical shell, the illuminance decreases to 1/4 lux.

Our eye can adapt to an enormous range of light intensities. The ratio of the largest
and smallest intensity it can handle is about 1010–1012 (depending on what source
we consult). However, the eye cannot handle such a large light intensity range at
one and the same time. The eye adapts to the average level to which it is exposed.
After such adaptation, the ratio of the largest and smallest intensity which the eye
can handle at the same time is about 104. Within this range, the eye can distinguish
between about 50–100 brightness levels (grey shades).

Figure 11.5 shows an overview of luminance in our surroundings under different
conditions. For many years, it has been argued that the faintest light the human eye
can perceive is a few photons per accumulation time in the rod cells (i.e. five to ten
photons per second within a tiny area of the retina). However, this is an opinion based
on photons as indivisible particles, a view about which there is no consensus (see
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Fig. 11.5 Approximate light level (luminance) in the environment where our visual sense works.
The figure is inspired by Fig. 16.2 in [3]
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the reference list at the end of the chapter). Regardless of the exact level, it is an
incredibly low intensity compared with full sunlight.

Modern light-sensitive detectors (so-called single-photon detectors) are somewhat
more sensitive than the eye, but can suffer permanent damage if the light intensity
becomes more than about 106 times the lowest light intensity they can detect. How-
ever, there are many factors that easily make a comparison with the eye misleading.
Sensitive detectors are expensive!

11.1.1 Lumen Versus Watt

In recent years, much attention has been paid to the efficiency of light sources. An
Edison light bulb, to coin a phrase, converts about 80% of the energy to radiated
energy. The rest is spent hot in heating the filament and the terminals, etc. Of the
radiated energy, most is in the infrared region, which is not visible. When using
such lamps in environments where we need heating, the low efficiency of making
visible light is not a disadvantage. In environments where, on the contrary, we need
to remove heat (in warm climates), such lamps are clearly undesirable. We get too
little visible light out of the energy used.

In recent years, there have been a lot of different light bulbs on the market with
many different sockets and operating voltages (see Fig. 11.6). There are classical
filament bulb, halogen bulb, fluorescent lamp and the so-called energy-saving bulb
based on the fluorescent lamp, and a number of different LED (light-emitting diodes)-
based bulbs.

Fig. 11.6 In part a, some examples of today’s light bulbs are shown. A particular interesting source
of illumination is organic light-emitting diodes. Picture b shows one of the first commercial OLED
lamps available in the market. The OLED light panel is extremely thin, as seen in panel c, and the
light is radiating evenly from the total area of the film (e) providing a pleasant illumination. The
colour spectrum reveals that this OLED radiates light relatively evenly from the visible spectrum
(d). It is not as good as for a classical filament bulb, but far better than some fluorescent lamps
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There are big differences in how efficient the light bulbs are, even when they are
of the same type. Fortunately, the manufacturer often indicates the light flux in the
number of lumens, but even this is not sufficient. Some bulbs collect most of the light
into a relatively narrow beam while others provide light in almost any direction. It
has become quite difficult to find one’s bearings.

On theWeb, we can find different overviews of the light output for different types
of light sources. These overviews change several times a year due to developments
that take place. From my own observations in shops, and a table onWikipedia, April
2018, under the term “ luminous efficacy ”, the following overview for different light
sources can be given (light source, light output given in lm/W):

• Stearin candle: 0.3
• Classical incandescent lamp: 5–18
• Halogen bulb: 17–24
• Fluorescent tube (including energy savers): 46–104
• White LED (light-emitting diodes): 45–170
• Theoretical limit for white LED: ca 260–300
• Theoretical limit for an optimal blackbody radiating source (5800K): 251.

It is worth noting that the light output from, for example, LED lamps differs
considerably fromone type of LED to another (a factor of four in difference according
to actual observations and the overview inWikipedia). If we want to save energy and
think about the environment, we should take a close look at the specifications before
choosing new lamps and bulbs!

There is currently intense research and development on new types of light sources.
The fact that the Nobel Prize in Physics in 2014 went to the pioneers who found out
how we can make blue LED sources shows how important lighting is for the world
community. That UNESCO pointed out 2015 as “The International Year of Light”
reinforces the sense of importance attached to light.

11.2 Dispersion

We have previously found that dispersion causes light with different wavelength to
have different velocities through glass. This means that the refractive index varies
with wavelength.

In Fig. 11.7, a diagram shows how the refractive index of light changes with
wavelength of a regular type of optical glass (Schott BK7). The curve varies consid-
erably for different types of glass, so if we want to demonstrate the different colour
phenomena mentioned in this chapter, a type of glass should be used which gives
a large dispersion (often associated with high refractive index). In binoculars, we
prefer to search for materials with the least possible dispersion in order to minimize
the so-called chromatic aberration (more about chromatic aberrations in Chap. 12).
This applies primarily to wavelengths in the visible area.
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Fig. 11.7 Example of
dispersion for one type of
optical glass (BK7)
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Newton’s classic colour experiment is usually described in more or less the fol-
lowing words: “When light is sent through a glass prism, we get a spectrum”. In
practice, more is needed to ensure that the spectrum has the quality we expect and
Fig. 11.8 indicates this. We must send light through a narrow slit, and need a lens to
make a sharp image of the slit on a screen (as described in the next chapter). We may
mimic this situation if we, for example, send sunlight through a narrow slit, without
a lens, to make a somewhat blurred image of the slit on the screen. The quality of
the spectrum is then rather poor.

Only when these conditions are satisfied, can we put the prism in the light path
with a side edge parallel to the slit. The light beam will then deflect, but will form a
shifted image of the slit on the screen. We may need to rearrange the lens’s location
so that the image on the screen becomes as sharp as possible.

The resulting spectrum can be described as a multitude of images of the slit,
slightly offset from one another. If the light source contains a continuous range of
wavelength components throughout the visible region, red light would appear in one
place, green somewhere else, and blue on yet another place. The constellation of all
these images constitutes a visible “spectrum” on the screen.

Fig. 11.8 Newton obtained a coloured spectrum when he imaged a slit on a screen and let the light
on its way pass through a glass prism. The geometry of the layout is crucial to the result
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11.3 “Colour”. What Is It?

A number of details do not appear in such a simple description of Newton’s spectrum
as the one given above. Firstly, what do we mean by “colour”? Many people have a
very inadequate impression of colours.

Colour is something we experience, a sense impression. The colour sensation has
a complicated connection with the physical stimuli that affect our eye. The light
is partially absorbed into special proteins in the retinal rods and cones, cells called
“photoreceptors”. The rods are the most photosensitive receptors and are responsible
for sight in the dark. The rods cannot provide colour information and will no longer
be discussed here.

The cones, on the other hand, provide colour information. There are three types
of cones that can initially be called blue-sensitive, green-sensitive and red-sensitive.
These are also referred to as S-, M- and L-cones where the letters stand for “short”,
“medium” and “long” wavelength for the peak in their sensitivity curves.

In short, the sensitivity and themost sensitive area of the three cones are as follows:

• S-cones, 380–560nm, peak 440nm
• M-cones, 420–660nm, peak 540nm
• L-cones, 460–700nm, peak 580nm.

Quite different numbers are reported in different studies because of individual
differences from person to person, and partly because determination of a sensitivity
curve is not a trivial task so the values are somewhat dependent on the measurement
method used. CIE (see reference list) has adopted a standard that gives the average
value for each of the peaks.

Figure 11.9 shows the sensitivity curves for the three types of cones. The figure
must be so understood that if we send monochromatic light (light with only one
wavelength), the curves show the sensitivity of each of the three cone types. At

Fig. 11.9 Relative
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eye
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about 444nm, the “blue-sensitive” cones (S-cones in the figure) are about twice as
sensitive as at about 480nm (8.8 and 4.2 along the vertical axis, respectively, in the
plot). This means that one must double the intensely of light at 480nm to get the
same response from this cone as light at 444nm. Put in another way: if a person is
born with defective green-sensitive (M) and red-sensitive (L) cones, he or she will
have exactly the same viewing experience for monochromatic light at 480nm as for
monochromatic light at 444nm, but at half the intensity. For monochromatic light
with wavelength less than 380nm and greater than 560nm, this type of cone gives a
negligible response.

The special thing is that the three curves in Fig. 11.9 overlap one another, in
part very substantially! This means that monochromatic light with a wavelength
of approximately 570nm will stimulate (excite) both the red-sensitive and the
green-sensitive cones about equally! We may gather then that the expressions “red-
sensitive” and “green-sensitive” are really misleading, and we therefore proceed
to mention only cones of types S, M and L (shortcuts for, respectively, “short”,
“medium” and “long” wavelengths).

In summary: The only signal that a visual cell (one cone) can send is a train of
identical neural pulses, nomatterwhat light stimulus excites the cell. However,
the amount of light required to excite a cone is wavelength-dependent and the
sensitivity curve differs for S-, M- and L-cones. The number of pulses per
second coming from a cone is approximately proportional to the intensity of
the light (assuming that the wavelength distribution of the light is kept constant
when the intensity increases). These characteristic features apply to all three
types of cones. There is no difference in the shape of the nerve pulses from S-,
M- and L-cones.

The response is in a way “digital”; either we have a pulse or there is no pulse.
The brain deduces colour information because it keeps track of what type
of visual cell (cone) each nerve fibre comes from. If the brain receives, for
example, about the same number of neural pulses per second sent by M- and
L-cones from a region of the retina, and little from the S-cones in the same
area, the brain gives us a greenish-coloured colour experience of the light that
reaches this part of the retina (compare with Fig. 11.9).

A small digression:
When you see curves such as those in Fig. 11.9, you hopefully associate them with a fundamental
phenomenon from the book’s first chapters. You encountered curves that looked very similar to each
of the curves in Fig. 11.9 when we discussed forced oscillations and resonance. Then, the resonance
curves had frequency along the x-axis and some amplitude along the y-axis, while in Fig. 11.9 we
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Fig. 11.10 Signals from the cones (to the right) are processed by many types of cells in our eye
and on our way to and in the brain itself. The vision process is therefore very complicated. (Light
is actually coming in from the left.) Cajal/Chris, Wikimedia Commons, CC BY-SA 3.0. The figure
is based on [4]

have wavelength along the x-axis. However, since frequency and wavelength are linked via f λ = c,
the wavelength axis can easily be converted to a frequency axis. According to semi-classical theory,
there is a correlation between forced oscillations and absorption in the visual receptors.

Our vision is very advanced and the raw image we get from the actual visual cells
(cones) is further processed in many different ways. Already in the retina we have
four types of cells that process the response from the photoreceptors (cones) (Fig.
11.10). These are so-called horizontal cells, bipolar cells, amacrine cells and ganglion
cells. Each cell has its own function, including contrast enhancement, or reacting
specifically to temporal changes in brightness (e.g. when the subject is moving).
The cells are also involved in the signal processing related to colour discrimination.
There is also extensive processing of the signals from the retina in certain relay hubs
in the visual field, and even more in the brain’s visual centre. What an impressive
machinery lies behind our visual perception!

We will first focus on the simplest principles of colour (chromatic) experience,
and the main rule in this context is that the colour is determined by the interrelation
between the amount of light absorbed in the three types of cones. Then we will
mention other factors that also affect our colour experience.

11.3.1 Colourimetry

If we consider only monochromatic waves in the visible region, we find that light
absorption in the three types of cones will change in a unique manner as the wave-
length of light is varied. Monochromatic light provokes visual sensations known as
“prismatic colours”. These colours are in a class by themselves and are perceived as
“saturated” colours. We cannot make a spectral red any redder than it already is (at
least not with the colour index assigned to it).

https://en.wikipedia.org/wiki/Retina#/media/File:Retina-diagram.svg
https://creativecommons.org/licenses/by-sa/3.0/
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If we let in light with many wavelengths, the response from the cones will equal
(almost) the sum of the responses due to the individual monochromatic contributions.
The summation rule can be traced to the superposition principle. Needless to say,
this description holds only within a limited intensity range, but it will be adopted
here for the sake of simplicity.

Energy absorption in M-cones can be expressed mathematically as follows:

M =
∫

φ(λ)M(λ)dλ (11.1)

where φ(λ) is the spectral intensity distribution of the incident light (formally
called colour stimulus function). M(λ) is the spectral energy sensitivity for
M-cones corresponding to the middle curve in Fig. 11.9.

Energy absorption in the two other types of cones can be described in an
analogous manner. The three expressions so obtained describe only relative
absorption (because the expressions do not take calibration into account).

It is not hard to see that monochromatic light of ca 570nm plus monochromatic
light of ca 420nm will provide the same stimulation of the three types of cones as
will a mixture of monochromatic light at 660, 500 and 410nm. The only proviso that
must be met is:

M = φ1(570)M(570) + φ1(420)M(420) =

φ2(660)M(660) + φ2(500)M(500) + φ2(410)M(410)

and likewise for L and S. We obtain three equations with three unknowns (assuming
that the two φ1-values are known).

The upshot of the foregoing analysis is that we can get the same colour sensation
from widely different physical stimuli. By “stimulus” we mean specific distribution
of intensity for various wavelengths—in other words, the spectral distribution of the
stimulating light. The spectral distribution of the light that appears to us as a special
green colour can, as a matter of fact, be rather different from the spectral distribution
of another light source, although we perceive the latter as exactly the same green
colour as the first (termed “metamerism”). It is by no means to be supposed that
“colour” is synonymous with the spectral colour defined above!

How fortunate for us that this happens to be so! We exploit it extensively today,
especially in photography and coloured visual displays on a TV screen or computer
monitor. In all these cases, we usually start out with three colours and mix them with
each other in different proportions to form “all other colours”. But there are some
limitations.
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Fig. 11.11 “Colour
Horseshoe” defined by CIE
in 1931. Detailed description
of this “xy colour space
diagram” is in the text. NRC,
Public Domain [5]

CIE 1931

Figure 11.11 shows a so-called colour horseshoe, which is devised according to
a special scheme. Along its curved edge lie the “pure” spectral colours from red
to violet. On the straight line between red and violet, called the “line of purples”,
lie the nonspectral magenta and purple-red mixtures. The centre of the horseshoe
corresponds to light that is perceived as white.

Along the axes, so-called x and y coordinates are determined from a transforma-
tion of (S, M, L). How may a colour stimulus be determined by three parameters:
(S, M, L) while the colour horseshoe reproduces colours only in a two-dimensional
plot?

The three stimuli indicate both colour and light intensity information. For a given
light intensity (or rather luminance), the three parameters will not be independent of
each other. Only two can be chosen freely. By using an appropriate transformation
of the cone absorbances, we can transform into two independent parameters x and y
which indicate the colour irrespective of the light intensity (luminance). The inverse
transformation is not unambiguous! The colour horseshoe in principle indicates all
the colours we can experience at a given luminance and can therefore be regarded as
a general “colour chart”. It is therefore called a chromaticity chart.

The mathematics behind the current transformations has been developed over
many years. The colour horseshoe was adopted in 1931 as a standard for colour
measurement by CIE (Commission International de l’Eclairage in French, The Inter-
national Commission on Illumination in English). The transformations used are still

https://en.wikipedia.org/wiki/CIE_1931_color_space#/media/File:CIE1931xy_blank.svg
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Fig. 11.12 Finding the colour for additive colour mixing corresponds to the “centre of gravity” for
the colour coordinates that are included in the mixture. To the left are given three examples of the
colours that can be obtained by mixing two colours, marked with straight lines. Further information
is in the text. Right part: The colour scope of a computer screen using three types of coloured pixels
lies within the triangle spanned by the colour coordinates of the pixels. The amount of colour within
the resulting triangle is significantly less than the amount of colour that the entire colour horseshoe
represents

being discussed, and severalNorwegian physicists (such asArneValberg,KnutKvaal
and Jan Henrik Wold) have worked on this issue for many years.

The colour horseshoe is useful in many ways. If we start with two colours (two
coordinates in the colour horseshoe) andmix themwith equal weight (defined appro-
priately), our colour scheme will correspond approximately to the point in the colour
horseshoe that is in the middle of the two points we started with. This is indicated
in the left part of Fig. 11.12. Starting with equal amounts of near-spectral stimuli
at 540 and 620nm, the colour we perceive will be quite similar to the colour of a
wavelength of 572nm wavelength (most would denote it as yellow). However, if
we mix in approximately equal amounts of near-spectral stimuli at 495 and 680nm,
we will perceive the colour mixture as approximately “white” (a light grey without
colour).

When we consider a computer screen, a mobile phone screen, an iPad, a TV
screen or the like, there are three types of light that build up the image: “red”,
“green” and “blue”. These stimuli each have their coordinates (chromatic
points) (x, y) in the colour horseshoe. The colours we can form with these
three primary colours are within the triangle that the three coordinate points
form in the colour horseshoe. The amount of all colours we can form with
the three primary colours is called colour scope, for example, the computer
screen.
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Fig. 11.13 Spectral lines show beautiful saturated colours when viewed directly in the laboratory.
After photography and reproduction (as here), the amount of colour becomes much smaller

We can try to select three points and draw lines between them to identify which
colours can be produced by the three primary colours, and we will then discover that
a variety of colours lie outside the triangle as the points expand. An example of such
a triangle is given in the right part of Fig. 11.12. Since an inner triangle can never
cover the entire colour horseshoe, it means that the colours we can see on a computer
screen, etc., are a rather pale image of the amount of colour we can experience in
nature. A variety of colours on flowers, for example, are far more saturated when
you see the flower in reality than what we can reproduce on a computer screen (or
photograph for that matter).

An example of the lack of colour achievable with three-colour reproduction is
shown in Fig. 11.13. In the figure, there are two spectra of gases: one with a few
spectral lines and one with many more. Spectral lines are in fact the most saturated
colours we can have, and when the lines are observed directly in a laboratory, we
notice this. The same spectral lines shown in a photograph are just a pale copy of
reality (as the figure shows).

In industrial context, different colour systems have been developed than CIE.
Colours are included in far more parts of a modern society than we usually think
about. For example, food quality is assessed using colours. Two colour systems used
in industrial context are NCS and Munsell.

For example, Natural Colour System (NCS) is used when we buy paint in a store. The paint is
mixed in the store. There are four basic colours in NCS (in addition to white and black), namely
red (R), yellow (Y), green (G) and blue (B). When a colour code is 1020-Y90R, the first two digits
give the mixture of white and black. In our case, these numbers are 10, which means that it must
be mixed 10% black and 90% white. The two next digits tell us how much we should have of this
grey colour in relation to the colour we want. The numbers 20 means that 20% of the grey colour
we mixed will be used and 80% colour/colour. Y90R means that it will use 10% yellow and 90%
red, and this colour mixture will be mixed with the grey colour in the ratio of 20% grey and 80%
red/yellow.
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11.3.2 Colours on a Mobile Phone or Computer Display

Let us now make a practical check on how colours are generated on a TV, mobile
phone or computer screen. Figure 11.14 shows in the centre a small part of a computer
screenwithWindows icons.We have taken a picture closer to the screen to see details.
A clip from the Google icon has the colours green, white and dark blue. Another
snippet has the colours red, yellow, white and light blue.

To the right and to the left, there are selected representative “pixels” that the
image is built with. Each pixel on this screen has three vertical fields. These fields
can give the colours red, green and blue, respectively, and only these. These three
colours correspond to the points shown in the right part of Fig. 11.12. We see here
quite clearly that, for example, the colour yellow on the computer screen really is
generated only by means of red and green light. The pixels are so small that the light
from the red and the green field in a pixel hits the same eye cells.

Additionally note that dark blue or blue-black is generated virtually by using zero
red and green light and only weak blue light. Light blue (slightly light blue-green),
however, is generated with almost maximum of blue, some green and a little red.
White is generated with powerful red, strong green and powerful blue at the same
time. It is fascinating that, using only three primary colours, we can generate as many
colours as we actually can!

(a)

(d)

(c)

(b)

(e)

(h)

(g)

(f)

Fig. 11.14 Photographs of a computer screen. A section of icons on the “desktop” on a Windows
computer is shown at the top middle. Two small clips from the Google icon are shown underneath.
Pixels from different coloured areas are shown to the far left and right of the figure. A particular
pixel can only emit red, green or blue light (over its entire area). The colours the pixels give us are
a green, b white, c dark blue (blue-green), d blue-black, e red, f yellow, g white and h light blue
(blue-green)
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11.3.3 Additive Versus Subtractive Colour Mixing

Art posters use, for example, 7-colour, 9-colour, 13-colour printing. One of the rea-
sons for this is that the colour gamut in the final image should be as large as possible.
It is natural to draw parallels to the triangle on the right in Fig. 11.12 in this context.
However, we must remember that when colours are mixed using pigments that are
illuminated by an external light source, all colour blends are far more complicated
than those we have mentioned above. We have so far just referred to additive colour
mixture that occurs when mixing (superposition) of light. In an art poster (or in a
painting or print of a photograph), subtractive colour mixing is at work. Pigments
absorb some of the light that falls on them, and the light sent back to us will cause
the pigmented surface to appear with a certain colour when illuminated, for exam-
ple, with sunlight. If we add more pigments together, e.g. by mixing yellow and blue
pigments, the surface will often look green. However, if the pigments are illuminated
by light with only a few wavelengths (e.g. light from some diodes (LED) or from
fluorescent tubes), there is no guarantee that the mixture of yellow and blue pigments
will look green!

The best colour rendering is achieved with light sources that have a continuous
spectral distribution, i.e. common old-fashioned light bulbs or halogen bulbs. In art
exhibitions and the like, it is therefore important to use such lighting instead of
fluorescent lamps, energy-saving light bulbs or simple types of LED lamps.

Incidentally, the word subtractive colour mixture is a little misleading. To find the
cone absorption when the stimulus corresponds to light reflected from a mixture of
two pigments, the spectral reflection coefficients of the pigments must be multiplied
with each other.

By the way, Helmholtz was the first to describe the difference between additive
and subtractive colour mixing. This happened about 200 years after Newton’s colour
mixing model based on the superposition of light (additive colour blend).

It is not trivial to make pigments from scratch. Often one uses natural pigments from, for
example, plants or minerals. Only a limited number of pigments are available, and when we print
an artwork, it may sometimes be useful to use more than three “colours” (pigments) to get as good
reproduction as possible, even if the original is only found as RGB (three target figures) from a
digital camera. We cannot expand the colour gamut relative to the image (colour gamut spun out
of the RGB values), but we can reproduce on paper the colour gamut better than by using fewer
pigments.

In order to achieve a larger colour gamut, we need to start with more than three stimuli already
in the data recording. It helps little to start with a digital camera with only three detectors per pixel
and believe that if only we had a good printer, then the overall result would be almost perfect! This is
analogous to audio recording: if we are going to process sound at a sampling rate several times that
used in CD audio, then there is no point in starting with a low resolution in the processing of sound
and raise it later on. We must have the highest sampling rate already at the very first digitization
of sound. In studio recording of sound, it is now fairly common to use higher sampling rates than
the CD standard. For capturing images, a trend has started to employ cameras with more than three
detectors per pixel, and as such, screens with more than red, green and blue luminous points. It is
not inconceivable that in the future photography apparatus and computer monitors will be based on
technology with more than three basic stimuli.
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11.4 Colour Temperature, Adaptation

The formalism given in Eq. (11.1) and the description of mathematical transfor-
mations leading to the CIE chart can leave an impression that a certain spectral
distribution of light will always give us the same visual impression (colour). That is
wrong. Human vision is highly advanced and has incorporated a form of adaptation
that is very useful. In short, the colours in a Norwegian flag will be judged to be red,
white and blue, whether we view the flag under lamplight in the evening or in the
sunshine under a brilliant blue sky during the daytime. This happens despite the fact
that the spectral distribution of the light from the flag is quite different in the two
cases. The ability to adapt is a consequence of natural selection: it was useful also
for the Neanderthals to be able to make out the colours in the light from the fire in
the evening as well as in direct sunlight.

The big difference in spectral distribution in these examples is well presented in
Planck’s description of “black body radiation”, which is close to what is emitted by
a hot body. In an incandescent lamp, the temperature of the filament is in the range
of 2300–2700K. The surface of the sun has a temperature of about 5500K. This
causes the continuous spectrum of these light sources to be quite different, as shown
in Fig. 11.15. In the light bulb, the intensity of the blue spectral colours is much less
than for the red ones, while in the spectrum of the sun, blue spectral colours are more
prominent than the red ones.

Figure 11.16 illustrates the importance of different lighting ifwe detect the appear-
ance of an object without adaptation. A digital camera is used to capture images of
one and the same object in lamp and sunlight. The colour temperature correction
in the camera could be set manually. Photos are taken at three different settings on
the camera for each of the light sources. The settings are: “colour temperature 2700,
4000 and 5880K”.

Fig. 11.15 Spectral
distribution of
electromagnetic waves
emitted by hot bodies
(blackbody radiation). The
curves are values calculated
from Planck’s radiation law
for different temperature of
the body
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Fig. 11.16 Photographs of one and the same head sculpture in plaster in two different lights and
three different manual colour temperature settings on the camera. The figure indicates the actual
difference in spectral colour distribution from the object in lamplight and in sunlight. Nevertheless,
with our visual sense, we perceive that the head looks almost white regardless of whether it is
viewed under lamplight or sunlight. This is due to the visual adaptation capacity

Figure 11.16 shows that whenwe take pictures of objects in lamplight after setting
the camera for approximately 2700K, the pictures look aswe expect them to, but they
have a ghastly red appearance for a colour temperature setting of 5880K. Similarly,
images in sunlight often produce correct colour in the pictures if the camera is set
to about 5880K while the image looks very blue if we chose a colour temperature
setting of 2700K.

Most modern digital camera has a built-in form of adaptation similar to that
of human vision. If we shoot the pictures in Fig. 11.16 with such a camera, the
result would have been relatively “correct” in most cases, but if the object and its
surroundings by themselves are very reddish or bluish, the camera could perform
unintended corrections that can not easily be avoided.

We have now seen that human vision (the eye plus all further processing even in
the brain) has a fabulous capacity for adapting to different spectral distribution of the
dominant light source. What we call a red, green or blue surface depends not only
on the absorption by the cone (S, M, L) of the light from the surface, but also to
a large extent on the surroundings. It has some important implications: if we apply
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colour correction of digital images, for example, in Photoshop or similar software,
it is important to have a grey surface along with the image where the colours are to
be assessed. If we still find that the grey surface looks grey, we have a reasonable
guarantee that our eyes have not adapted to the image to be corrected. If we do
not check the eye’s adaptation mode in relation to a grey surface, we may deceive
ourselves, and the final result may become unsightly.

11.4.1 Other Comments

There are also other forms of adaptation in our visual sense. The eye also adapts
with respect to intensity. In sunlight, a “grey” flat surface reflects much more light
than a “white” surface will reflect at dusk. Nevertheless, we call the first one grey
and the other white. What we call white, grey or black surfaces depends not so on
the intensity of light from the surface as on the relative intensity from the surface
in relation to the environment. In a similar way, our colour assessment of a field in
the visual image is greatly influenced by the colours in the neighbouring fields of
the visual image. An example is given in Fig. 11.17. There are many other delights
related to the eye and the rest of the visual system, not least related to contrasts (e.g.
read about Mach band in Wikipedia) but we cannot take the time to talk more about
this matter than we have already done.

Finally, a short comment about the colour horseshoe: If we look at Fig. 11.11 on
several different computers, we will find that the colours look quite different from
screen to screen. This is partly due to the fact that the three pixel colours are slightly
different from one type of screen to another. Graphic artists often perform a screen
calibration and transform colour information using matrices before viewing images
on screen or before printing the images. Such a transformation is usually called a
“colour profile”. In the process of achieving a good colour profile, a standard card
(an image) is used, for example, in the subject when shooting. The colour profile
can then be designed so that the end result gets as close to the original default as
possible. The X-rite colour checker is an example of such a chart. It can be obtained
from Edmund Optics (see reference list).

Colour management is one of the issues we have to grapple with when handling
today’s technology. Colour correction is a profession!

11.5 Prismatic Spectra

Now that we know a little more about how we perceive colours, we are ready to
return to Newton’s colour spectrum from a prism. Many think of spectral colours
as the colours they see in the rainbow: ROYGBIV (or Roy G. Biv): red, orange,
yellow, green, blue, indigo and violet. But what do we really see when we examine a
Newtonian spectrum produced by a narrow opening? Well, the spectrum looks like
the top of Fig. 11.18. The curious thing is that, in fact, we see only red, green, blue
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Fig. 11.17 Our colour experience of a surface is affected by colours close by. The red squares in
the upper part of the figure have exactly the same spectral distribution, but look different. Similarly,
the green squares in the lower part are identical, but look different since the neighbouring areas
have a completely different colour

Fig. 11.18 Spectrum from a
narrow slit (top) and from
increasing slit width below
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Red only

Red and green

Red, green and blue

Imagined 
single slots no:   1  2  3  4  ....

Fig. 11.19 Imaging of an edge can be considered as the sum of images of many slots next to each
other. See the text

and partly violet. There is very little yellow and orange, and clearly less yellow than
in the rainbow! How can it be explained?

The explanation is found by increasing the width of the opening a little. In the next
two examples in Fig. 11.18, we have simulated spectra from slots with increasing
width. Now we see a yellow area more easily! What is this due to?

This is because when we consider spectral colours, it is only a very narrow wave-
length range that gives us the colour impression “yellow”. Most of the yellow we
perceive is due to the blending of red and green spectral colours (additive colour
mixing). We will then get a coordinate point in the colour horseshoe that lies a bit
within the edges.

To understand howwe think of the colour scheme, refer to Fig. 11.19which shows
how the image would look if we did not image a hole on the screen but instead an
edge between a surface without light and a surface with homogeneous “white” light.
The light also passes here a glass prism. We can imagine that the bright area is a sum
of many single slots adjacent to one another. Each of the slots (if sufficiently narrow)
will provide a spectrum that looks red, green and blue. Each column is slightly offset
in relation to the neighbouring area, so that the spectra are also slightly shifted in
relation to one another.

If we add up the light striking different parts of the screen, we see that at the left
end only the red light comes in. The sum is then red. Just to the right of this position,
we get a mixture of red and green light, but no blue. The sum of these two lights will
be perceived as yellow. Just to the right of this field again, we will get a mixture of
red, green and blue. The sum is perceived as white. This is how it continues, and the
result will be what we see at the bottom of the figure.

We see then that when we image an edge on a screen but make the light go through
a prism, the edge will be coloured with a red and a yellow stripe.
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Fig. 11.20 There are two types of border colours, depending on which page is black and which
is white in relation to the prism orientation. The left part of the figure shows the black and white
distribution of lightwe startwith. The right part shows how the image of the original light distribution
would look if the light went through a prism. The colour effect is a simulation customized visual
impression from a computer screen. Real reds look prettier, but they must be experienced in vivo!

If we image an edge where the light and dark have exchanged places, the vio-
let/blue area will not blend with the other colours. Next to this, we get an area of
cyan (a mixture of green and violet, crudely speaking). Next to this, we get a mix of
all colours and we experience this as white.

An edge of this type will have two coloured stripes in the borderland between
white and black: blue violet and cyan. The red-yellow and the violet-cyan
stripes we call boundary spectra (sometimes also called boundary colours).
An example of the boundary colours is shown in Fig. 11.20. When you see
edge colours in practice, the stripes are much narrower (and nicer) than we
can get an impression of in this figure, but it depends of course on distances
and many other details.

If you look through a pair of binoculars and choose to look at a sharp borderline
between a white and a black area in the periphery of the field of view, you will almost
always see boundary colours at the edge. On good binoculars, where attempts have
been made for reduction of the dispersion of light through glass (using combinations
of different glass types in the lenses), the edge colours are not very clear. In cheaper
binoculars, the border colours are significant and destroy the contrast and sharpness
of the image we see.

Coming back to the rainbow: why do we see yellow much more clearly in the
rainbow than in a Newtonian spectrum where we use a narrow slit (opening)? In
the rainbow, the “opening” is in practice raindrops, and the angular extent of each
raindrop is compatible with a small opening. But the sun itself has an extent of about
half a degree (angular diameter) in the sky! The rainbow, therefore, becomes a sum-
mation of many rainbows that lie a little apart (which originates from different zones
on the sun surface). It is this summation (corresponding to using a wide opening)
that gives us a bright yellow in the rainbow!
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11.5.1 A Digression: Goethe’s Colour Theory

In Newton’s spectrum, we have a highly specialized geometry that gives us the usual
spectrum. Historically, Goethe responded to Newton’s explanation, not least because
Newton did not clearly realize that his spectrum only emerged by imaging a slit (after
the light from the slit passed through a prism). Goethe showed that other geometries
gave completely different colours. Among other things, the “spectrum” from the
inverse geometry of Newton, namely a narrow black stripe on a white background,
has a different colour gradient than theNewtonian spectrumas indicated inFig. 11.21.
Goethe thought that Newton’s explanationwasmuch too simple, andwe have to draw
the chromatic boundary conditions to understand the colours that are perceived in
different geometries.

Goethe explored many different geometries and found many symmetries in the
phenomena and introduced certain “colour harmonies”, but we should not go into
detail.

In Norway, the poet André Bjerke was an important disciple of Goethe. He led
a discussion group over a number of years, among which the physicists Torger
Holtsmark and Sven Oluf Sørensen were keen participants. A book on the sub-
ject: “Goethe’s Colour Theory. The Selection and Comments of Torger Holtsmark”
was published by Ad Notam Gyldendal’s publishing house in 1994.

Personally, I have not discovered that Goethe’s has a greater power of explanation
than our usual physicsmodel (based on light aswaves) in terms of colour phenomena.
Figure 11.19 shows themain principle of howwe can proceed to build how the colours
will come out of a variety of geometries.

On the other hand, Goethe’s colour theory has had an important historical function
because it focused on Newton’s spectrum, not merely “the light that went through
a prism”. It focused on symmetries and geometries in a great way as until then was
not as well known as now. In my language suit, I would like to say that the Goethe
fans’ points remind us that calculations based on Maxwell’s equations depend to a
large extent on the boundary conditions! Occasionally, we are physicists too sloppy
when we describe phenomena and when we provide explanations. In that case, we
will lose valuable details and may be left with wrong beliefs.

Fig. 11.21 Colour spectrumwe get from aNewtonian column and the colour spectrumwe get from
a “reverse slit”, i.e. a black narrow stripe on a light background. Also this picture is the result of a
simulation. Real spectra (without going through photography or computer monitors) are far more
beautiful to look at!
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11.6 References

In Norway, it is perhaps the University College in Gjøvik that has the best compe-
tence in colour concentrated in one place. They are gathered under the umbrella The
Norwegian colour Research Laboratory (https://www.ntnu.edu/colourlab).

Norsk Lysteknisk Komite is the Norwegian national body of the global lighting
organization CIE. More information on the websites of “Lyskultur, Norsk kunnskap-
scentrum for lys” (https://lysveileder.no/).

Here are a few other links that may be of interest if you are interested in reading
more about colours:

• http://www.brucelindbloom.com/ and http://www.efg2.com/ (accessedMay 2018)
• International Commission of Illumination, Commission Internationale
de L’Eclairage (CIE) is an organization that deals with lighting and visual per-
ception of light. Their website is at http://www.cie.co.at/. In particular, details of
the transition between physics and perception are given in the Photometry report.
The CIE System of Physical Photometry ISO 23539:2005(E)/CIE S 010/E:2004.

• X-rite colour checker to facilitate colour correction can be purchased including
at Edmund Optics: https://www.edmundoptics.com/test-targets/color-gray-level-
test-targets/large-x-rite-colorchecker (accessed May 2018).

• A book on the topic: Richard J. D. Tilley: Colour and Optical Properties of Mate-
rials. John Wiley, 2000.

• On the limit of the absolute sensitivity of the eye: See G. D. Field, A. P. Sampath,
F. Rieke. Annu. Rev. Physiol. 67 (2005) 491–514.

Note:
Matlab programs used to generate the border colours, and the reverse spectrum (the
last four figures in this chapter) are available from the author Arnt Inge Vistnes.

11.7 Learning Objectives

After working through this chapter, you should be able to:

• Explain the need for different quantities such as radiant power, radiation
intensity, radiance, irradiance, brightness, light output within radiometry
and photometry, and make some calculations where you change from one
quantity to another.

• Explain the connection between colour perception (chromatic colour) and
physical spectral distribution (which can be obtained from a spectroscope,
e.g. by dispersing light with a grating or a prism). For example, you should
be able to explain that “yellow light” actually does not need to have any
spectral yellow in it whatsoever, and yet to be perceived as “yellow”.

https://www.ntnu.edu/colourlab
https://lysveileder.no/
http://www.brucelindbloom.com/
http://www.efg2.com/
http://www.cie.co.at/
https://www.edmundoptics.com/test-targets/color-gray-level-test-targets/large-x-rite-colorchecker
https://www.edmundoptics.com/test-targets/color-gray-level-test-targets/large-x-rite-colorchecker


364 11 Measurements of Light, Dispersion, Colours

• Explain the CIE colour horseshoe and the theory of additive colour mixing,
and explain what colours we can and cannot reproduce fully, using, for
example, digital pictures on a TV or computer screen.

• Explain the term colour temperature and what it implies for human colour
experience and for photography.

• Provide relatively detailed qualitative explanations of how we can achieve a
“Newtonian” spectrum, boundary spectrum and reverse spectrum, and point
out the importance of boundary conditions.

• Reflect a little over a detector, for example, the eye’s visual receptor (cone
cell in the retina) has only a limited sensitivity range, and usually associate
it with so-called forced oscillations earlier in the book.

11.8 Exercises

Suggested concepts for student active learning activities: Radiometric and pho-
tometric quantities, radiant energy, luminous energy, solid angle, radiation intensity,
difference between lumen and lux, luminous efficiency, photopic, scotopic, photore-
ceptors, rods and cones, sensitivity curves, dispersion, colourimetry, chromaticity
chart, colour horseshoe, CIE diagram, spectral colour, additive colour mixing, sub-
tractive colour mixing, colour temperature, adaptation in intensity and colour, colour
spectrum, border colours, Goethe’s colour theory.

Comprehension/discussion questions

1. From Fig. 11.9, you can find a few spectral regions where only one of the cones
absorbs light. What does it mean for the colour experience we can have for
different spectral colours within each of these ranges?

2. Consider the colour horseshoe in Fig. 11.11, and especially the wavelengths that
lie along the edge of the horseshoe. Attempt to estimate the lengths of the rim
that correspond to spectral colours in the range 400–500nm, 500–600nm and
600–700nm, respectively. This is related to how easily we can detect changes in
chromaticity when we assess colours. What would you expect this relationship
to be (qualitatively)?

3. Do you find any clues in Fig. 11.9 for the relation you found in the previous task?
Attempt to write down your argument in as precise and easily intelligible form
as possible! (This is an exercise in being able to argue clearly within physics.)

4. Why are wavelengths not listed along the straight edge of the colour horseshoe?
5. Try to see boundary colours by looking, through binoculars or a lens, at a sharp

edge between a bright and a dark area. Make a sketch that shows approximately
what you see. Point out how the edge should lie in order to see red-yellow
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Fig. 11.22 Photograph of
various structures seen
through Fresnel lenses in
glass (objects are out of
focus). Boundary colours are
visible

and violet-cyan boundary colours, respectively. Alternatively, you can point out
boundary colours in Fig. 11.22.

6. Digitalization circuits like those used for digitizing sound usually have 12–24 bit
resolution. How many decades of sound intensity can we cover with such equip-
ment? For photographic apparatus, 8–16-bit resolution is commonly used for
specifying light intensity. Howmany decades of light intensity can we cover with
such a camera? Compare with the intensity range that human hearing and vision
can handle. Why do sound recordings and photographs still work satisfactorily
despite the limited bit resolution?

7. Howmuch variation in intensity, in powers of tens, can be handled by our auditory
and visual senses (see Fig. 11.5)? Explain that senses that function over such a
large “dynamic range”must actually be based on providing a logarithmic response
(at least not a linear response).

8. In tests where we want to determine how sensitive the eye is to light (absolute
threshold), it has been found that the responses from many visual cells within
a certain area of the retina are summed. These visual cells are believed to be
linked to the same nerve fibre (“spatial summation area”). Such a summation
area corresponds to the light source having an extent of about 10 arcs of minute
(1/6◦) seen from the eye’s position. Discuss which of the photometric quantities
must be under our control in this type of experiment. Also discuss why some of
the other quantities are not relevant.

9. White glass beads are often used in light bulbs (domes) to get an even and pleasant
lighting without sharp shadows. Despite the fact that the dome is spherical, the
radiance from the edge of the dome seems to be approximately equal to the
radiance of the central areas (see Fig. 11.23). Discuss the reason for this is and
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Fig. 11.23 Photograph of
the light from a spherical
dome of white glass

explainwhy the radiometric unit radiance is suitable for copingwith this property.
Can you see other dome constructions or shapes that not would give the same
result? (Hint: Read about “Lambert’s cosine law” on Wikipedia.)

Problems

10. Suppose, for the sake of simplicity, that light can be described as a stream of
photons with an energy equal to E = h f , where h is Planck’s constant and f
is the frequency of the photons. An ordinary laser pointer usually has a power
of a few milliwatts. What attenuation is needed to bring the intensity of such a
laser beam to a level that corresponds to the limit of what our eye can perceive
(assuming the limit is equivalent to about “500 photons per second”) when the
laser has a wavelength of 532nm?

11. A table inWikipedia with physical data about the sun states that the sun’s “lumi-
nosity” is 3.846 × 1026W.
(a) The word “luminosity” (within astronomy) indicates that this is a photopic
unit (a unit related to the human visual sense). What quantity is it really, judging
from the tables of radiometric and photometric quantities given in Sect. 11.1?
(b) The same table contains the following information: “Mean intensity” =
2.009 × 107Wm−2 sr−1. The sun has a diameter of 1.392 × 109 m. Describe in
words what “mean intensity” tells us and what term should actually be used for
this quantity. Show by calculation that you actually obtain the expected relation-
ship between the “mean intensity” and “luminosity” given here in the task text.
(c) We will calculate theoretically how much power can be captured from sun-
light at the surface of the earth, e.g. in a solar collector or solar panel. What
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radiometric or photometric quantities are then of interest? Find the value of this
quantity, given that the distance between the earth and the sun is 1.496 × 1011 m
and that about 30% of the sunlight coming into the outer atmosphere is reflected
or absorbed there. [Note: In addition to the straightforward calculations, it is in
addition important in this problem to give the result with an appropriate number
significant figures, taking all the given information into consideration.]

12. Eigerøy’s Lighthouse occupies a pride of place among the coastal lighthouses
of Norway (see Fig. 11.24). Built in 1854, it was the first lighthouse with a cast
iron tower in Norway. The lighthouse is 33 m high, and the light comes out 46.5
m above the sea level. The right part of Fig. 11.24 shows a part of the impressive
lens system along with the light bulb (plus a spare bulb). The lighthouse emits
light with brightness 3.9 × 106 cd in three light beams 90◦ apart (three lens sets
90◦ apart and the entire lens set rotates around the light bulb with a revolution
time of 4 s). The lighthouse is one of the strongest along our coast, and it is
claimed that “the light reaches 18.8 nautical miles beyond the shore”.
(a) How could it be that a light bulb with a few hundred watts can be seen 18.8
nautical miles away?
(b) Would the light from the lighthouse be seen even further than 18.8 nautical
miles if, for example, we doubled the power? (Hint: Check if the distance of
18.8 nautical miles has any bearing on the curvature of the earth.)
(c) Assume that the light bulb is 500W and has about the same luminous effi-
ciency as incandescent lamps. Estimate the solid angle of the rays.

13. In this exercise, we will compare two very different light sources: (1) an ordi-
nary, old-fashioned 60W light bulb (incandescent lamp) that shines freely in the
room (no screen) and (2) a 4mW green laser pointer wavelength 532nm. The

Fig. 11.24 Eigerøy Lighthouse is a powerful monument from a time before the GPSmade its entry.
To the right: the lens system that surrounds the light bulb is impressive. There are three equivalent
lens systems that are located 90◦ apart. The last “wall” is open to permit entry. The lens systems
are over two metres tall
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laser beam is circular and has a diameter of 9.0mm at a distance of 10.38m
from the pointer (the beam is actually the most intense in the middle, but we can
use an approximation that the light intensity is equally large within the entire
specified diameter of the beam). Remember, “60W” for the incandescent lamp
is the power that the lamp draws from our mains, while “4mW” indicates the
power of the actual light emitted by the laser pointer.
(a) Specify the radiation flux and radiation intensity of each light sources.
(b) Estimate luminous flux and luminous intensity for both light sources for the
direction the light is most powerful. (Hint: Use Fig. 11.1 and the information
given in Sect. 11.1.)
(c) Compare the brightness (luminous intensity) of the light beam from the
Eigerøy Lighthouse (previous task) with the brightness of the laser pointer spec-
ified in this task. Do you think it might be appropriate to replace the old light
sources in the coastal lighthouse with a revolving laser?

14. Find out about how wide the rainbow is (angular width from red to violet).
Compare this with the angular diameter of the sum. Does it seem to be in accord
with the assertion that the extent of sunmay have some bearing on the colours we
observe in the rainbow (compared to a common Newtonian spectrum obtained
by using a very narrow slit)?

15. Pick up a few colour cards from a paint shop and try to determine which colour
system the colours are listed under; if it is the NCS coding, you might be able
to decipher the codes?

16. Figure 11.25 shows parts of the wrapping of an LED bulb. Make sure you under-
stand all the information provided on the package, and answer specifically the
following questions:

Fig. 11.25 Parts of the package of an LED bulb. See the task text for details
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(a) What is the luminous flux and about how much luminous energy can this
light bulb give?
(b) Determine the approximate brightness (luminous intensity) of the bulb and
the approximate illuminance we can expect on a white A4 sheet held at a dis-
tance of 1 m from the light bulb. What assumptions did you make to reach the
numbers you specified?
(c) What is the luminous efficiency of this LED bulb?

Acknowledgements I would like to extend my heartfelt thanks to Jan Henrik Wold (at the Univer-
sity of South-Eastern Norway, Drammen), and Knut Kvaal (at the Norwegian University of Life
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Chapter 12
Geometric Optics

Abstract In this chapter, light is considered as rectilinear rays radiated in all
directions from a point at an object. The rays are refracted at air/glass interfaces
according to the laws of refraction discussed in a previous chapter. We show that
all rays emerging from a point object entering a spherical interface will collect (and
use equal time) to a focal point to a good approximation for common conditions.
From this treatment, the “lens makers’ formula” and “lens formula” are derived,
and simple but very useful “ray optics” rules are established. We show how convex
and concave lenses can be combined for many different purposes, e.g. for making
telescopes, microscopes and loupe (magnifying glass). Light-collecting efficiency,
aperture, f-number, depth of view, as well as image quality are discussed. The chapter
concludes with a description of the optics of the human eye, defines “near point”
and “far point”, and shows how spectacles can be used to improve vision in common
cases.

12.1 Light Rays

In this chapter, we will see how lenses can be used to make a camera, telescope
and microscope, even glasses (spectacles). We will use the term “rays” in the sense
of a thin bundle of light that proceeds along a straight line in the air and other
homogeneous media. Figure12.1 illustrates our view of how light rays behave.

The concept of light rays is at variance with the notion that light may be regarded
as energy transported by plane electromagnetic waves. Plane waves, in principle,
have infinite extent across the direction of propagation of wave. We can reasonably
expect that when we make a narrow light beam, it would behave much like a plane
wave within the expanse of the beam. A laser beam apparently behaves exactly as
we expect light rays to behave.

However, we will see in Chap. 13 that a laser beam does not travel in straight lines
all the time. Diffraction (will be treated in a later chapter) can lead to unexpected
results. In addition, there is a huge difference between electromagnetic waves in a
laser beam and the light from sunlight or lamplight. The laser light usually has a fixed
polarization that we find everywhere along the beam, and the intensity is quite stable
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Fig. 12.1 “Light ray” is a useful term in geometric optics, although it is useless in certain other
contexts

and varies in a well-defined way across the beam of light. The light from the sun or
lamps is far more chaotic in all respects and is much more difficult to describe than
laser light. We will return to this in Chap. 15 when we come to treat the phenomenon
of “coherence”.

Despite the fact that light from the sun and from lamps is very complicated, it
appears that the phrase “ray of light” is serviceable and useful as long as we work
with lenses and mirrors which are almost flat surfaces over areas which are “several
times” (at least ten?) the wavelength. Furthermore, the thickness of the interface
between, e.g. air and glass, must be very thin in comparison with the wavelength.
You may recognize the criteria we set up in Chap. 10 when we looked at the rules
for reflection and transmission of electromagnetic waves at interfaces between two
media.

Thismeans, among other things, that Snel’s refraction lawwill apply locally to any
area on ordinary lenses. Even for a 5mmØ lens, the diameter is 10,000 wavelengths,
and most lenses are even larger.

When it comes to water drops, the situation is totally different. For ordinary large
water drops, we can apply reflection and refraction laws to calculate, for example, the
appearance of the rainbow, but for very small water drops the approximation totally
breaks. Then we have to return to Maxwell’s equations with curved interfaces, and
the calculations will become extremely extensive. The spread of light from such
small drops is called Mie scattering. Only after the arrival of powerful computers
have we been able to make good calculations for Mie scattering. Prior to that, Mie
scattering was seen only as an academic curiosity.
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Beforewe begin to discuss the concept of light rays, Iwant to point out a challenge.
We have previously seen that Maxwell’s equations, together with energy conserva-
tion, provide the magnitude and direction of reflected and transmitted electric fields
after plane electromagnetic waves reach a plane interface between two different
dielectric media. From Maxwell’s equations, both reflection law and Snel’s law of
refraction follow. However, we have also seen that both these laws can be derived
from the principle of minimum time (Fermat’s principle), or more correctly, the prin-
ciple that the time the light uses along its path has an extreme value. In other words,
we have two different explanations. What should we count as more fundamental? It
is not particularly helpful to say this, but here is something for you to ponder over.

If we have a light source that emits light in all directions, we can see that the light
“chooses” to follow the path that takes the shortest time if we select beforehand the
position of the light source and the endpoint. However, if we send a well-defined
laser beam in a given direction towards the interface, the beam will be bent in a
direction given by Snel’s law (derived fromMaxwell’s equations). If we have chosen
an endpoint that does not lie along the refracted ray, the light will not reach the
endpoint chosen by us. We must change the incoming beam until the refracted beam
reaches the endpoint.

With such a description, the criterion of the shortest possible time from the initial
to the final point is rather meaningless. The direction of the refracted beam is fully
determined by that of the incident beam. Nevertheless, it remains true that if we
choose an endpoint somewhere along the refracted beam, the light path represents
the route by following which light uses the least time, but that is somehow an extra
bonus, not the primary gain. In geometric optics, in other words, we do not invoke
Fermat’s principle, but the time aspect still appears in a somewhat related way. [We
will come back to contemplation of this type when we discuss diffraction, because
then we will also learn about Richard Feynman’s thoughts on the foundations of
quantum electrodynamics (QED).]

12.2 Light Through a Curved Surface

Imagine a glass sphere in the air and, at a short distance, a luminous point that emits
light in all directions (at least the light falls on the sphere). We will now investigate
how different light rays envisaged to be emanating from the luminous spot will
proceed when they hit different points on the surface of the glass sphere.

In Fig. 12.2 P is the luminous point, and we have chosen a section where both this
point and the centre of the sphereC lie. A light ray from P following the line between
P and C will hit the spherical surface normally. The part of the light transmitted will
travel straight on and continue along the extension of the line PC .

We then choose a ray of light that hits the spherical surface at a point A in the plane
we consider. The lineC A and its extension will then define the incidence normal, and
the incidence plane and the emergence plane are in the plane we consider. The beam
will locally appear to hit a flat surface, and the usual Snel refraction law applies. The
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Fig. 12.2 Light rays from a
luminous point (object) at P
will form an “image” at the
point P ′. See the text for
details
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refracted ray is given a certain direction, it will cross the first light beam (which went
through the centre) at the point P ′.

We need some geometry to determine where the intersection point P ′ is located.
Let R be the radius of the sphere and C its centre. The line that goes through P , C
and P ′ will be called the optical axis. The point V , where the optical axis intersects
the spherical surface, is called the vertex. The distance from P to V is denoted by s
and that from V to P ′ by s ′. The vertical distance from the point A and the optical
axis is denoted by h, and δ denotes the distance between the vertex V and the point
where the normal from A meets the optical axis. The symbols for various angles are
indicated in the figure.

Tomake the calculations as general as possible, wewill denote by na the refractive
index of light in the medium where the light source is located (left in the figure), and
nb will signify the refractive index of the sphere (to the right of the figure). We will
assume that nb > na .

Snel’s law gives:
na sin θa = nb sin θb .

We also have:

tan α = h

s + δ
, tan β = h

s ′ − δ
, tan φ = h

R − δ
.

Furthermore, we know that an exterior angle of a triangle is equal to the sum of the
opposite interior angles:

θa = α + φ, φ = β + θb . (12.1)

We will avail ourselves of a simplification that is frequently made in dealing with
geometrical optics, namely the so-called paraxial approximation. This means that
we confine ourselves to situations wherein the angles α and β are so small that both
sine and tangent can be replaced by the angle itself (in radians). Under the same
approximation, δ will be small compared to s, s ′ and R. The equations above then
take the simplified forms shown below:

naθa = nbθb (12.2)
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and

α = h

s
, β = h

s ′ , φ = h

R
. (12.3)

Upon combining the first equality in Eq. (12.1) with Eq. (12.2), we obtain:

naα + naφ = nbθb .

Using the second equality in Eq. (12.1), one finds:

naα + naφ = nbφ − nbβ

which can be transformed into:

naα + nbβ = φ(nb − na)

Upon inserting the expressions for α, β and φ from Eq. (12.3) and cancelling
the common factor h, one finally gets:

na

s
+ nb

s ′ = nb − na

R
. (12.4)

This formula is quite important. It should be observed that the relationship
applies independently of the angle α so long as the paraxial approximation
holds (small angles). All light rays from a light source that makes a small
angle with the optical axis will cross the optical axis at the point P ′. The
luminous point P is called the object point, and the intersection point P ′ is
called the image point.

So far so good. But what of it? Is it something special that light rays cross each
other? Will the different light bundles together give a special result, or might a light
beam extinguish another, or that nothing extraordinary will happen at the crossing
point anyway?

Figure12.3 shows the same two light beams as in the previous figure, but we have
now turned our attention to something else, namely the time light uses in going from
the object point to the image point. For the straight ray that goes along the optical
axis, the velocity of light will be c/na up to the vertex, and c/nb afterwards. The
velocity in glass is smaller. Similar reasoning applies to the ray that goes in the other
direction (via A). We see that the distance from the object point to A is longer by
γ than that from the object point to the vertex. Thus, light will take a longer time
to cover the path P A than PV . On the other hand, we see that the distance AP ′ is
shorter than V P ′ by an amount equalling ε. We notice that ε < γ . If we carry out
a thorough analysis (not attempted here), we will find that the time light uses for
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Fig. 12.3 How long will
two light beams take in
going from a luminous point
at P to an “image” point at
P ′? Note the two dashed
circle sectors with centre in
P and P ′, respectively. See
the text for details
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covering the distance γ in air equals the time it takes for travelling the distance ε in
glass (but this is true only if the paraxial approximation holds).

In other words, the light uses the same time from the light source (the object) to
the intersection point (image) regardless of the direction of the light ray (within
the paraxial approach). Since the light has the same frequency, regardless of
whether it is air or glass, this means that there are exactly as many wavelengths
along a refracted ray as along the straight one. Consequently, the light coming
to the intersection will always be in phase with each other. Consequently, their
amplitudes are added. If we could place a screen across the optical axis at P ′,
we would be able to confirm this by seeing a bright spot just there. The word
“image” can be used because we can form a real picture of the light source at
this place.

12.3 Lens Makers’ Formula

In the previous section, we saw how the light rays from a light source (object point)
outside a glass sphere converged at the image point inside the sphere. However, such
a system is of rather limited interest. We will now see how we can put together two
curved surfaces, for example, from air to glass, and then from glass back to air, to
obtain rules applicable to lenses. Suppose we have an arrangement as indicated in
Fig. 12.4. To find out howEq. (12.4) is used, we choose to operate with three different
refractive indices and let the lens be “thin”; that is, the thickness of the lens is small
compared to the distances from the object and image as well the radii of the two
interfaces. Under these conditions (and still within the paraxial approach), we get:

na

s1
+ nb

s ′
1

= nb − na

R1
,

nb

s2
+ nc

s ′
2

= nc − nb

R2
.
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Fig. 12.4 A lens may be composed of two curved interfaces between air and glass. The image
of P , if we had only the first interface, is marked with a dashed circle. To the right, detailed ray
paths through the lens, first with refraction towards the normal (air to glass) and then away from
the normal (glass to air). See the text for details

For a glass lens in air, na = nc = 1 and nb = n. Furthermore, the image point
of other boundaries will be opposite to what we used in deriving Eq. (12.4). It can
be shown that we can implement this in our equations by setting s2 = −s ′

1. We then
make an approximation by ignoring the thickness of the lens; i.e. the lens is supposed
to be “thin”. Consequently, the equation pair above can be written as:

1

s1
+ n

s ′
1

= n − 1

R1

− n

s ′
1

+ 1

s ′
2

= 1 − n

R2
.

Addition of the two equations gives:

1

s1
+ 1

s ′
2

= (n − 1)

(
1

R1
− 1

R2

)
.

If the lens is regarded as an excessively thin element, it is natural to talk about
object distance and image distance relative to the (centre of the) lens itself,
instead of working with distances from the surfaces. We are then led to the
equation that is called the lens makers’ formula

1

s
+ 1

s ′ = (n − 1)

(
1

R1
− 1

R2

)
. (12.5)

A special case is that when the object point is “infinitely far away” (s ′ very much
larger than the radii R1 and R2). In this case, 1/s ≈ 0, and
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Fig. 12.5 Section through a
variety of lens shapes. From
left to right: positive
meniscus, planoconvex and
biconvex; negative meniscus,
planoconcave and biconcave

1

s ′ = (n − 1)

(
1

R1
− 1

R2

)
.

The image distance for this special case (when the object point is “infinitely far
away”) is called the “focal distance” or “focal length” of the lens and denoted
by the symbol f . The image is then located at the focal point of the lens (one
focal length from the centre of the lens). With the given definition of focal
length f , we end up with:

1

s
+ 1

s ′ = 1

f
(12.6)

where the focal distance f is defined as

1

f
= (n − 1)

(
1

R1
− 1

R2

)
. (12.7)

The first of these formulas, called the lens formula, will be used in the rest of
this chapter.

Before going further, let us see how lenses will look for different choices of R1

and R2 in the lens makers’ formula. These radii can be positive or negative, finite or
infinite. Different variants are given in Fig. 12.5.

Lenses with the largest thickness at the optical axis are called convex, whereas
those with smallest thickness at the optical axis are called concave.

We pause to remind ourselves of what has been done so far.
The above derivations involved a number of approximations, and the ensuing

formulas are necessarily approximate. This is typical of geometrical optics. The
simple formulas are only approximate, and all calculations based on them are so
elementary that they could easily have been done in high school. One might feel
that, at university level, one would be able to deal with more complicated problems
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diffractive layer

Canon EF DO IS USM 400mm f/4, 2001

Fig. 12.6 Example of amodern lens for photography: Canon EF 400mm f/4 DO ISUSMobjective.
Instead of a simple thin lens, as we think of an objective in our treatment of geometrical optics,
the Canon lens has 12 groups with a total of 18 elements (lenses) that function together as one. In
modern camera lenses, most elements have spherical surfaces, but some have aspherical surfaces.
Some elements aremade of extra dispersive glass; that is, the refractive index has a different variation
with the wavelength than in other most common glass types. Photograph: GodeNehler, Wikimedia
Commons, CC BY-SA 4.0, Modified from original [1]. Drawing: Paul Chin (paul1513), GNU Free
Documentation License, CC BY-SA 3.0, [2].

and reach more accurate descriptions, but the advanced problems are in fact too
complicated to be appropriate for a general book like this. Today, numerical methods
are used for the more advanced calculations. It has been found that making a perfect
lens is not possible. We have to make a trade-off, and a lens to be used mostly at
short distances will have to be designed in a different way than a lens that is meant
primarily for long distances.

We have based our treatment on spherical interfaces. This is because until recently
it was much easier to fabricate lenses with spherical surfaces than with other shapes.
In recent years, it has become more common to fabricate lenses with aspherical
shapes, and then, the problem arising from the paraxial approximation is made less
severe. We can reduce the so-called spherical aberration by designing aspherical
surfaces.

Looking back, we see that Eq. (12.4) contains the refractive indices. Now, we
know that the refractive index depends on the wavelength, and this means that the
image point P ′ will have a different position for red light than for blue light. Using
multiple lenses with different types of glass (different refractive indices), we can
partly compensate for this type of error (called chromatic aberration). Overall, how-
ever, it is a very challenging task to make a good lens (Fig. 12.6). It is not hard to
understand why enthusiasts are examining new objectives fromNikon, Canon, Leitz,
etc., with great interest just after they appear on the market. Have the specialists been
able to make something special this time, and if so, in what respect? The perfect lens
does not exist!

https://commons.wikimedia.org/wiki/File:Canon_EF_400_DO_II.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/History_of_photographic_lens_design
https://creativecommons.org/licenses/by-sa/3.0/
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12.4 Light Ray Optics

We are now going to jump into that part of optics which deals with glasses (specta-
cles), cameras, loupes (jeweller’s magnifying glasses), binoculars, microscopes, etc.
The term “ray optics” is distinct from “beam optics”, which focuses more on how a
laser beam changes with distance (where diffraction is absolutely essential).

There are three main rules to which we will appeal continually.

1. For a convex lens, incoming light parallel to the optical axiswill go through
the focal point after the light has gone through the lens. For a concave lens,
incoming light parallel to the optical axis will be refracted away from the
optical axis after the light has gone through the lens. The direction is such
that the light beam appears to come from the focal point on the opposite
side of the lens (focal point on the same side as the object).

2. Light passing through the centre of the lens (where the optical axis inter-
sects the lens) will move in the direction along which it came in.

3. Rays passing the front focal point of a convex lens will go parallel to the
optical axis after the lens. For concave lenses, rays entering the lens along
a direction that passes the rear (or back) focal point will continue parallel
to the optical axis after the lens.

4. Rule 3 is identical to Rule 1 if we imagine that the ray is travelling in
a direction opposite to the actual direction, for both convex and concave
lenses.

Light rays drawn according to rule 1, 2 and 3 are coloured red, blue and
green, respectively, in a number of the remaining figures in this chapter.

The rules originate in part from the lens formula.We saw that if the object distance
s was made infinitely large, the image would be at a distance equal to the focal length
of the lens. If multiple light rays are drawn from the object in this case, the rays will
enter (approximately) parallel to the optical axis, and all such rays shall pass through
the focal point. Whence follows the first rule.

However, the lens formula can be “read” in either direction, so to say. If we place
a very small light source on the optical axis at a distance equal to the focal length
in front of the lens, the light from the source will go to the lens in many different
directions, but the image will then be at a distance of s ′ = ∞. This means that,
irrespective of where they go through the lens, the rays will continue almost parallel
to the optical axis after the lens.

The middle rule may be even easier to understand. At the centre of the lens (where
the optical axis cuts through the lens), the two surfaces are approximately parallel.
If a beam of light is transmitted through a piece of plane glass, the light beam will be
refracted at the first interface, but refracted back to the original direction as it passes
through the other interface. The emergent ray will be slightly offset relative to the
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Fig. 12.7 A luminous object
point not on the optical axis
will be imaged at a point
opposite to a convex lens.
The image is not on the
optical axis. Three guides are
used to find the location of
the pixel

object point

image point

f

f ’

incoming light beam, but if the angle is not too large and the lens thin, the parallel
offset will be so small that we can neglect it in our calculations.

Object beyond the focal point
If these rules are applied to a luminous object point that is not on the optical axis,
we get the result illustrated in Fig. 12.7. The three special light rays, specified by our
general rules, meet exactly in one image point. The image point is on the opposite
side of the optical axis in relation to the object point.

If the object is no longer a luminous point, but an extended body, such as an arrow,
we find something interesting (see Fig. 12.8). From each point of the body, light is
emitted, and for each point in the object, there is a corresponding image point. Our
simplified rules of ray optics imply that, for all points in the object lying in a plane
perpendicular to the optical axis, the corresponding image points will lie in a plane
perpendicular to the optical axis on the opposite side of the lens (under conditions
indicated in the figure). That is, we can image an object (such as the front page of a
newspaper) into an image that can be captured on a screen. The image will then be
a true copy of the object (newspaper page), except that it will have a magnification
or reduction compared with the original, and the image will be upside down (but not
mirrored).

The magnification is simply dependent on s and s ′. If s = s ′, the object and
imagewill be of the same size. If s ′ > s, the imagewill be larger than the object
(original), and vice versa. The linear magnification or real magnification is
simply given by:

M = − s ′

s
.

The minus sign is included only to indicate that the image is upside down in
relation to the object.

It is also possible to define a magnification in area. In that case, the square of the
expression will be given. (The minus sign is then often irrelevant.)



382 12 Geometric Optics

extended object

extended image

f

f ’

Fig. 12.8 An extended object may be thought of as a plurality of object points, and each point is
imaged in a corresponding point on the opposite side of a convex lens. As a result, the object as
such is depicted as an image. The image is upside down and has a different size than the object

Object within the focal distance?
So far, there have been relatively easily comprehensible connections between object
and image, and we have been able to capture the image on a screen and see it there.
But what would happen if we place the object closer to the lens than the focal length?
Figure12.9 shows how the three reference rays now go. They diverge after traversing
the lens! There is no point where the light rays meets and where we can collect the
light and look at it. On the other hand, the rays of light appear to come from one and
the same point, a point on the same side of the lens as the object, but at a different
place.

In cases like this, we still talk about an image, but refer to it as a “virtual image”
as opposed to a “real image” like that discussed earlier. A virtual image cannot
be collected on a screen. On the other hand, we can look at the virtual image
if we bring in another lens in such a way that the whole thing, after going
through the new lens, creates a real image.

For example, if we look at the light coming through the lens in Fig. 12.9, using
our eyes, our eye lens will gather the light to project a real image on the retina. Then
we see the image. The image is formed on the retina as a result of the light from the
object passing through the free-standing lens and subsequently through the eye lens.

However, we can get exactly the same image on the retina if we remove the
outer lens and replace the real object with an imaginary magnified object placed as
indicated by the “virtual image” in the figure. This is why we speak of a “virtual”
image.

Concave lens
Using a concave lens alone, we cannot form a real image for any position of the object
(see Fig. 12.10). Concave lenses on their own always provide virtual images, and it is
somewhat unusual and demanding to work with ray diagrams for concave lenses. If
we decide to use the lens formula, we say that the focal length is negative for concave
lenses. We also need to operate with negative object distances and negative image
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object
virtual
image

f

f’

Fig. 12.9 When an extended object is placed within the focal length of a convex lens, no image is
formed on the opposite side of the lens. On the contrary, the dashed lines indicate that the object
and lens appear to be replaced by an enlarged object on the same side of the lens as the real object.
This apparently enlarged object is called a virtual image

object

virtual
image

f

f ’ object

virtual
image

f f ’

Fig. 12.10 A concave lens alone can never form a real image. If we consider an object through a
concave lens, the virtual image looks smaller than the real object

distances depending on whether or not the object and/or image are on the “regular”
side of the lens. There are a set of rules for how to treat s, s ′ and f in the formula
for all combinations of cases.

Note that in Fig. 12.10 the object is outside (inside) the focal point in the figure on
the left (right). There is no significant difference in the image formation by a concave
lens when the object distance is equal to the focal length. This is contrary to what
happens with a convex lens.

It is strongly recommended that you study all details in how the light rays are
drawn in Figs. 12.9 and 12.10 and compare them with the rules in the first part
of Sect. 12.4. You will need this for understanding later figures.

12.4.1 Sign Rules for the Lens Formula

The lens makers’ formula and lens formula can be used for both convex and
concave lenses and mirrors, but sometimes we have to operate with negative
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values for positions, radii of curvature radii and focal lengths for the formulas
to function.

The rules for light coming against lenses or mirrors are as follows:

• Object distance s > 0 if the object is a real object; otherwise, s < 0.
• Image distance s ′ > 0 if the image is real (real rays meet in the image),

s ′ < 0 otherwise.
• Focal distance f > 0 for convex lenses, f < 0 for concave lenses.
• Focal distance f > 0 for concave mirror, f < 0 for convex mirror.

In addition, the following convention applies:

• Magnification m is taken to be positive when the image has the same direc-
tion as the object, m < 0 when the image is upside down.

It is nice to have these rules for signs, but experience shows that they sometimes are
more confusing than useful. For that reason, some people choose to decide the signs
by drawing the ray diagram, obtaining an approximate value for the image distance
relative to object distance, and checking whether the image is real or imaginary.
Thereby the sign comes out on its own. The procedure nevertheless means that we
know the rules for the focal distance for convex and concave lenses and mirrors.

Slavish use of the lens formula and sign rules without simultaneous drawings
based on ray optics will almost certainly lead to silly errors sooner or later!

12.5 Description of Wavefront

Ray optics is useful for finding the size and position of the image of an object after
light has passed through a lens. However, we initially mentioned in this chapter that
we usually describe light as electromagnetic waves and that the concept of “light
rays” does not square with a wave description.

However, it is relatively easy to go from a wave description to a ray description.
The link between them is the fact thatwhen awave propagates, itmoves perpendicular
to any wavefront. It may therefore be interesting to see how wavefronts of light from
a source develop as they pass through a lens.

In Fig. 12.11, we have drawn a light source as a luminous point that emits spherical
waves of a definite wavelength. The wavelength of light is very small in relation to
the lens size, so the distance between the drawn wavefronts is in the range of a few
hundred wavelengths.

In Fig. 12.11a, we have chosen to place the object point on the optical axis at a
distance of 2 f from the lens centre plane, where f is the focal length of the lens.
The wavefront hits the lens and continues through the lens and continues after the
light has passed the lens. The wavefront must be continuous, and since the light goes
at a lower speed through the glass than in air, the wavelength inside the glass is less
than in air. The wavefronts lie closer together.
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(a)

(b)

(c)

(d)

Fig. 12.11 An object point (vertical orange arrow) emits light in all directions as spherical wave-
fronts. The figure shows how the wavefront changes as they pass through a biconvex lens when the
object distance changes. See text for details
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In this case, the image point according to the lens formula will be a distance of 2 f
behind the lens. Then the wavefront will appear as shown in the figure, and we also
see that the actual light beam narrows and gets a minimum value just at the image
point (marked with black arrow). In this case, wavefront within the lens itself is flat,
but it is also the only region of the wavefront that is flat in this case.

In Fig. 12.11b, the object point is located at a distance of 3
2 f from the lens. Now

the curvature of the wavefront is larger (the radius of curvature is small) than in the
previous case, and the curved glass surface does not manage to align the wavefront
so that they get flat inside the glass. After the light has passed the lens, the wavefront
has too little curvature (too large radius of curvature) to form the image at a distance
of 2 f behind the lens. According to the formula, the image is now at a distance of
3 f .

In Fig. 12.11c, the object point is located at a distance of f from the lens. The
curvature of the wavefront that hits the lens is now so great that the lens as a whole
does notmanage to gather the light at an image point on the opposite side. In this case,
the wavefront becomes flat after the light has passed the lens. The light continues as
a cylindrical light beam with unchanged diameter.

In Fig. 12.11d, the object point is located at a distance of f/2 from the lens. Now
the wavefront of the light after it has passed the lens will be curved the opposite
of what we had in the first two cases. There is no image point at which the light is
gathered. On the other hand, we see that the wavefront after the light has passed the
lens has a curvature that corresponds to the lens removed and that we had put the
object at a distance f in front of the lens (marked with red arrow). It is this geometry
we previously referred to as the “virtual” image.

Since waves in principle can go as well as backwards, Fig. 12.11 can be used to
some extent also for light moving the opposite way. However, there are significant
differences in the regions in which the light is located.

12.6 Optical Instruments

Several lens combinations were used for making optical instruments in the early
1600s. The telescope opened the heavens to Galilei, and he could see the four largest
moons of Jupiter, an observationwhichhad adecisive influenceon the development of
our world view. The microscope (only a single-lens microscope at that time) enabled
Leeuwenhoek to see bacteria and cells and paved the way for a rapid development
and increased understanding of biological systems. Optical instruments have played
an important role and still have a huge impact on our exploration of nature.

We will presently look at how we can build a telescope and microscope using two
lenses. First of all, however, we will take on a simple lens used as loupe, since this
construction is classically included in both telescope and microscope.
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12.6.1 Loupe

The simplest version of a loupe (“magnifying glass”) is a simple convex lens. The
ray path of a loupe is somewhat different from what we have indicated in the figures
so far.

An object is placed in Fig. 12.12a one focal length away from a convex lens
(loupe). The light from an object on the optical axis (red) will appear, after passing
the lens, as rays parallel to the optical axis (plane wavefront perpendicular to the
optical axis). Light from a point in the object, which is at a distance d from optical
axis (green), will also appear almost like parallel rays, but now at an angle θ with
the optical axis.

If we place the eye somewhere behind the loupe, the eye lens will form an image
of the object on the retina. Since the light rays coming into the eye (from each object
point) are almost parallel (the wavefront is approximately plane), the eye must adjust
the eye lens as if one is looking at an object far away. The focal length of the eye
lens is then the distance between the eye lens and the retina (see later).

We often use a loupe to get an enlarged image of an item we can get close to. The
best image we can achieve without a loupe is obtained when the object is as close to
the eye as possible without sacrificing the sharpness of the image (see Fig. 12.12b).
This distance to the eye is a limiting value smin. A “normal eye” (see Sect. 12.8) cannot

s’



d

eye focused on the “near point”



s’




f

d

eye focused on “infinity”



smin

f

= f(b)

(a)

Fig. 12.12 Ray diagram when we consider an object with and without a loupe. In part a, an object
is placed in the focal plane of a convex lens used as a loupe. The rays are caught by the eye and
form a real image on the retina. Part b shows the ray path when we keep the object as close to the
eye as possible, while at the same time maintaining a sharp image. See text for further information
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focus on objects closer than about 25cm. Therefore, we choose to set smin = 25 cm.
The curvature of the eye lens is maximized and the focal length f in this case is
slightly shorter than s ′. Thus, also in this case s ′ fits with the size of the eye.

We see from Fig. 12.12 that the image on the retina becomes larger when we use
a loupe as compared to looking at the object with the unaided eye. The loupe gives
us a magnification.

Since the size of the eye itself is unchanged in the two cases, the size of the
exposed part of retina will be proportional to the angle θ between the incident red
and green light rays in Fig. 12.12.

Let θ be the angle subtended by light rays from two object points (as judged
from the centre of the eye lens). In Fig. 12.12, these points are shown in red and
green. The magnification of a loupe is defined as the ratio of the tangent of the
subtended anglewhen the light reaches the eye via a loupe and the tangent of the
angle when the light comes directly (without the loupe) from the object when it
is at a distance smin = 25 cm.We often refer to this as “angular magnification”,
as opposed to magnification we have mentioned earlier, where we found the
ratio of the magnitudes of an image to the object. For a loupe with a focal
length f , the angular magnification becomes:

M = d/ f

d/smin
= smin

f
.

Here d is the distance between the two selected points on the object per-
pendicular to the viewing direction (the distance between red and green object
points in Fig. 12.12). The focal length of the loupe is f .

A loupe with a focal length of 5cm will then have an magnification of
25 cm/5 cm = 5. We usually write 5 X (fivefold magnification). Note that the
magnification here is positive because the image we see through the loupe is
upright in relation to the object (the image does not turn upside down).

In short, we can say that the loupe has only the function that the object can be
moved closer to our eye than can be achievedwithout the loupe. The effective distance
is simply the focal length. If we have a loupe with a focal length of 2.5cm, we will
examine a butterfly wing at an effective distance of 2.5cm instead of having to move
the butterfly 25cm away from the eye to get a sharp image. The result is a real image
on the retina that is about ten times as large as that seen without the loupe.

In a microscope or telescope, a loupe is used with another lens (an objective).
Loupes may have focal lengths down to about 3mm. It automatically gives an almost
100-fold magnification compared to whether we had not used the loupe.

Note that the distance between the loupe and the eye has no bearing on the distance
between the red and the green image points on the retina in Fig. 12.12a. However,
if the eye is drawn too far away from the loupe, we will not be able to see both the
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red and the green points at the same time. The field of vision is thus greatest when
the eye is closest to the loupe, but the magnification is independent of the distance
between the loupe and the eye.

12.6.2 The Telescope

A telescope consists of at least two lenses (or at least one curvedmirror and one
lens). The lens (or mirror) closest to the object (along the light path) is called
objective, whereas the lens closest to the eye is called eyepiece or ocular. The
purpose of the objective is to create a local image of the object (in a way
moving the object much closer to us than it actually is). The eyepiece is used
as a loupe to view the local image.

Although the local image is almost always much smaller than the object, it is also
much closer to the eye than the object itself. Once we can use a loupe when viewing
the local image, we can get an (angular) magnification of up to several hundred times.
However, a regular prismatic binocular has a limited magnitude of about 5–10 X.
Bigger binoculars require a steady stand so that the image does not flitter annoyingly
in the field of view.

Figure12.13 shows a schematic illustration of the optical arrangement for a tele-
scope. We use the default selection of light rays from the object’s largest angular
distance from the optical axis (from the top of the arrow). Points in the object on the
optical axis will be imaged on optical axis, and usually these lines are not shown.

We notice that the objective provides a real inverted image a little further away
from the lens than the focal plane. Objects that are very far away will be depicted

object

f1

f1’

objective ocular
(magnifying

glass)

f2

f2’2

s s’

h1

Fig. 12.13 For a telescope, the object is far away compared to the focal length. The lens creates
a real, diminished “local” image just behind the focal length. This picture is then considered with
a loupe. Total magnification is measured as angular magnification to the object viewed through
binoculars compared to no binoculars. The picture in this type of telescope appears inverted (upside
down)
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fairly close to the focal plane. Objects that are closer fall further and beyond the focal
point of the lens.

The eyepiece is positioned so that the image from the lens falls into the eyepiece’s
focal plane. Then all the light rays from a selected point in the object, after they have
gone through the eyepiece, will appear parallel. The eye will focus on infinity and a
real image will be formed on the retina.

Magnification

The magnification of the telescope is given as the ratio of the tangents of the
angles between the optical axis and the light rays passing through the centre
of the lenses.

From Fig. 12.13, we see that the angular magnification can be defined as:

M = − tan θ2

tan θ1
= −h/ f2

h/s ′ .

In other words, the magnification varies with the distance from the objective
to the real local image (between the objective and ocular). This distance will
vary depending on how close the object is to the objective. It is more appro-
priate to specify the magnification as a number. It is achieved by selecting the
magnification when the object is infinitely far away. Then s is infinite and s ′
becomes equal to the focal length of the lens f1. The magnification can then
be written as:

M = −h/ f2
h/ f1

= − f1
f2

.

In other words, the angle magnification equals the ratio between the focal
lengths of the lens and the eyepiece.

For a telescope with focal length f1 = 820mm and eyepiece with focal length
f2 = 15mm, the angular magnification becomes:

M = 820

15
= 54.7 ≈ 55X .

Note that since there are so many approximations made in the simple variant of
geometrical optics that there is no point in specifying magnification with more than
two significant figures.

Eyepiece projection *
Before leaving the telescope, we will mention a useful small detail. It is good to look
through a telescope or a microscope, but today we often want to record the observed
details in such a way that others may also see them. Since the eyepiece usually works
like a loupe, we cannot capture a real image by placing, for example, a CMOS image
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Fig. 12.14 In the case of
ocular projection, the
eyepiece is not used as a
loupe, but as a second
imaging lens. See text for
details ocular

projection
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f1’

objective
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f2 f2’h1
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sensor (photo chip) or an old-fashioned photographic film somewhere behind the
loupe. One possibility is to remove the entire eyepiece and place the CMOS sensor
exactly where the real image is formed. It is quite common today. The CMOS chip
may be the internal chip in a digital single-lens reflex camera (DSLR camera) with
interchangeable lenses.We then remove the regular camera lens and use the telescope
lens instead.

Let us take an example:we have a telescopewith an 820mmfocal length objective.
Suppose we want to take pictures of the moon. The angular diameter of the moon is
about half a degree. The size of the real image formed by a telescope lens will then
be:

h = 820 mm × tan(0.5◦) = 7.16 mm .

If theCMOSchip is 24mmwide, themoonwill cover 7.2/24 = 0.3of this dimension.
The image of the entire moon has a diameter of only 30% of the smallest dimension
of the image (“height”). It will be impossible to get nice details of the moon surface
even though the exposure of the image is optimal.

Is there a possibility of enlarging (blowing up) the moon image on the CMOS
chip? Yes, it is possible by use of “ocular projection”.

The principle is quite simple. Normally the eyepiece is used as a loupe, and then,
the image from the objective is placed at the focus of the eyepiece. If we push the
eyepiece further away from the objective, the real image will be outside the focal
plane, and then, the eyepiece can actually create a new real image using the first real
image as its own object. Figure12.14 shows the principle. In order for the new real
image to be larger than the first real image, the eyepiece must be pushed only slightly
farther from the objective than its normal position. In principle, we can get as large
a real image as we want, but the distance from the eyepiece to this last real image is
in proportion to the size of the image. We must then have a suitable holder to keep
the CMOS piece a proper distance behind the eyepiece. With such a technique, we
can easily take pictures of details on the surface of the moon with the 820mm focal
length telescope.

However, there is a catch in themethod. The lens captures asmuch light regardless
of whether or not we use eyepiece projection. When the light is spread over a larger
surface, it means that the brightness per pixel on the CMOS chip decreases. The
exposure must then take place over a longer period of time to get a useful image.
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It should also be added that eyepieces are usually optimized for normal use. Lens
defects may show up in eyepiece projections that would otherwise go unnoticed.

Ocular projection can also be used in microscopy, and the method is very useful
in special cases.

12.6.3 Reflecting Telescope

Large astronomical telescopes usually use curved mirrors as objectives. The main
reason for this is that reflection laws for a mirror are not wavelength-dependent.
Long wavelength light behaves approximately the same as short wavelength light,
which eliminates the chromatic deviation due to the wavelength dependence of the
refractive index of glass.

As with lenses, it is easiest to make curved mirrors when the surface is spherical.
However, this shape is not good because parallel light rays will be focused at different
locations depending on how far from the axis the light rays come in. Mathematics
shows that it would be far better to choose a surface that has the shape of a paraboloid.
In the left part of Fig. 12.15, there are examples of three different light rays coming
against a parabolic mirror parallel to the optical axis. The rays are reflected according
to the reflection laws and end up in exactly the same point (focal point). A telescope
with such a parabolic mirror as an objective can get very sharp images and at the
same time very high brightness.

Unfortunately, it is complicated to make telescopes with parabolic surface with
the precision needed for light waves (since the wavelength is so small). It is therefore
common for low-cost telescopes to use mirrors with spherical surface, but with an
opening small relative to the radius (see the right part of Fig. 12.15). The difference

R = 2ff
f 2f

Fig. 12.15 Left part: A parabolic mirror ensures that all light rays coming in parallel to the optical
axis are focused at the same spot, irrespective of whether the rays are near or farther away from the
optical axis. Right part: A parabolic mirror and a spherical mirror have the same shape provided
that the “opening angle” is small, i.e. the mirror diameter is small compared with the focal length.
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Fig. 12.16 Example of
construction of image
formation for a concave
mirror
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between parabolic and spherical shape is then not so great. Alternatively, we can
combine a spherical mirror with a glass correction lens (“Schmidt corrector plate”)
to get a good overall result at a lower price than if we were to make a near-perfect
parabolic mirror.

Construction rules for mirror

We can study image formation by a curved mirror in a manner rather similar to
that used for thin lenses. We combine the properties of spherical and parabolic
shapes to make the rules as simple as possible and get:
1. Any incident ray travelling parallel to the optical axis on the way to the

mirror will pass through the focal point upon reflection.
2. For any incident ray that hits the centre of themirror (where the optical axis

intersects the mirror), the ray’s incident and reflected angles are identical.
3. Any incident ray passing through the focal point on the way to the mirror

will travel parallel to the principal axis upon reflection.

In Fig. 12.16, the image formation of a concave mirror is shown where the object
is slightly beyond twice the focal length. Take note of all the details concerning how
the three ray-tracing lines are drawn.

We can use the lens formula also for a mirror, but then be extra careful to consider
the sign to get it right.

A concave mirror (concave mirror) will form a real image of the object, provided
that the object is placed farther away from the mirror than one focal length.

A problem with a mirror is that the image forms in the same area as the incident
light passes through. If we set up a screen to capture the image, it will firstly remove
the light that reaches the mirror, and secondly, we get diffraction effects due to the
edge between light and shadow (see Chap. 13). There are several tricks to mitigate
these drawbacks. One of the classic tricks is to insert an oblique flat mirror for
reflecting part of the beam away from the area the light enters (see Fig. 12.17). A
telescope of this type is called a Newtonian reflector.
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Fig. 12.17 In a Newtonian reflector, a slanting mirror is used to bend the light beam from the
main mirror so that we can use an eyepiece and look at the stars without significantly blocking the
incoming light. The slanting mirror does remove a small part of this light
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Fig. 12.18 In a Cassegrain telescope, a secondary mirror is used to reflect the light beam from the
main mirror back through a circular hole in the main mirror. The secondary mirror does remove a
small part of the incoming light. Light rays are drawn in black before the secondary mirror and in
red thereafter

Another choice of construction is to use a curved mirror to reflect the light from
the main mirror back through a circular hole in the main mirror (see Fig. 12.18). This
design, called a Cassegrain telescope, makes it possible to make compact telescopes
(short compared to their focal length). Schmidt correction plate is often used also for
Cassegrain telescopes.

12.6.4 The Microscope

In the telescope, we used the objective to create a local image of the object, and this
image was viewed through a loupe. The strategy works well when the object is so
far away that we cannot get close to it. It is precisely in such situations that we need
a telescope.

When we look at, for example, the cells in a plant stem, we have the object right in
front of us. We do not need to create any local image, because we have the original.
Then we use another strategy to see an enlarged image. The strategy is really exactly



12.6 Optical Instruments 395

Fig. 12.19 Ray path in a
microscope. The object can
be placed arbitrarily close to
the focal point of the
objective, which,
consequently, forms a real
enlarged image of the object.
This image is then viewed
with the eyepiece that acts as
a loupe
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the same as for ocular projection. We place the object just outside the focal point of
the lens (which now has a small focal length) to form a real-life image well behind
the lens. This enlarged image of the object is then viewed by a loupe. The ray diagram
of a microscope is illustrated in Fig. 12.19.

The magnification due to the objective alone is:

M1 = s ′
1

s1
.

This magnification can, in principle, be arbitrarily large, but then the actual
image will move far from the lens, and the microscope would become unman-
ageable. By using a very short focal length lens, preferably only a few mm,
we can achieve a significant magnification even for a tube length (distance
between the objective and eyepiece) of 20–30cm.

In addition, the loupe gives, as always, an (angular) magnification of:

M2 = 25 cm

f2
.

The total magnification of the microscope comes out to be:

Mtot = 25 (cm) s′1
f2s1

.
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In digital microscopes, a CMOS chip can be put directly in the plane where
the real image from the objective is formed. The picture is then viewed on a
computer screen and not through an eyepiece (ocular). It is difficult to define
a magnification in this case since the digital picture can be displayed in any
size.

For an 8mm objective and a 30cm tube length, and an eyepiece with focal length
10mm, the total magnification (expressed in mm in the middle equality) is:

M = 25 (cm) s′1
f2s1

≈ 250 · (300 − 10)

10 · 8 = 906 ≈ 900 X .

Note:
Lately, it has been an extreme revolution within microscopy. By use of advanced
optics, different kinds of illumination of the object, use of fluorescent probes, optical
filters, scanning techniques, extensive digital image processing, and more, it is today
possible to take still pictures and videos of real cells moving around, showing details
we a few years ago thought would be impossible to catch by a microscope.

The physical principles behind thesemethods are exciting and take the wave prop-
erties of light into account to the extreme. For the interested reader, we recommend
to start with the Wikipedia article on microscopy.

12.7 Optical Quality

12.7.1 Image Quality

Here is a word of warning. If we want to buy a microscope (or telescope for that
matter), we can in fact get inexpensive microscopes with the same magnification as
that provided by costlier instruments. Themagnification itself is really far less impor-
tant than the image quality. Heretofore, there has been no well-established system
for specifying the image quality. Accordingly, there has been room for considerable
trickery, and many have bought both microscopes and binoculars, which was no bet-
ter than throwing money out of the window, because the image quality was too bad.
Hitherto, one could rely only going to an optician for buying binoculars and getting
a vague subjective sales talk on quality. So frustrating!

Fortunately, this is about to change. The practice of specifying optical quality in
terms of measurements based on a “Modulation Transfer Function” (MTF) appears
to have gained a firm foothold now. This is primarily a method of determining how
sharp and contrasting images we can get. Colour reproduction does not come within
the purview of this method.

To put it briefly, the MTF values tell us how close the lines in a black- and white-
striped pattern can be, before the differently coloured stripes begin to blend into each

https://en.wikipedia.org/wiki/Microscopy
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Fig. 12.20 One of several popular test objects “EIA Resolution Chart 1956” to measure the quality
of an optical system. The striped patterns are used when testing the resolution, while the grey-toned
steps at the edges can be used to test whether optics and CMOS chips provide a good reproduction
of different brightness levels. BPK, Public Domain, [3]. A newer ISO 12233 Chart may eventually
replace the EIA chart as a high-resolution test pattern for testing imaging systems

other. With increasing density, the stripes at first become more and more grey at the
edges, but eventually the stripes disappear altogether.

Several test images have been developed that can be used to determine MTF
values, thus telling a little about the optical system’s quality in terms of contrast and
resolution. In Fig. 12.20, there is given an example of a widely used test plate with
various striped patterns with gradual change in the number of stripes per mm. For
example, if we have such a high-quality test circuit board (high resolution), we can,
for example, look at the pattern through a telescope, camcorder or camera and see
how nice stripe details we can detect in the final images/pictures. We will return to
this issue later in the book, but with a different test object. (See also problems at the
end of this chapter.)

The quality of an optical systemcan be impaired because ofmany reasons.Diffrac-
tion, due to the fact that the light has awavenature,will always play a role.Diffraction,
however, will only provide a limitation for very good optical systems. Most systems
have more serious sources of degradation of optical quality than diffraction.

To avoid spherical and chromatic aberrations in lenses, modern objectives and
eyepieces are often composed of several (many) lens elements (see Fig. 12.6). We

https://commons.wikimedia.org/wiki/File:EIA_Resolution_Chart_1956.svg
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Fig. 12.21 A schematic
figure showing the principles
of the structures underlying
the new type of anti-reflex
treatment based on
nanotechnology

/4

know from previous chapters that when light goes from air to glass, about 5% of
the intensity at the surface is reflected. If the light is inclined towards the surface,
the reflection may be even greater (for some polarization, as we saw in Fresnel’s
equations).

With 5% reflection at every outer and inner glass surface in an objective consisting
of say eight elements, quite a bit of light will go back and forth several times between
elements, which will tend to diminish sharpness and contrast.

For many years, we have been tackling this problem by applying anti-reflection
coatings on glass surfaces (see Chap. 13). Reflection can be reduced substantially
by this remedy. The problem is, however, that such treatment depends both on the
wavelength and on the angle with which the light hits the surface. Anti-reflection
treatment of this type significantly improves image quality, but the treatment is not
as good as we would like for systems such as cameras and binoculars where light
with many wavelengths is admitted at the same time.

Since about 2008, the situation has changed dramatically for the better, and there
is some fun physics behind it! Nikon calls their version the “Nano Crystal Coat-
ing”, whereas the competitor Canon calls it “Subwavelength Structure Coating”.
Figure12.21 shows the main principle.

When in Chap. 10 we calculated how much light would be reflected and trans-
mitted at an interface between air and glass, our use of Maxwell’s equations was
based on some assumptions. To put it plainly, we said that the interface had to be
“infinitely smooth, flat and wide” and “infinitely thin” in relation to the wavelength.
Then integration was easy to implement and we got the answers we received. We
claimed that the conditions could be fulfilled quite well, for example, on a glass
surface, since the atoms are so small in relation to the wavelength.

The new concept that is now being used is based on “nanotechnology”, which in
our context means that we create and use structures that are slightly smaller than the
wavelength of light.

The surface of the glass is covered with a layer that has an uneven topographywith
elements whose size along the layer is less than the wavelength, and the thickness
of the layer is about one-quarter wavelength (not as critical as the traditional anti-
reflection coating). From a traditional viewpoint, such a layer seems an absurd idea.
Onemight think that the lightwould be splintered all overwhen itmeets the randomly
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slanting surfaces, but this is not right. The light as we treat it is an electromagnetic
wave that is extensive in time and space. In a manner of speaking, we can say that the
wave sees many of the tiny structures at the same time, and details smaller than the
wavelength will not be followed separately when the wave has propagated several
wavelengths further.

Another way to describe the physics of these new anti-reflection coatings is to
say that the transition from air to glass gradually occurs over a distance of about a
quarter wavelength. Then the reflection is greatly reduced.

It should be added that since the atoms are small compared to the nanocrystals
used, we can still use Maxwell’s equations to see what happens when an electromag-
netic wave hits a lens with nanocrystals on the surface. For example, if the structures
are 100–200 nm large, there are about 1000 atoms in the longitudinal direction of
these crystals. All calculations on such systems require the use of advanced numerical
methods.

The nanocrystalline coating is so successful that about 99.95% of the light is
transmitted and only 0.05% is reflected. This new technology is used nowadays on
all expensive lenses from Canon and Nikon and has improved the image quality
significantly.

12.7.2 Angle of View

So far, we have drawn the three ray-tracing lines from the object to lens plane to
image plane without worrying about whether the lines are going outside or within
the lens elements themselves. This is all right as long as we are only interested in
finding out where the image is formed and what magnification it has. The light from
an object follows all possible angles, and as soon as we have established where the
image is placed and how large it is, we can fill in as many extra light rays as we wish.
We have enough information about how the additional lines must be drawn.

At this point, it is meaningful to consider which light rays will actually contribute
to the final image we see when we look, for example, through a telescope. Based
on this type of consideration, we can determine what angle of view a telescope or
microscope will provide.

Figure12.22 gives an indication of how this works in practice. The dashed lines
indicate the extremities of which light rays from the arrow’s tip are captured by the
lens and how they continue onwards. In this case, we see that only half of the light
that the lens catches will go through the eyepiece. If the object had an even greater
angular extent, we could risk that no light from the outermost parts of the object
would reach the eyepiece, although in fact some light passes through the lens. By
doing this type of analysis, the maximum image angle of, for example, a telescope
can be determined, assuming that we actually know the diameter of the objective as
well as the ocular.

In practice, it is not quite so simple, because the lenses and eyepieces that are
used are composed of several lenses to reduce spherical and chromatic aberrations,
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object
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Fig. 12.22 Once we have established the three supporting lines to display image formation, we
can fill in with all imaginable light rays that actually pass through a lens (for simple optical layout
with a few elements). When multiple lenses are combined, not necessarily all light coming through
the first lens will go through the next. This type of consideration can provide an approximate target
for what angle of view a telescope or microscope will have

etc. Nevertheless, considerations of this type can provide a rough and ready measure
of the field of vision.

It should also be added that different constructions of eyepieces provide quite
different experiences when we look through, for example, a telescope. In the old
days, we had to keep the eye at a certain distance from the nearest element in the
eyepiece to see anything, and what we saw was generally black except a small round
field where the subject was. Today, good eyepieces give much more latitude (up to
10mm) in choosing the position of the eye (in relation to the eyepiece) for viewing
an image, and the image we see fills more or less the effective angle of view of the
eye. No black area outside is noticed, unless one actively looks for it. As we look
through such eyepieces, we get the impression that we are not looking through a
telescope at all, but simply are at the place shown in the picture. In astronomy, we
speak of a sense of “space walk” when such eyepieces are used.

12.7.3 Image Brightness, Aperture, f-Stop

Everyone has handled a binocular where the image is bright and nice, and other
binoculars where the image is much darker than expected. What determines the
brightness of the image we see through binoculars?

In Fig. 12.23, a single lens with object far away has been drawn, along with the
image that forms approximately in the focal plane. When the total image angle that
the object spans is θ , the focal length of the lens f , and the extent of the image in
the image plane is h1, we have:

tan(θ/2) = h1/2

f

h1 = 2 f tan(θ/2) . (12.8)
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Fig. 12.23 A lens collects a limited amount of light from an object, and this amount of light is
spread out over the area of the image being formed. In this figure, the object is assumed to be very far
away so that the image is formed in the focal plane. Comparison between left and right part: If the
lens diameter is reduced to half, while focal length is reduced to half, the light intensity (irradiance)
of the image that is formed will remain unchanged. See text for details

For example, if we view the moon, the angular diameter will be about half a degree.
If the focal length is 1 m, the image lens will have a diameter of 8.7mm. How much
light is gathered from the image of the moon in the focal plane? It depends on how
much light we actually capture from the light emitted from the moon. When the light
reaches the lens, it has an irradiance S given, e.g. in the number of microwatt per
square metre. Total radiant power collected by a lens of diameter D is Sπ(D/2)2 (in
microwatts). The total radiant power will be distributed over the image of the moon
in the focal plane, so that:

Sπ(D/2)2 = Siπ(h1/2)
2 .

The irradiance Si in the image plane becomes:

Si = π(D/2)2

π(h1/2)2
S .

If we use Eq. (12.8) and rearrange the terms, we get:

Si = S

4 tan2(θ/2)

(
D

f

)2

(12.9)

where θ is the angular diameter of the moon and f and D are, respectively,
the focal length and the diameter of the lens.

The first factor is determined by the light source alone; the second, by the
lens alone. The greater the ratio D/f, the brighter is the image formed by the
lens (and this is the image that may be viewed by an eyepiece or detected by
a CMOS chip or a similar device).
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Fig. 12.24 If an aperture is used to reduce the light intensity in the image of an object, the size
of the image will always be unchanged—only the brightness goes down. The ratio between focal
length and diameter of the light beam that goes to the lens indicates the so-called aperture stop, or
f-stop

In Fig. 12.23, two different lenses are drawn, with different radii and different
focal lengths. If the focal length goes down to half (right part of the figure), the size
of the image (diameter) will be half the size of the left part. But if the lens diameter
also drops to half, the area that can catch, for example, light from the moon, will go
down to a quarter. However, when the area of the image also goes down by a factor
of four, it means that the irradiance in the image plane is identical to what we have
in the left part of the figure. The ratio D/f is the same in both cases. It has therefore
been found that the ratio D/f is a measure of the brightness of the image formed by
a lens.

If we insert a photographic film or a CMOS chip into the focal plane and capture
the image of, for example, themoon, wewill have to collect light for a certain amount
of time in order to get a proper exposure. If the lens is referred to as “fast”, we will
need less time than if the lens is referred to as “slow”. A telescope with a large-
diameter objective lens (or mirror) will capture much more faint light from distant
galaxies than a small-diameter telescope. However, it is not the diameter alone, but
the ratio D/f that determines the brightness of the image.

Aperture and f-stops
Cameras use an aperture to change the amount of light that will fall on the film or
the CMOS chip. An aperture is simply an almost circular opening whose diameter
can be changed by the operator. This is indicated in Fig. 12.24. The image size does
not change if we reduce the opening and bring less light onto the CMOS chip, but
the irradiance in the image plane will decrease.

The light gathering power of a camera objective is usually indicated by a
so-called f-number (also called f-stop or aperture) defined by:

f-number ≡ f/D
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where f is the lens’s focal length and D is the effective diameter of the light
beam let through by the aperture and objective. If we compare with the expres-
sion in Eq. (12.9), we see that the irradiance of the light that hits the film or
the detector chip is inversely proportional to the square of the f-number.

The f-number is usually written in a special way. The most commonly used
notation is “f:5.6” or “f/5.6” (f-number = 5.6). Typical f-numbers are 1.4, 2,
2.8, 4, 5.6, 8, 11, 16, 22 corresponding to relative irradiance of about 1/2, 1/4,
1/8, 1/16, 1/32, 1/64, 1/128, 1/256 and 1/512. The higher the f-number, the
less light reaches the image plane.

These steps are called “stops”, and one stop wider will admit twice as much light
by increasing the diameter by a factor of

√
2 ≈ 1.4. We see that if we change the

f-number with one stop, it corresponds to the irradiance in the image plane by a
factor of two up or down. Increasing f-numbers correspond to less effective diameter
of the lens and thus less light intensity on the light-sensing device. To get the same
amount of energy collected per pixel in the CMOS chip, then the exposure time must
either be doubled (for each increment in the f-number) or halved (for decreasing
f-numbers).

Depth of view

From Fig. 12.24, we can notice another detail. If we move the CMOS bit slightly
back or forth in relation to where the image is, a luminous point will be replaced
by a luminous disc. The light beam towards the focal plane has a solid angle which
decreases when the lens opening is reduced, indicated as φ1 and φ2 in the figure.
This means that if we move the sensor chip a little way away from the focal plane,
the pixels on the chip will be larger when the aperture is completely open (maximum
light intensity in) than when the aperture is smaller (less light emits).

Fig. 12.25 When a luminous point in an object is imaged by a lens, its image will be a point located
approximately in the prevailing focal plane. If we are to depict more objects that do not lie at the
same distance from the lens, there is no focal plane for the various images that are formed. Then,
luminous points in the objects that are at different distances from the lens than the one we have
focused on will be depicted as circular discs, and the image will be “blurred”. By reducing the
aperture, blurring will be reduced (angle φ2 is less than angle φ1 in Fig. 12.24) and we say that we
have gained greater depth of field. In the photograph on the left, a lens with f-number 3.5 is used
with a shutter speed 1/20 s. In the photograph on the right, the same lens and focus are used, but
now with f-number 22 and shutter speed 1.6 s
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If we take a picture of a subject where not all objects are the same distance from
the lens, we will not be able to get the image of all the objects in focus at the same
time. If we have a wide aperture, the blur of the objects that are not in the focal plane
will be greater than if the aperture is narrower. The smaller the opening (higher the
f-stop number), the less blurred will be the picture. In photography, we say that we
have greater “depth of field” (DOF) at small aperture (large f-number) compared to
large aperture (small f-number). Figure12.25 shows an example of this effect.

12.8 Optics of the Eye

Figure12.26 is a schematic representation of the structure of a human eye. Optically,
it is a powerful composite lens that forms a real image on the retina in the back of the
eye. The amount of light that reaches the retina can be regulated by adjusting the size
of the dark circular opening (pupil) in the iris. The retina has a very large resolution
(which allows us to see details), but only in a small area around the point where the
optical axis of the eye meets the retina. This area is called macula lutea, meaning
the “yellow spot” (see Fig. 12.27), and the photoreceptor cells in this region are the
so-called cones, which enable us to discriminate between different colours. In other
parts of the retina, the density of photoreceptor cells is not so large, and the majority
of these cells, called rods, are more sensitive than the cones, but they do not provide
any colour information (see Chap. 11). Curiously, the light must pass through several
cell layers before it reaches the photoreceptor cells. This may have an evolutionary
origin since humans stay outdoors in daytime, when the sunlight is quite powerful.
There are species that live in the deep dark layers of the ocean depths where the light
reaches the optic cells (only rods) directly without going through other cell layers
first.

The major focusing action of the eye comes from the curved surface between
the air (n = 1) and the cornea. The contribution of the eye lens consists merely
in modifying the optical power of the combined refractive system. The refractive
indices of aqueous humour and vitreous humour are approximately 1.336 (almost
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LR

Fig. 12.27 Pictures of retinas taken by a camera through the pupils with a special flash device. The
image was taken in a routine check at c)optikk, Lørenskog, 2018. The blind spots are the yellow
areas on the image where blood vessels and nerves originate from the eyeball. The so-called yellow
spot (macula lutea in Latin) is an approximately 1.5mm diameter area roughly in the middle of the
slightly dark oval area somewhat to the left of the centre in the R (right) eye picture and somewhat
to the right of the centre in the L (left) eye picture. In the macula lutea, the cones are most abundant
and the area is responsible for our colour vision and sharp-sightedness. The light must pass through
several cell layers before reaching the light-sensitive visual cells

the same as forwater), while the eye lens has a refractive index of 1.41. The difference
between these refractive indices ismuch smaller than that between air (n = 1) and the
cornea (n = 1.38), which explains why the total optical power (or refractive power
or focusing power) is largely due to the refraction at the surface of the cornea.

The size of the eye remains almost unchanged during use, as indicated in
Fig. 12.28. When focusing on objects that are close to us or far from us, it is the
shape of the eye lens that is adjusted. The shape is controlled by the ciliary muscle
and zonular fibres (which are attached to the lens near its equatorial line). When
the ciliary muscle is relaxed, the zonular fibres are stretched, which makes the lens
become thinner and reduces its curvature; the converse takes place when the ciliary
muscle contracts. For a normal eye, the focal point of the lens will generally be on the
retina, and objects that are “infinitely far away” will then form a real upside-down
image on the retina. When the muscle contracts, the zonular fibres slacken, allowing
the lens to become more spheroidal and gain greater optical power. Then the focal
point falls somewhere in the vitreous chamber, and objects that are not so far from the
eye could form a real image on the retina. The image spacing s ′ in the lens formula
always stays constant (about 20mm), but the focal length of the overall lens changes;
this process is called accommodation.

With advancing age, the eye lens hardens, the tension of the zonular fibres dete-
riorates, and the activity of the ciliary muscle declines. As a result, ageing leads to
what is called presbyopia—the continuous loss of the ability of the eye to focus on
nearby objects. Specifically, the nearest point on which middle-aged person is able
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Fig. 12.28 Size of the eye remains almost unchanged, but the focal length of the compound lens
can be changed. That way, we can see objects sharply over a whole range of distances

to focus recedes to about 1 m from the eye, whereas younger persons can focus on
objects as close as 10–20cm.

The smallest distance from the eye at which an object may still give rise to a
sharp image on the retina is called the near point. The largest distance from
the eye at which an object can still give a sharp image is called the far point.
For a normal eye, the far point is at an “infinite” distance.

The optical power of the eye, spectacles

Now let us use the lens formula for a quantitative analysis of the eye:

1

s
+ 1

s ′ = 1

f
.

For a normal eye focusing on an object really far away, s will be almost infinite,
and with s ′ approximately equal to 20mm = 0.02m we get:

1

f
= 1

0.02m
= 50m−1 .

The ratio 1/f, called optical power (and by other names, including dioptric
power and refractive power), is specified in dioptre, which equals m−1. A
normal eye focusing on infinity thus has an optical power of 50dioptres.

For a normal eye, which has a near point of 25cm, the optical strength is
given by:

1

f
= 1

0.25m
+ 1

0.02m
= 54 dioptre .
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In other words, the eye lens can only change the total optical power by
about ten per cent. The cornea takes care of the rest of the optical power.

Not all eyes are “normal”. Somehave corneaswith excessive curvature, on account
of which the optical power becomes too large in relation to the distance between the
lens and the retina. When such a person tries to see an object far away, the real image
will not hit the retina but lie somewhere inside the vitreous chamber. The person
will therefore not have a sharp vision when he/she looks at something far away.
Such a person we call nearsighted. Nearsightedness can be remedied using glasses
or contact lenses. The eye’s natural dioptric power must be contraindicated since it
is too large, and the glasses or outer eye lenses must be concave (negative eyepiece).

If someone has a cornea with an abnormally small curvature, the optical power
of the eye becomes too small. When such a person tries to look at an object 25cm
from the eye (nominal near point), the real image will not fall on the retina but will
theoretically fall behind it. The image on the retina will be blurred. Such a person
is called long-sighted. Again, we can compensate for the error by inserting an extra
lens in the form of glasses or external eye lenses until we look sharply also for bodies
25cm away. In this case, the lens must be convex (positive eyepiece).

When young, a personwith an imperfect vision can get,with the help of spectacles,
an almost normal vision, with a near point of 25cm and a far point at infinity. As the
age increases, the capacity for accommodation decreases, and one pair of spectacles
will no longer be able to give a near point at 25cm and at the same time the far point
at infinity. It becomes necessary to continually wear glasses and take them off, maybe
even to switch between two sets, to see satisfactorily both at short and long distances.
There are also so-called “progressive glasses” where the upper part of the glass has
one focal length and lower part another (with a continuous gradation between them).

One type of lens imperfection can be described by saying that the cornea has an
asymmetrical shape, almost like an ellipsoid with one meridian being significantly
more curved than the meridian perpendicular to it. In such a case, there are different
optical powers for the two directions. This lenticular error is called astigmatism
and can be corrected using lenses that have cylindrical rather than spherical surfaces.
Such lenses are called cylinder lenses. They can be combined with spherical surfaces
if desired.

Today it is quite common to undertake laser surgery for changing the corneal
surface if the lens has significant inborn flaws. In that case, parts of the cornea can
be burned and shaped so that the person gets a normal vision and does not have to
wear glasses (until age-related defects make it necessary).

Examples
It is rather easy on our own to form a rough impression of what glasses we need in
case we are slightly nearsighted or long-sighted. Here are a few examples:

Suppose we can focus sharply only up to 2.0m, that is, the far point without
glasses is 2.0m. This means that the optical strength of the lens is:
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1

f
= 1

2.0 m
+ 1

0.02 m
= 50.5 dioptre .

The optical strength is thus too large by 0.5dioptre, since it should have been
50.0dioptre for the far point. The remedy is to use glasses with optical strengths
of −0.5dioptre, at any case for viewing distant objects. The elegance of these cal-
culations is that we need to only add or subtract optical strengths to get the optical
strength of the combination.

In the next example, we take a person who is unable to focus on distances closer
than 50cm. This person’s optical strength is then:

1

f
= 1

0.5 m
+ 1

0.02m
= 52.0 dioptres .

In this case, when considering the near point, the optical strength should be
54.0dioptres, which means that there is a deficit of 2dioptres. The person thus needs
spectacles of optical strength +2.0dioptres to move the near point from 50 to 25cm.

12.9 Summary

Geometric optics is based on the thinking that the light from different objects propa-
gates like “light rays” in different directions, where each ray behaves approximately
as (limited) plane electromagnetic waves. These light rays will be reflected and
refracted at interfaces from one medium to another, and their behaviour is deter-
mined by Maxwell’s equations and satisfies the laws of reflection and refraction in
common materials.

When an interface between twomedia is curved, light rays incident at the interface
will have different inclinations compared with the refracted rays.

For thin lenses, we can define two focal points, one on each side of the lens. Light
rays will have infinitely many different directions in practice, but it suffices to use
two or three guides to construct how an object is imaged by a lens so that we get an
image. The guides are characterized by the fact that light parallel to the optical axis is
broken through the focal point on the opposite side of a convex lens, but away from
the focal point on the same side as incoming light beam for concave lenses. Light
rays through the centre of the lens are not broken. We normally draw only lines to
the centre planes of the lenses instead of incorporating detailed refraction on each
surface. Guides may go beyond the physical extent of the lens, but only the light rays
that actually pass through the lenses contribute to the light intensity of the image.

All light rays that go along different paths fromone object point to one image point
spend the same time on the trip, whether they go through the central or peripheral
parts of the lens. This ensures that different light rays interfere constructively when
they meet. When real light rays meet in this way, light can be intercepted by a screen,
and we speak of the formation of a real image at the screen. If the real beams diverge
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from each other after passing through a lens, but all seem to come from a point behind
the lens, we say that we have a virtual image at this point. If we consider light rays
that diverge from each other with the help of our eye, the light rays will again be
collected on the retina and form a real image there. Therefore, we can “see” a virtual
image, even though we cannot collect this image on a screen.

The lens formula is a simplification of lens makers’ formula, and only object
distance, image distance and focal length are included. In the lens formula, the focal
length is considered positive for a convex lens and negative for a concave lens. The
signs for the object distance and image distance change with how the light rays reach
the lens relative to where they exit. We must consider the sign in each case in order
not to commit an error. A drawing that shows the beam angle is essential to avoiding
mistakes in such cases (must check that the result looks reasonable).

A lens can be used as a loupe. Magnification is then an angle magnification,
because placing the object at the lens’s focal point, the virtual image will apparently
be infinitely far away and be infinite. Different angles that indicate maximum propa-
gation of an object lead to a similar physical extent to the actual image on the retina
when we consider the object through the louse. The primary function of the loupe
is that we can effectively keep the object much closer to the eye than the eye’s near
point. That is, we can effectively position the object much closer to the eye and still
look sharp, compared to looking at the object as close as possible (sharp) without
aids.

Lenses can be assembled for optical instruments such as telescopes and micro-
scopes. For the telescope, an objective is used to create a local image of the object
that we can consider with a loupe. The result can be a significant magnification. For
the microscope, the object is placed outside, but very close to the focus of the lens.
The real image that the lens then makes is significantly larger than the object. Again,
a loupe is used to view the real image that the lens makes.

Alternatively, a CMOS chip is inserted into the image plane and the eyepiece
(loupe) is removed. This is often the casewithmany of today’s “digital microscopes”.
In such cases, “magnification” is a very poorly defined term since it will in practice
depend on which computer screen size the image is finally displayed.

The human eye has a fixed image distance of approximately 20mm. The focal
length of the optical system is mainly determined by the cornea, but can be slightly
adjusted since the eye lens strength can be varied within an interval. A normal eye
can focus sharply on objects at a distance of approximately 25cm to infinity. This
corresponds to a total lens strength from 54 to 50dioptres. If the cornea has a too
large or too small curvature, the lens strength is too large or too small. Then we will
not be able to focus sharply over the entire range from 25cm to infinity, and we need
glasses to compensate for deficiencies in the optical strength of the eye lens.

12.10 Learning Objectives

After going through this chapter, you should be able to:
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• Explain why light from objects can be regarded as “light rays” when the
light hits for example a lens.

• Calculate where the image point of a point source is after the light from the
source has met the surface of a glass sphere.

• Explain the terms object, image, focal point, object distance, image distance,
focal length, radius of curvature, concave, convex, real and virtual image.

• Derive (possibly with some help) the lens makers’ formula of a positive
meniscus lens and specify the simplifications usually introduced.

• Explain main steps in the derivation of the lens formula under the same
conditions as in the previous paragraph.

• State the three main rules used in the construction of the ray path through
lenses and mirrors (ray optics) and apply these rules in practice.

• Explain why sometimes we need to change the sign for some quantities
when the lens formula is used.

• Explain two different ways to specify the magnification of optical instru-
ments.

• Explain how a loupe is routinely used and what magnification it has.
• Describe how a telescope and microscope are constructed and what magni-
fication they have.

• Describe how a reflecting telescope works and how it avoids undue obstruc-
tion of the incoming light.

• Calculate how large an image of a given subject (at a given distance) we can
obtain in the image plane for different camera lenses.

• Calculate approximately the angle of view of a camera or binoculars when
the relevant geometrical data are specified.

• Explain briefly how nanotechnology has led to better photographic lenses.
• Explain the optical power of a lens/objective and know what the f-numbers
tell us.

• Explain the concept “depth of field” and how this changeswith the f-number.
• Explain the optics of the eye, and explain what the terms near point, far
point and accommodation mean.

• Know the optical strength of the eye and how the optical strength is varied.
• Calculate, from simplemeasurements of near point and far point, the approx-
imate optical strength of the spectacles a person may need.

12.11 Exercises

Suggested concepts for student active learning activities: Light ray, ray optics,
beam optics, wavefront, paraxial approximation, focal point, object/image, lensmak-
ers’ formula, lens formula, convex, concave, (real) magnification, angular magnifica-
tion, loupe, magnifying glass, normal eye, ocular, objective, telescope, microscope,
reflecting telescope, optical quality, angle of view, image brightness, aperture, f-stop,
depth of field. near point, far point, optical strength, dioptre.
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Comprehension/discussions questions

1. The laws of reflection and refraction mentioned in this chapter apply to visible
light. Light is regarded as electromagnetic waves. Will the same laws apply to
electromagnetic waves in general? (As usual, the answer must be justified!)

2. An antenna for satellite TV is shaped like a curved mirror. Where does the
antenna element itself be placed? Is this analogous to the use of mirrors in
optics? Which wavelength does satellite TV signals have? And how big is the
wavelength relative to the size of the antenna disc?

3. An antenna for satellite TV with a diameter of 1m costs about hundred USD,
while a mirror for an optical telescope with a diameter of 1m would cost an
estimated thousand times more. Why is there such a big difference in price?

4. A “burning glass” is a convex lens. If we send sunlight through the lens and hold
a piece of paper in the focal plane, the paper can catch fire. If the lens is almost
perfect, would we expect, solely on the basis of geometric optics, all the light to
be collected at a point with almost no extent?

5. If you have attempted to use a burning glass, you may have discovered that the
paper is easier to light if the sunspot hits a black area on the paper compared
with a white one. Can you explain why?

6. Cases have been reported that fishbowls with water and spherical vases with
water have acted as a burning glass, causing things to catch fire. Is it theoretically
possible from the laws we have derived in this chapter? What about “makeup
mirrors” with a concave mirror, may such a mirror pose any threat?

7. Based on the lensmakers’ formula, we see that the effective focal length depends
on the wavelength since the refractive index varies with the wavelength of light.
Is it possible for a biconvex lens to have a positive focal length for onewavelength
and negative focal length for another wavelength?

8. How can you quickly find the approximate focal length of a convex lens (con-
verging lens)? Do you also have a quick test for a concave lens (diverging lens)?

9. Does the focal length change when you immerse a convex lens into water?
10. Does the focal length change when you immerse a concave mirror into water?
11. If you lookunderwater, things lookblurred, but if you arewearing divinggoggles,

you experience no blurring. Explain! Could you get rid of extra spectacles with
no layer of air anywhere? In that case, should the spectacles have concave or
convex lenses?

12. A real image (created, e.g. by an objective) can be detected by placing a paper,
a photographic film or CMOS chip in the image plane. Is it possible to record a
virtual image in one way or another?

13. The laws of reflection and refraction, lens maker’s formula and lens formula are
all symmetrical with respect to which way the light goes. In other words, we can
interchange the object and image. Can you point out mathematically how this
reversibility is expressed in the relevant laws? Are there any exceptions to the
rule?
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14. (a) We have a vertical mirror on a wall. A luminous incandescent lamp is held in
front of the mirror so that the light reflected by the mirror hits the floor. However,
it is not possible to form an image of the incandescent lamp on the floor. Why?
(b) We have a laser pointer and we use it in a similar way to the incandescent
lamp, so that the light from the laser pointer is reflected by themirror and reaches
the floor. Now it appears that we have formed a picture of the laser pointer (the
opening of this) on the floor. Can you explain what is going on?

15. How long must a mirror be and how high must it be placed on a vertical wall so
that we can see all of ourselves in the mirror at once? Will the distance to the
mirror be important?

16. The two cameras in an iPhone model have, according to Apple, objectives with
focal lengths of 28 and 56mm, respectively. Is it possible that the lenses actually
have these focal lengths? How do you think the numbers should be understood?
Why does Apple choose to give the numbers this way? (Hint: Prior to the dig-
ital revolutions, the picture size on the film was usually 24 × 36mm. See also
problems 23–24.)

Problems

17. Drawa raydiagram for a convex lens for the followingobject distances: 3 f , 1.5 f ,
1.0 f and 0.5 f . For one of these distances, only two of the usual three standard
rays can be used in the construction of the image. Which? State whether we
have magnification or demagnification of the image, whether the image is up or
down, and whether the image is real or virtual.

18. Determine, by starting from the lens formula and one of the rules for drawing ray
diagrams, the smallest and largest magnification (in numerical value) a convex
lens may have. Determine the condition that the magnification will be 1.0.

19. Repeat the calculation in the previous task, but now for a concave lens.Determine
again the condition that the magnification will be (approximately equal to) 1.0.

20. When we find the image, formed by a convex lens, of an object “infinitely far
away”, we cannot use the three standard light rays for the construction of the
image. How do we proceed in such a case to find the location of the image in
the image plane?

21. We have a convex meniscus lens with faces that correspond to spherical surfaces
with radii of 5.00 and 3.50cm. The refractive index is 1.54. What is the focal
length?What will be the image distance if an object is placed 18.0cm away from
the lens?

22. A narrow beam of light from a distant object is sent into a glass sphere of radius
6.00cm and refractive index 1.54. Where will the beam of light be focused?

23. Suppose that you have a camera and take a picture of a 1.75m tall friend standing
upright 3.5m away. The camera has an 85mm lens (focal length). What is the
distance between the lens and the image plane when the picture is taken? Are
you able to fit the entire person within the image if the image is recorded on an
old-fashioned film or a full-size CMOS 24 × 36mm image sensor? How much
of the person do you get in the picture if it is recorded with a CMOS photo chip
of size 15.8 × 23.6mm?
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24. Repeat the previous task for the camera in a mobile phone. For example, an
iPhone model has a true focal length of 3.99mm, and the photo chip is about
3.99 × 7.21mm (the numbers apply to the general purpose camera and not the
telephoto variant of this camera).

25. When Mars is closest to the earth, the distance is about 5.58 × 107 km. The
diameter of Mars is 6794km. How large will be the image if we use a convex
lens (or concave mirror) with focal length 1000mm?

26. The old Yerkes telescope at the University of Chicago is the largest single-lens
refracting telescope of the world. It has an objective that is 1.02m in diameter
and a f-number of f/19.0. How long is the focal length? Calculate the sizes of
the images of Mars and the moon in the focal plane of this lens. (The angular
diameter of the moon is about half a degree, and the angular diameter of Mars
can be estimated from the information in the previous task.)

27. A telescope has a lens with a focal length of 820mm and a diameter of 100mm.
The eyepiece has a focal length of 15mm and a diameter of 6.0mm. What
magnification does the telescope have? How big is the image angle? Can we see
the whole moon disc at once?

28. A slide projector (or data projector, for that matter) has a lens with a focal length
of 12.0cm. The slide is 36mm high. How big will be its image on a screen 6.0m
from the projector (lens)? Is the image upright or inverted?

29. Suppose we have two glasses, one with optical strength +1.5dioptres on both
lenses and one with optical strength +2.5dioptres on both glasses. We only find
one of the glasses and would like to check if these are the stronger or weaker.
Can you provide a procedure on how to determine the optical strength of the
glasses we found?

30. (a) Where is the near point of an eye for which an optician prescribes a lens of
2.75dioptres? (b)Where is the far point of an eye forwhich an optician prescribes
a lens with lens strength −1.30dioptres (when we look at things a long distance
away)?

31. (a) What is the optical strength of spectacles needed by a patient who has a near
point of 60cm. (b) Find the optical strength of the spectacles for a patient who
has a far point of 60cm.

32. Determine the accommodation (in the sense of a change in optical strength) of
a person who has a near point at 75cm and a far point at 3.0m.

33. In a simplified model of the eye, we see that the cornea, the fluid inside, the
lens and the vitreous humour inside the eye have all a refractive index 1.4. The
distance between the cornea and the retina is 2.60cm. How big should the radius
of curvature be for an object 40.0cm from the eye to be focused on the retina?

34. A loupe has a focal length of 4.0cm. What magnification will it give under
“normal” use? Is it possible to get a magnification of 6.5 X using the loupe in
a slightly different way than described as a standard (do not think about ocular
projection)? If so, tell us where the object we consider must be placed, and say
something about how we can now use the eye.



414 12 Geometric Optics

35. A spherical concave mirror will not collect all parallel rays at one point, because
the effective focal length will depend on how close the optical axis of the beam
hits the mirror.
(a) Try to set up a mathematical expression for effective focal length of a beam
that comes in parallel with the optical axis a certain distance from the axis. The
radius of curvature of the mirror is set equal to R. As a parameter, we can use the
angle θ between the incoming beam and the line that runs between the centre of
curvature of the mirror and the point where the beam hits the mirror surface.
(b) For which angle will effective focal length have changed with 2% relative to
the focal length of the rays coming in very close to the optical axis?
(c) Can you explain why mirror scanners based on spherical mirrors often have
high f-numbers (low brightness)?

36. Suppose you have a removable telephoto lens for a camera. The focal length is
300mm. Suppose you also have a good quality 5X loupe. You want to make a
telescope of these components and have a suitable tube in which the lenses can
be held.
(a) What is the focal length of the loupe lens? What is the magnification of the
telescope?
(b) State the distance(s) between the objective and loupe (used as the eyepiece)
when the telescope is to be used to view objects from 10m to infinitely far away?
(c) You would like to be able to use the telescope for a distance of 25cm. Is it
possible? (As usual: The answer must be supported by arguments.)
(d) The telephoto lens has a diameter of 60mm. What is the f-number (corre-
sponding to the largest aperture) this lens can have? (Simplify the discussion by
regarding the lens as a simple thin lens.)

37. A lens telescope is to be used by an amateur astronomer. The focal length of
the objective is 820mm, and the diameter 10.0cm. The objective is located at
one end of the telescopic tube and the eyepiece holder at the opposite end. The
eyepiece holder can be adjusted so that we get a clear picture of the starry sky
and planets. In order to use slightly different magnification on different objects,
the amateur astronomer has four different eyepieces with focal lengths 30, 15,
7.5 and 3.0mm. The diameter of the lens in these eyepieces is 48, 20, 11 and
3.7mm, respectively. We treat all lenses as if they were “thin”.
(a) How long should the telescope tube be (the distance between the objective
and ocular)?
(b) How much change in position must the eyepiece holder allow?
(c) How much longer should the eyepiece move if we want also to use the tele-
scope as field glasses with the minimum object distance equal to 20m?
(d) What is the f-number of the objective?
(e) What do we understand by the “magnification” of a telescope?
(f) Estimate how much magnification we get for the four different eyepieces.
(g) Estimate the approximate image angle we receive for the 30 and 3.0mm
eyepiece.
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(h) Compare this with the image angle of the moon, which is about 0.5◦.
(i) How big will Jupiter look under conditions best suited for observations, when
we view it through our telescopewith the 3.0mm eyepiece? (Approximate radius
of earth’s orbit is 1.50 × 1011 m and of Jupiter’s orbit 7.78 × 1011 m. Jupiter’s
diameter is about 1.38 × 109 m.)

38. The telescope constructed by Galileo consisted of a convex lens and a concave
eyepiece. Such a telescope is called today a Galilean telescope, and a principle
sketch is shown in Fig. 12.29 for a case where the object is far away.
The image from the objective (red arrow in the figure) is for this configura-
tion placed “behind” the eyepiece (the eyepiece is closer to the objective than
the image formed by the objective). The Galilean telescope therefore becomes
shorter than for a telescope where both objective and ocular were convex (posi-
tive focal width).
Let us analyse the light rays in the figure.
(a) We have assumed, for the sake of simplicity, that the objects we are looking
at are “infinitely far away” and that the eyes focus as if the objects were placed
infinitely far away. How are these assumptions manifested in the way we have
drawn the rays in the figure?
(b) Explain in particular which construction rules for light ray optics we have
used for the red and violet ray in the figure.
(c) Show that the (angular) magnification (numerical value) of the Galilean tele-
scope is given by the relation M = f1/ f2, where f1 and f2 are the numerical
values of the focal lengths of the objective and eyepiece, respectively.
(d) (Somewhat difficult)Would it be possible to use eyepiece projection enabling
this telescope to be used for recording pictures directly on an image sensor or
film? Explain.

39. A laboratory microscope has an objective with focal length 8.0mm, and an eye-
piece with focal length 18mm. The distance between the lens and the eyepiece
is 19.7cm.We use the microscope so that the eyes focus as if the object is placed
infinitely far away. We treat the lenses as if they are “thin”.
(a) What distance should there be between the object and the objective when
using the microscope?
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Fig. 12.29 Galilean telescope
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(b) How large is the linear/real magnification provided by the objective (when
used alone)?
(c) How large is the magnification provided the eyepiece alone?
(d) How is magnification defined for a microscope?
(e) What is the magnification of this microscope?

40. Show that when two thin lenses are in contact, the focal length f of the two
lenses together will be given by:

1/ f = 1/ f1 + 1/ f2

where f1 and f2 are the focal lengths of the individual lenses. We have a con-
verging meniscus-shaped lens with refractive index 1.55 and radii of curvature
4.50 and 9.00cm. The concave surface is turned vertically upwards, and we fill
the “pit” with a liquid having a refractive index n = 1.46. What is the total focal
length of lens plus liquid lens?

41. In this task, we will compare the cameras in an iPhone 5S and a Nikon D600
SLR camera with “normal lens”. The following data are provided:
iPhone 5S: The lens has a focal length of 4.12mm and aperture 2.2. The sensor
chip has 3264 × 2448 pixels and is 4.54 × 3.42mm in size. Nikon D600 with
normal lens: The lens has a focal length of 50mm and aperture 1.4. The sensor
chip has 6016 × 4016 pixels and is 35.9 × 24mm in size.
(a) Determine the effective diameter of the two lenses.
(b) Determine relative irradiance that falls on the photo chip in each camera. We
ignore the influence of different image angles. (iPhone has a maximum image
angle of 56◦ while the 50mm lens on a Nikon D600 has a maximum image angle
of 46◦.)
(c) Fig. 12.30 shows identical snippets from photographs taken under approx-
imately the same conditions with an iPhone device and a Nikon D600 device.
Try to describe the difference in the quality of the pictures, and try to explain
why there may be such a difference.
(d)Would the graininess in the iPhone image be larger or smaller if we increased
the number of pixels in the iPhone to the same level as the D600?
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iPhone 5

Nikon
D600

Fig. 12.30 Parts of photographs taken with the iPhone and Nikon D600. The length of Kohren’s
test chart was approximately 1/4 of the longer dimension of the picture in both cases. Notice not
only how close the lines can lie and yet be distinct from each other, but also the graininess in the
grey parts of the pictures. Details are likely to be better when the images are viewed on screen
with some enlargement, than when they are viewed on A4-size paper. (Effective ISO values are not
necessarily comparable.)
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Chapter 13
Interference—Diffraction

Abstract This chapter is based on two extremely important properties of waves.
One is diffraction, the property whereby a wave confined to a part of space gradually
spreads out to nearby spatial regions if there are no barriers to prevent its spread;
the other is interference, which arises from the fact that, in linear media, waves add
to each other at amplitude level when they meet. Two waves of equal amplitude
may at one extreme add so that they completely cancel each other or in the opposite
extreme add constructively so that the resultant wave (with twice the amplitude)
carries four times as much energy as does each individual wave. This chapter shows
how these general principles can be applied when there are particular geometric
constraints for wave motion, like a single slit, a double slit, a diffraction grating, a
circular aperture or a spherical obstacle. Arago’s spot is mentioned since it provides
a historical perspective. Both analytical mathematics and numerical methods are
used. Particular topics like Huygens’s principle, Airy’s disc, Rayleigh’s resolution
criterion, diffraction-limited optics and Babinet’s principle are also presented.

13.1 The Nature of Waves—At Its Purest

In this chapter, we will describe some of the most wave-specific phenomena found
in physics! These are phenomena that can be displayed for all waves in space, such
as sound waves, waves in water and electromagnetic waves, including visible light.
In many contexts, the experiments are simple and transparent, and the extension of
the waves in time and space becomes a central and almost inevitable ingredient of
any explanation model.

There are a number of phenomena that can be observed when two or more waves
work together. Sometimes, the results are surprising—and often beautiful! In this
chapter, we will primarily discuss interference and diffraction. Historically, we may
say that the word “interference” was primarily used when two separate waves inter-
acted, while the word “diffraction” was most commonly used when some parts of a
wave interacted with other parts of the same wave. It is almost impossible to keep
these two concepts apart in every situation, with the result that sometimes we are
confronted with an illogical use of these words.
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Whatever the names, diffraction and interference are, as already mentioned, some
of the most wave-specific phenomena are known to us. Thomas Young’s double-slit
experiment is one of the most discussed topics in physics today, and interference is
the main reason why one could not overlook the wave nature of light a hundred years
ago when Einstein and others found support for the view that the light sometimes
appears to behave like particles.

In this chapter, we will first and foremost illustrate interference and diffraction
through phenomena related to light, but sometimes it is useful to resort to concrete
water waves to better understand the mechanisms behind the phenomena.

When two or more waves work together, we need to know how to add or combine
waves.

The basis for all interference and diffraction is the superposition principle:
The response to two or more concurrent stimuli si will at a given time and

place be equal the sum of the response the system would have on each of the
stimuli individually.

Superposition implies, in other words, additivity, which is expressed math-
ematically as:

F(s1 + s2 + · · · + sn) = F(s1) + F(s2) + · · · + F(sn) .

Thismeans that F is a linearmapping. In other words, F must be a linear function!
In physics, we know that many phenomena behave approximately linearly. The

most familiar examples are probably Ohm’s law for resistors and Hooke’s law for
the extension/compression of a spring. As long as the “amplitudes” are small, an
(approximately) linear relation applies. But we know that this law does not give
a good description for larger “amplitudes”. Then, the “higher-order terms” must
be taken into account (the expression can be understood as referring to a Taylor
expansion). We mention this to remind you that the superposition principle does not
apply in every situation. In this chapter, however, we still limit almost exclusively to
linear systems where superposition applies.

In this chapter, phenomena will sometimes be presented qualitatively, usually
with a simple formula. In addition, we will provide a more “complete” mathematical
description of three basic situations:

• Interference from a double slit,
• Interference from a grating (many parallel slits),
• Diffraction from a single slit.

The mathematical details of the actual derivation are of limited value (especially
for gratings and single slit), but the main idea that lies at their root is of paramount
importance, so be sure to get a firm hold on it!
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Fig. 13.1 According to
Huygens’s principle, we may
think of any point on a
wavefront as the source of
elementary waves

13.2 Huygens’s Principle

Our description of interference anddiffraction is based onHuygens’s principle,which
states that:

Any point in a wave can be viewed as a source of a new wave, called the
elementarywave,which expands in all directions. For following awavemotion,
we can start from, for example, a wavefront and construct all conceivable
elementary waves. If we go one wavelength along these elementary waves,
their envelope curve will describe the next wavefront (Fig. 3.1).

Fresnelmodified the above viewby saying that if we are to find thewave amplitude
somewhere in space (also well away from an original wavefront), we can sum up
all conceivable waves provided that we take into account both amplitude and phase
(and whether or not something obstructs the wave).

The Dutchman Christiaan Huygens1 lived from 1629 to 1695 and the Frenchman
August-Jean Fresnel from 1788 to 1827, and we might wonder if such an old view-
point has any relevance today, when we have Maxwell’s equations, relativity theory
and quantum physics. Remarkably enough, the Huygens–Fresnel principle is still
applicable, and it is in a way a leading principle in quantum electrodynamics (QED),
the most accurate theory available today. True enough, we do not use the vocabu-
lary of Huygens and Fresnel for describing what we do in QED, but mathematically
speaking the main idea is quite equivalent. In quantum electrodynamics, it is said
that we must follow all possible ways that a wave can go from a source to the place
where the wave (or probability density) is to be evaluated. If a particle description
is used, the phase information lies at the bottom even in the quantum field. In other
words, the Huygens–Fresnel principle is hard-wearing (Fig. 13.1).

1Unusual pronunciation, see Wikipedia.
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Throughout the chapter, we assume that the light is “sufficiently coherent”. We
will return to coherence in Chap. 15, and here we will only state that the light
we start with (e.g. emerging from a slit) can be described mathematically as an
almost perfect sinusoidal wave without any changes in amplitude or frequency as
time flows. In other words, we assume complete predictability in the phase of the
Huygens–Fresnel elementary waves in relation to the phase of the waves we start
with.

13.3 Interference: Double-Slit Pattern

In 1801, when the Englishman Thomas Young (1773–1829) conducted his famous
double-slit experiment, Newton’s corpuscular (particle) model for light was the mo-
tivation. The corpuscular model seemed appropriate in so far as it accounted for the
fact that light rays travel in straight lines and for the observed laws of reflection.
And Newton’s red, green and blue corpuscles provided an excellent starting point
for explaining additive colour mixing.

If Newton’s light particles pass through two narrow parallel slits, wewould expect
to see two strips on a screen placed behind a double slit. But what did Young observe?
He saw several parallel strips! These strips are called interference fringes. This fringe
pattern was almost impossible to explain on the basis of Newton’s particle model.
Young, and subsequently Fresnel and others, could easily explain this phenomenon,
and we shall presently look at the mathematics (Fig. 13.2).

The two slits are assumed to be narrow (often 1–1000 times the wavelength), but
“infinitely” long so that we can look at the whole problem as two-dimensional (in a
plane perpendicular to the screens and slits).

We assume that light enters with a wavefront parallel to the slits so that the light
starts with identical phase throughout the “exit plane” in both slits.We assume further

Fig. 13.2 Experimental set-up for Young’s double-slit experiment. Slit sizes and strip patterns are
greatly exaggerated compared to the distance between light source, slits and screen
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Fig. 13.3 Schematic light
path from the double slit to a
given point on the screen at
the back. In reality, the
distance R from slits to the
screen is much greater than
the gap d1 between the slits.
See text for details

r1

r2
θ

θ

1

2

θ1

d1

d sin(     )θ1
R

that each of the slits emits elementary waves, and for reasons just mentioned, these
waves will have a wavefront that is shaped as part of a cylindrical surface with the
slit as the cylinder axis. In a plane perpendicular to the columns, we will then get a
purely two-dimensional description (see Fig. 13.3).

We are dealing with light, that is, with an electromagnetic wave. The wave is
transverse and is described by an electric and a magnetic field, each of which has
a certain direction in space. We assume that we are considering the interference
phenomenon so far away from the slits that we can ignore the difference in the
direction in space for electrical fields originating from slit 1 compared to the field
originating from slit 2. It will be sufficient for us therefore to add the two electrical
fields as scalar quantities with the correct intensity and phase.

We want to find the electric field on a screen parallel to the plate with the slits,
in a direction θ relative to the normal vector between the slits (see Fig. 13.2). The
contributions from the two slits are then:

E1(θ1) = E1,0(r1, θ1) cos(kr1 − ωt − φ)

E2(θ2) = E2,0(r2, θ2) cos(kr2 − ωt − φ)

where φ is an arbitrary phase angle when space and time are given. Since the screen
with the slits and the screen where we capture the image are very far apart compared
to the gap between the slits, the angles θ1 and θ2 will be almost identical, and we
replace them both with θ :

θ1 ≈ θ2 = θ .

For the same reason, we will assume that the two amplitudes are identical, and write:

E1,0(r1, θ1) = E2,0(r2, θ2) = E0(r, θ) .

The total amplitude in the direction θ is therefore (according to the superposition
principle):
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Etot (θ) = E0(r, θ)[cos(kr1 − ωt − φ) + cos(kr2 − ωt − φ)] .

Using the trigonometric identity

cos a + cos b = 2 cos

(
a + b

2

)
cos

(
a − b

2

)

and get:

Etot(θ) = 2E0(r, θ) cos

(
k
r1 + r2

2
− ωt − φ

)
cos

(
k
r1 − r2

2

)
.

Superposition always operates on amplitudes (i.e. to say, a real physical quantity,
not an abstract quantity such as energy or intensity). Be that as it may, physical
measurements are often based on intensity. When we view light on a screen with our
eyes, the light intensity we sense is proportional to the intensity of the wave.

The intensity of a plane electromagnetic wave in the far-field zone is given by
the Poynting vector, but the scalar value is given by:

I = cED = cεE2

where c is the velocity of light, E the electric field, D the electric flux density (electric
displacement), and ε the electric permittivity. Hence:

I (θ, t) = cεE2
tot(θ, t) = 4cεE2

0(r, θ) cos2
(
k
r1 + r2

2
− ωt − φ

)
cos2

(
k
r1 − r2

2

)
.

This is the so-called instantaneous intensity that varies over time within a period. We
are most interested in time-averaged intensity. The first cos2 term varies with time,
and the time average of cos2 is 1/2. Accordingly:

I (θ) = 2cεE2
0(r, θ) cos2

(
k
r1 − r2

2

)
.

We define
r1 − r2 = �r = d sin θ

where d is the distance between the slits. Furthermore, we bring in the wavelength
through the relationship k = 2π/λ.
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Fig. 13.4 Strip pattern on a screen behind the double slit. The distance between the slits is indicated

Whence follow the intensity distribution of the light that has passed a double
slit (Fig. 13.4):

I (θ) = 2cεE2
0(r, θ) cos2

(
d sin θ

λ
π

)
. (13.1)

When θ = 0, we get maximal intensity. The minima are obtained when the
argument of the cosine function is an odd multiple of π/2:

d sin θ

λ
π = (2n + 1)

π

2
, (n = 0, 1, 2, . . .) .

The condition for a minimum is thus found to be:

sin θ = λ

d

(
n + 1

2

)
.

The maxima occur when:

sin θ = nλ

d
approximately .

The word “approximately” has been added because the exact expression for the
maxima depends also on how E2

0(r, θ) varies with θ .
We should notice that usually, at least for light, the gap between the slits is large

relative to the wavelength. That is, the angle between two minima (or between two
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Fig. 13.5 Direction of the
interference lines can be
demonstrated by placing two
sets of concentric circles,
with the centre of each set in
the middle of a slit

maxima) is usually quite small. Thismeans thatwe can in principle get an interference
pattern consisting of very many parallel bright strips on the screen with dark spaces
in between. Thus, we will not get just two strips, as a particle model of light would
predict.

How many strips do we really get? Well, it depends on E2
0(r, θ). If we use Huy-

gens’s principle and only use one elementary wave, it should have the same intensity
in all directions (where the wave can expand). But the gap (between the slits) can-
not be infinitesimally narrow, for in that case virtually no light would pass through.
When the slit has a finite width, we should actually let elementary waves start at any
point in the slit. These elementary waves will set up a total wave for slit 1 and a total
wave for slit 2, which will not have the same electric field in all directions θ . We will
address this problem below (diffraction from one slit).

Since E2
0(r, θ) will be large only for a relatively narrow angular range, we get a

limited number of fringes on the screen when we collect the light from the double
slit. This will be treated later in this chapter.

In Fig. 13.5, we finally show a fairly common way of illustrating interference
by a double slit. With the centre in each of the two slits (and in a plane normal to
and in the middle of the slits), wavefronts are drawn, characterized by the property
that electric fields is, for example, maximum in a direction normal to the plane under
consideration.At all placeswhere the crest (top, peak) of awave fromone slit overlaps
the crest of a wave from the other slit, there will be a constructive interference and
we will get maximum electric field. These are places where the circles cross each
other.

Theplaceswhere awave crest froma slit overlaps awave trough (valley,minimum)
from the second slit (i.e. in the middle of two circles from this slit), there will be a
destructive interference and we will have almost a negligible electric field.

We can see from the figure that positions with constructive interference lie along
lines that radiate approximatelymidway between the two slits. It is in these directions
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that we get the bright strips in the interference pattern from a double slit. In the midst
of these, there is destructive interference and little or no light.

It is instructive to demonstrate how the angles between the directions of construc-
tive interference change as we vary the distance between the centres in the circular
patterns.

13.3.1 Interference Filters, Interference from a Thin Film

We have previously seen that when we send light towards a flat interface between air
and glass, about 5% of the light is reflected at the surface (even more at larger angles
of incidence). Such reflection deteriorates the contrast and image quality in general
if lenses in a binocular or a camera are not given an anti-reflection treatment. But
how can we deposit such a coating on a lens?

Figure13.6 shows schematically howwe can proceed.We put a thin layer of some
transparent substance on the outside of the glass and choose a material that has a
refractive index about halfway between the refractive indices of air and glass.Wewill
then reflect about as much light from the air–coating interface as from coating–glass
interface. If we ignore yet another reflection (in the return beam), we see that light
reflected from the upper and lower layers will have the same direction when they
return to the air. The two “rays” will superpose. If the two have opposite phase, they
will extinguish each other. This means that the light actually reflected will (on the
whole) be significantly less intense than if the coating was not present.

n0
nAR

n1

λ 4

Fig. 13.6 An anti-reflection treatment of a lens or spectacle consists of a thin transparent layer
with a refractive index roughly halfway between the refractive indices of air and glass. The layer
must be about a quarter wavelength thick for the wavelengths where the filter has to give the best
performance. A beam of light that is slightly inclined towards the surface is drawn to produce the
sum of a part of the wave reflected on the surface of the anti-reflection layer (dashed) and a part
of the wave reflected from the surface of the glass itself (solid line). The overlap between these is
marked with a circle
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Fig. 13.7 Play of colours in a cracked ice chunk

By carefully selecting all parameters, we can determine whether there will be
destructive or constructive interference. In the first case, we get an anti-reflective
layer as already shown. In the second case, we get more reflection. In this case,
a coating consisting of several layers on top of each other is often used and the
parameters are chosen so that light reflected everywhere comes in phase with other
reflections and that the light transmitted from different layers is always out of phase
with other transmission contributions. In this way, it is possible to make mirrors that
can have more than 99.9% reflection for a particular wavelength and for a particular
direction of a beam of light towards the mirror, while at other wavelengths we can
look across the mirror! It is quite nice to experience such mirrors!

In nature and everyday life, thin films form spontaneously, for example in thin
cracks or thin air layers between two glass plates. For example, if we put a “watch
glass” (slightly curved glass for covering the dial of a pocket watch) on top of a flat
glass surface, we get constructive and destructive interference between light reflected
at the interfaces between air and the curved and flat glass surfaces. Since the effect is
wavelength dependent, the circles are coloured and they are called Newton’s rings.

In Fig. 13.7, one finds another example of the same effect. There is a chunk of ice
in which a slight crack has occurred after a blow against the piece, and the play of
colours is evident.

13.4 Many Parallel Slits (Grating)

If we havemany parallel slits with the samemutual distance d, and if we collect
the light on a screen far from the slits (compared to d), we get a situation that
can be analysed in much the same way as the double slit. The difference is that
we must sum up contributions from all N slits (see Fig. 13.8).



13.4 Many Parallel Slits (Grating) 429

r1

d

d sin(     )
R

r2
r3
r4

1

2

3

4

4

Fig. 13.8 Starting point for the mathematics for many slits is likewise that for the double slit. In
practice, we often have several hundred slits per mm, illuminated by a light beam with a diameter
of the order 1 mm. The screen is often 1 m away or more. Thus, all rn are nearly equal and likewise
for the θn . This simplifies the calculations

The resultant field will be:

Etot(θ) = E1 + E2 + · · · + EN

= E0(r, θ)
[
cos(kr1 − ωt − ψ) + cos(kr2 − ωt − ψ) + · · · + cos(krN − ωt − ψ)

]
.

In order to simplify the calculations further, we note that the absolute phaseψ relative
to the selected position and time is uninteresting. When we only look at the time-
averaged intensity, only phase differences due to different path lengths of the various
elementarywaveswill count. For a given angle θ , the difference between two adjacent
elementary waves will be given by d sin θ . This path difference represents a phase
difference φ, and we have already shown above that this phase difference is given
by φ = 2πd sin θ/λ.

Notice:
The following page (slightlymore) is a puremathematical treatment and adds nothing
to the physics. You may skip this and jump directly to the next figure and/or the grey
marked text starting with “The intensity pattern …”.

Notice that if we start from one slit, the phase difference to the next will be φ,
then 2φ, the next 3φ, etc. Then, we can write the resultant field in this simplified
way:

Etot(θ) = E0(r, θ)
{
cosωt+cos(ωt+φ)+cos(ωt+2φ)+· · ·+cos[ωt+(N−1)φ]} ,
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Etot(θ) = E0(r, θ)

N−1∑
n=0

cos(ωt + nφ) .

We use now Euler’s formula eiθ = cos θ + i sin θ and the symbol � as before for
taking the real part of a complex expression and get:

N−1∑
n=0

cos(ωt + nφ) = �
N−1∑
n=0

ei(ωt+nφ) = �
(
eiωt

N−1∑
n=0

einφ

)
.

From the mathematics, we know that the sum of a geometric series with common
ratio k can be written as:

1 + k + k2 + · · · + kN−1 =
N−1∑
n=0

kn = kN − 1

k − 1
.

Applying this relation to the sum
∑N−1

n=0 einφ (k standing for eiφ), we get:

N−1∑
n=0

cos(ωt + nφ) = �
(
eiωt

N−1∑
n=0

einφ

)
= �

(
eiωt

eiNφ − 1

eiφ − 1

)

= �
(
eiωt

eiNφ/2

eiφ/2

eiNφ/2 − e−iNφ/2

eiφ/2 − e−iφ/2

)

= �
(
eiωt eiNφ/2−iφ/2 2i sin Nφ

2

2i sin φ

2

)

= �
(
ei(ωt+Nφ/2−φ/2) sin Nφ

2

sin φ

2

)

= cos(ωt + Nφ/2 − φ/2)
sin Nφ

2

sin φ

2

.

Combining this with earlier expressions, the electric field in the direction of θ will
be:

Etot(θ) = E0(r, θ) cos

(
ωt + Nφ

2
− φ

2

)
sin Nφ

2

sin φ

2

.

In the same way as for the double slit, we are interested in the intensity of the
interference pattern we can observe. Again we have:
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I (θ, t) = cεE2
tot(θ, t) .

When the time average is calculated, cos2(ωt + Nφ

2 − φ

2 ) = 1
2 as before. Accord-

ingly:

I (θ) = 1

2
cεE2

0(r, θ)

[
sin Nφ

2

sin φ

2

]2

I (θ) = 1

2
cεE2

0(r, θ)

[
sin Nφ

2

sin φ

2

]2

. (13.2)

The intensity pattern is then described by:

I (θ) = I0(r, θ)

⎡
⎢⎣
sin

Nφ

2

sin
φ

2

⎤
⎥⎦

2

. (13.3)

where I0(r, θ) is the intensity contribution to the light passing one of the N
slits and φ = 2πd sin θ/λ is the phase difference between two neighbour slits
for the actual θ .

We can show (using L’Hôpital’s rule) that when φ goes to zero, the expres-
sion inside the square brackets goes to N . That is, the intensity of the strip
found at φ = 0 becomes N 2 times the intensity we had from one slit only.
The other maxima we find for sin φ

2 = 0 (assuming we ignore the angular
dependence of E2

0(r, θ)). It follows that maxima will occur when:

sin(πd sin θ/λ) = 0

or, equivalently, when:

mπ = πd sin θ/λ, (m = . . . ,−2,−1, 0, 1, 2, . . .)

sin θ = mλ

d
. (13.4)

These are the same directions as for interference maxima for a double slit.
We see that the positions of the intensity maxima are independent of the N ,

the number of slits.
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Fig. 13.9 Intensity
distribution versus angle for
2, 8 and 32 slits
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Figure13.9 shows how the intensity distribution is for slightly different numbers
of slits. We see that the most distinctive feature is that the peaks are becoming more
pronounced when the number of slits increases.

Difference among the various interference lines
Equation (13.4) can be rewritten like this: d sin θ = mλ.

Thus, light from the same wavefront contribute equally with identical phase to
the centre line (m = 0) of the diffraction pattern.

However, there is one wavelength difference between light passing one slit and
light passing a neighbour slit, for light-contributions to the first line on each side of
the central one (m = ±1) in the diffraction pattern. Thus, if 100 slits are illuminated,
it will be 99 wavelengths difference between the contribution from slit 1 and slit 100.

For the second line on each side of the central one (m = ±2), there will be two
wavelengths difference between contributions from one slit and the neighbour slit.

Thus, in order to have a result in agreement with our derivation in practice, it
requires a very regular wave. We will discuss this a bit more when we talk about
temporal coherence in Chap. 15.

It can be shown that the half-width of the peaks are given by:

�θ1/2 = 1

N

√(
d

λ

)2

− m2

(13.5)
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where m gives, as before, the order. We see that the central line m = 0 has the
smallest line width and that the line width increases when we examine lines
further and further from the centre (question: Can (d/λ)2 −m2 be negative?).

In Fig. 13.10, we have drawn the same curves as in Fig. 13.9, but now with loga-
rithmic y-axis. The purpose is to show details of the small peaks between the main
peaks. We see that the small peak nearest to a main peak is about three log units
(close to a factor 1000) less than the main peak. There are no dramatic deviations
from this rule even though we change the number of slits significantly. However, we
see that the width of each principal peak decreases with the number of slits, even if
we include a few small peaks on each side of the principal peak. Furthermore, the
logarithmic plot shows that the intensity of the main peaks relative to the minor peak
approximately midway increases dramatically with the number of slits.

13.4.1 Examples of Interference from a Grating

We looked in Eq. (13.4) that the angle between the fringes in the interference pattern
from a grating depends on the relationship between the wavelength and the slit
separation in the grating. It is a blessedly simple relationship. An angle is easy to

Fig. 13.10 Intensity
distribution versus angle of
4, 16 and 64 slits but now
drawn in logarithmic scale
along the y-axis to study
details near the zero line
between the main peaks
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Fig. 13.11 Experimental images showing how the distance between lines (dots) in an interference
pattern varieswithwavelength and distance between the slits in the gratings (indicated as the number
of lines per mm in the grating)

measure, and the distance between the slits in a grating is quite easy to measure
(but the slits are tightly spaced, and we need a good microscope). And then, the
wavelength of light is the last parameter.

In Fig. 13.11, we show examples of how the fringes look like (almost like dots,
since we have used lasers with a rather narrow beam). The pictures in the top row
show how the distance between the dots changes when the wavelength of the light
changes. The gap between the slits in the grating is always the same (the “grating
constant” is 300 lines per mm). We notice that red light gives the largest angles. This
is in a way the opposite of what we saw in dispersion. Red light, on being dispersed
by a glass prism, suffered the smallest deviation.

In themiddle rowof pictures inFig. 13.11,weuse red light all the time, but changed
the distance between the slits in the grating. We see that the distance between the
dots on the screen increases when the gap between the slits becomes smaller (when
the number of lines per mm increases), completely in accord with Eq. (13.4). The
bottom row shows photographs, taken through a microscope, of the three gratings
used.

Experiments like these show that, in one way or another, wavelength must be a
central part in the description of light and that wavelength must have a link with real
distances in space since there are only distances in space in the gratings that vary in
the experiments when we switch from one grating to another.



13.5 Diffraction from One Slit 435

13.5 Diffraction from One Slit

Suppose that we now have a single slit illuminated from one side with plane
polarized waves with wavefront parallel to the “surface” of the slit. We can
model the slit as a grating where the slits lie so close and are so wide that they
completely overlap one another. If the single slit has an opening of width a,
we can imagine that it consists of N parallel sub-slits with a centre-to-centre
distance (from the centre of a sub-slit to the centre of the neighbouring sub-slit)
d = a/N .

There are two different methods for calculating the light intensity on a screen
after the slit. The simplest method is based on an approach where the screen is
thought to be very far away from the slit, compared to both the width of the slit and
the wavelength. This case is called Fraunhofer diffraction and is characterized by
the supposition that the amplitude of the electric field from each of the sub-slits is
approximately identical on the screen and that the angle from a sub-slit to a given
position on the screen is approximately equal to the angle from another subdivision
to the same position.

If the distance between the slit and the screen is not very large relative to the slit
width and/or wavelength, wemust usemore accurate expressions for contributions to
the amplitude and angles. This case is called Fresnel diffraction and is more difficult
to handle than Fraunhofer diffraction. The difficulties can be surmounted by using
numerical methods, and we will return to this topic later in the chapter.

Let us now go back to the simple Fraunhofer diffraction, where we consider a slit
composed of N narrow parallel slots that lie edge to edge. We can now use a similar
expression as for the grating, Eqs. (13.2) and (13.3), if we replace d with a/N and
correct for amplitudes at the different slits. In the expression of the phase difference
φ, we now get the following relation:

φ = 2π
d sin θ

λ
= 2π

a sin θ

Nλ
= 2α

N

where

α = π
a sin θ

λ
. (13.6)

For the interference pattern for N equal slits in Eq. (13.3), we found that the
intensity peaks were N 2 times the intensity evolving from each slit. Since intensities
are proportional to electric field amplitudes squared, this corresponds to an efficient
amplitude of the sum signal that is N times the amplitude due to each slit alone.
This is the case since the contributions of light to a peak in the interference pattern
are exactly in phase with each other, whichever slit it went through (assuming high
coherence).

For the diffraction from one slit, the contributions to the diffraction pattern from
all fictitious sub-slits will never add with the same phase. We therefore have to assign
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an effective amplitude Ess for each sub-slit like

Ess = Etot/N (13.7)

where Etot is an “effective amplitude” attributed to the entire slit. This is by nomeans
a strict mathematical description, but it provides a qualitative explanation why we
need to use the 1/N factor for the amplitudes when we divide the slit into N sub-slits.

By applying the variables of Eqs. (13.6) and (13.7) in the expression for the total
intensity distribution, according to Eq. (13.2), the result is:

I (r, θ) = 1

2
cεE2

ss(r, θ)

[
sin Nφ

2

sin φ

2

]2

= 1

2
cε

E2
tot (r, θ)

N 2

[
sin α

sin α
N

]2

.

When N is chosen to be very large, the angle α/N will be so small that sin α
N ≈ α

N .
The intensity distribution can then be written as:

I (r, θ) = 1

2
cε

E2
tot (r, θ)

N 2

[
sin α

α
N

]2

= 1

2
cεE2

tot (r, θ)

[
sin α

α

]2

.

When θ → 0, α also goes to zero, and sin α/α approaches unity, so that:

I (r, 0) = 1

2
cεE2

tot (r, θ) ≡ I0(r) .

The intensity distribution in the single-slit diffraction pattern thus takes the
form (see Fig. 13.12):

I (r, θ) = I0(r)

[
sin α

α

]2

(13.8)

where
α = πa

λ
sin θ .

The intensity vanishes when
α = nπ

where n is a positive or negative integer. This happens when

sin θ = n
λ

a
. (13.9)
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Fig. 13.12 Intensity distribution for strips after a single slit

It can be shown that the maxima lie approximately midway between the angles
where the intensity is zero.

At first sight, Eq. (13.8) might look quite similar to the intensity distribution from
a diffraction grating. However, it is a considerable difference.

The angle between the central top and the first minimum for a grating is given by:

φ = 2π
d sin θ

λ
= 2π

N
,

sin θ = λ

Nd
.

Thus, the width of the central top is becoming narrower as the number of slits
increases, and it does not depend on this approximation of the width of each slit.

For the single slit, however, we thought that the slit was divided into N close-lying
sub-slits, the separation between which is a/N. However, the width does not depend
on this fictitious division of sub-slits. The width depends on the width of the single
slit only.

The angle that gives the first zero of the intensity distribution for a single slit can
be determined through a different and simple argument. Figure13.13 shows how we
can think that a pair of fictitious sub-slits a distance a/2 apart from each other work
together to get destructive interference for all the light passing through the slit.

We also see from the figure that the minimum for diffraction from one slit must
always exist at a larger angle than that for diffraction from two or more separate slits
(since the distance d between the slits must necessarily be greater than or equal to the
slit width in a grating). In other words, the angular distance of the first minimum of
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Fig. 13.13 Geometric conditions showing the direction for which the intensity of diffraction from
a single slit will be zero. For any choice of a pair of fictitious sub-slits a distance a/2 apart, the
difference in the light path will be equal to half a wavelength (which yields destructive interference)

a grating can easily be much less than for the angular distance to the first minimum
in the diffraction pattern.

We can calculate the half-value for the intensity distribution from the single-slit
pattern using Eq. (13.5) for a grating, but again replace the slit separation d with our
fictitious gap a/N. Thus, we get:

�θ1/2 = 1

N

√( a

Nλ

)2 − m2

= 1√(a
λ

)2 − (Nm)2

.

The half-width for the central peak in the single-slit pattern comes out to be
(m = 0):

�θ1/2 = λ

a
.

We find, of course, that the expression does not depend on N .

A typical intensity distribution in the single-slit pattern looks approximately
as shown in Figs. 13.12 and 13.14. There is a distinctive central peakwith weak
stripes on the side. It can easily be shown that we do not get moremarked peaks
than the central top (since the denominator never gets zero except for the central
top).
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Fig. 13.14 An example of the observed intensity distribution in a single-slit diffraction pattern.
The central band is overexposed to make the side bands come out well

13.6 Combined Effect

In the development of the expression of the intensity distribution from a single slit,
we did not pay particular attention to the fact that the strength of the electric field
will vary with the angle θ . In treating the double slit and grating, we placed more
emphasis on this. The reason is that it is actually the underlying diffraction from each
slit that forms the envelope for E2

0(r, θ)!We do not get the clearest fringe pattern from
a double slit or from a grating to extend beyond the central peak of the diffraction
image from each single slit.

In practice, therefore,wewill always have a combined effect of diffraction from
a single slit and interference from two or more simultaneous slits. Figure13.15
shows the combined effect of diffraction from each of the two parallel slits and
interference due to the fact that we have two slits. The example is chosen to
match an optimal double-slit experiment where there are a significant number
of clearly visible fringes within the central diffraction peak.

13.7 Physical Mechanisms Behind Diffraction

So far, we have used theHuygens–Fresnel principle to calculatemathematically what
intensity distributions we get from interference and diffraction. But what are the
physical mechanisms behind diffraction? There are several different descriptions;
among other things, it is popular to invoke Heisenberg’s uncertainty relationship
for this purpose. It is an “explanation” that does not really go back to physical
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Fig. 13.15 Calculated intensity distribution for the fringe pattern from a double slit when each slit
is 200 wavelengths wide and the gap between the slit centres is 2000 wavelengths
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Fig. 13.16 Diffraction may appear for surface waves on water. Waves can be generated by a rod
oscillating up and down the water surface. When waves are sent to a wall with a gap, the waves
behind the wall get a form dictated by diffraction

mechanisms, and it is just a mathematical game. We will try to figure out more
physical mechanisms for the phenomenon.

We choose to look at planewaves created by letting an oscillating rod go in and out
of a water surface (see Fig. 13.16). The waves so generated move towards a vertical
wall with a vertical opening (slit). The waves are parallel to the wall. The waves are
only (approximately) plane over a limited length, but are at least so long that they
cover the entire opening in the wall.
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Central zone
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Border zone
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 effect”Undisturbed medium
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Fig. 13.17 With the starting point in the previous figure, we have tried to illustrate the situation
when diffraction does not occur. See the text for further discussion of this hypothetical case

Diffraction causes the waves on the opposite side of the wall to adopt a fan shape
if the slit is narrow (e.g. with a width approximately equal to the wavelength). If the
gap is much wider, that is, a few wavelengths wide, the diffraction will lead to waves
approximately as shown in the right part of the figure. The question is then: What
are the mechanisms behind this diffraction?

In Fig. 13.17, we have shown in the left part how the waves would go after the
wide gap if there is no diffraction. Then, the waves would continue as a train of waves
having the same length as the width of the slit.

In the central part of the waves, the wave will initially continue as before. This is
because the neighbouring area of every part of a wave in the central zone consists of
waves that move alike. There are no possibilities for leakage sideways, and the wave
continues as before.

In the border regions, the situation is very different. Try to visualize yourself a
water wave that is sliced laterally and moves the water surface with a wave on one
side and perfectly plane water surface on the other side of the partition. It would
just not work out! Water from the wave edge would affect water that was originally
thought to be outside the wave. There must be a continuous water surface also along
the demarcation. This situation would give rise to a “contamination process” where
energy is stolen from the peripheral areas of the waves and fed into the area where
there would have been a flat, calm water surface without diffraction.

The contamination process will continue all the time, and the wave will therefore
become wider and wider. The very same mechanisms lie behind the contamination
process as those which propagate the wave and give it a definite speed. As a result,
the diffraction pattern becomes almost the same for any diffraction situation as long
as we scale the slit width with the wavelength. The waves will eventually be curved
at the edges. Also, the region we called the central zone will eventually feel the
influence of the edge, causing the wavefront to take the form of an almost perfect
arc when it is far from the slit relative to the width of the slit. The radius of cur-
vature will eventually equal the distance from the slit to the wavefront we consider
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(i.e. the waves far from the gap look as if they come from a point in the middle of
the opening).

A physical explanation model completely analogous to that used for water waves
can be applied to electromagnetic waves. It is impossible to have an electromagnetic
field in a continuous medium (or vacuum) where there is a sharp separation between
an area with a significant electromagnetic field and an adjacent area (all the way
up to the previous) where there is no electromagnetic field. Maxwell’s equations will
ensure that the electromagnetic fieldwill contaminate the area thatwithout diffraction
would be without fields and we have continuity requirements just like surface waves
on water.

The key point is that a wave entails an energy transfer from a region in space to
the neighbouring area, and such an energy transfer will always take place if there are
physical differences between the regions, provided that there is actually a connection
between the two areas.

Any situation where we create side effects between regions with waves and adja-
cent regions without waves (where the two are in contact with each other) is a source
of contamination and thus diffraction. Contamination can propagate and appear even
after the wave has moved far from the spatial constraints that created the unevenness
in wave intensity.

13.8 Diffraction, Other Considerations

We have derived above the intensity distribution of the light falling on a screen
after it has passed a narrow slit. The intensity distribution just after the slit can be
considered a spatial square pulse. However, the intensity captured on a screen at a
large distance shows an intense bell-shaped central peak with fainter lines on either
side (see Fig. 13.12). The two closest side peaks have the intensity 4.72 and 1.65% of
the intensity of the central maximum. Is there something magical about this change
from a square to a bell-shaped intensity distribution? In a way, there is.

Figure13.18 shows the square of the Fourier transform of the product of a sine
curve and a square function. The Fourier transformed curve has the exact same shape
as the intensity distribution we calculated for diffraction from a single slit. This is
an example of a part of the optics called “Fourier optics”.

If we multiply a sine function with a Gaussian curve instead of a square function,
the square of the Fourier transformed becomes a pure Gaussian curve. If we start
experimentallywith aGaussian intensity distribution in a beam, the beamcanbemade
either narrower or wider, using lenses and diffraction, and still retain its Gaussian
intensity distribution. In other words, diffraction will not cause any peaks beyond
the centre line when the beam has a Gaussian intensity distribution.

It can be shown more generally that the intensity distribution for diffraction from
a slit is closely related to the intensity distribution of the beam of light we start
with. In other words, intensity distribution can be regarded as a form of “boundary
conditions” when a wave spreads out after hitting materials that limit its motion.
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Fig. 13.18 If a sinusoidal signal is multiplied by a square pulse, we get a signal as shown in the left
part of the figure (only the interesting area is included). Here, 4096 points are used in the description,
the sine signal has 32 points per period, and the square pulse is chosen so that we get eight full
periods within the square. If this signal is Fourier transformed and we calculate the square of the
absolute value of the Fourier coefficients, we get the curve shown to the right of the figure (only
the interesting area is included). The curve has the exact same shape as the curve we calculated for
diffraction from a single slit

Modern optics often uses laser beams with Gaussian intensity distribution across
the beam. Then, the beam shape will be retained even after the beam is subjected to
diffraction.

A beautiful formalism based on matrices (called the ABCDmethod) has been de-
veloped that can be used to calculate how diffraction changes the size of a laser beam
(assuming the intensity profile is Gaussian). In this formalism, first and foremost two
quantities are included, which are of prime importance for the development of such
a beam. One is the diameter of the beam (diameter between points where intensity
has fallen to 1/e2 of the peak value). The second parameter is the radius of curvature
of the wavefront as a function of position along the beam. The formalism is based
on “small angles”. This is for your orientation.

Test yourself:
The information given in the caption to Fig. 13.18 is associated with the figure itself. If you want to
test how much you remember from Fourier transformation, try to answer the following questions:

1. Can you explain why the top of the right part of the figure ends where it is?
2. Is there any connection between the position where the square pulse occurred in the left part

of the figure and the position/intensity in the right part of the figure? Explain as usually the
answer!

3. If the left-hand square pulse was only half as wide as in our case, how would you expect the
right figure to look like?
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Fig. 13.19 When light from a light source is sent through a lens as shown in this wavefront diagram,
diffraction will affect the edge of the light beam (highlighted in red). It is very easy to create this
situation, while it is almost impossible to create the reverse process in practice (which corresponds
to the reversal of the time flow)

13.8.1 The Arrow of Time

The laws of physics are often such that a process, in principle, works equally well
both when time runs forwards and in the reverse direction. When we used light ray
diagrams in the previous chapter, the diagram would have remained valid if we had
switched the object and the image. The lens formula is also symmetrical in this sense.

The wavefront diagrams in the previous chapter will also be used (when ignoring
some shadow effects) both forwards and backwards in time.

The conditions are different when we consider diffraction. In Fig. 13.19, we have
examined how diffraction affects the beam shape after light has passed a lens. It is
in principle possible to run the process backwards in time also in this case, but in
practice it is impossible. It would require us to reproduce the wave conditions in the
smallest detail.

Diffraction is therefore an example of physical processes in which the time arrow
in practice cannot be reversed. Perhaps, the best-known example of a similar process
is the diffusion of, e.g. molecules in a gas or liquid.

13.9 Numerical Calculation of Diffraction

The derivationswe have carried out so far are based on analyticalmathematics, which
has given us closed-form expressions for intensity distributions in various diffraction
patterns. These expressions, though absolutely priceless, are based on approaches
that represent only some limiting cases of a far more complex reality.

Wewill now see how numerical methods can help us calculate diffraction patterns
for a much larger range of variation in the parameters that enter a problem.
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Incoming 
beam of light

The “light source” is light 
passing through a slit

The diffraction pattern on a screen 
 is the aim for our calculations

Along these two lines the light source
and the difraction picture is desribed

Fig. 13.20 Sketch showing where we describe the light source and the diffraction image by calcu-
lating diffraction at a slit

For simplicity, we consider the calculation of diffraction at a slit. Light is inci-
dent normally on a flat surface with a rectangular opening, a slit whose length is
much larger than the width. The light distribution after the slit has then approximate-
ly a cylindrical symmetry, and we therefore consider watching electric fields and
intensities along a one-dimensional line across the slit (see Fig. 13.20).

13.9.1 The Basic Model

The model for our numerical calculation is the same as that used for deriving the
analytical solutions, except that we do not have to make such drastic assumptions as
were introduced earlier. Figure13.21 shows how we are going to proceed.

We will base our analysis on electromagnetic waves originating from N source
points along a line across the slit. The points have positions xn ranging from −a/2
to a/2 since the width of the slit is a (see Fig. 13.21). The amplitude of the electric
field is An , so that the electromagnetic wave at the point xn is

#»
En = Ane

i(kz−ωt+θn) #»u n

where the symbols have their usual meanings, except #»u n , which is just a unit vector
that indicates the direction of the electric field (perpendicular to the direction of
motion of the wave at the specified location, assuming a plane polarized wave). θn
is an angle that gives relative phase from one point to another across the slit. If the
wavefront of the incoming light beam is parallel to the plane of the slit, all θn are
identical, and the parameter can then be dropped.
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Fig. 13.21 Sketch that indicates how the Huygens–Fresnel principle is used in calculating diffrac-
tion from a slit

In our modelling of diffraction, we will take the starting point of electric fields at
the same time in the entire slit. Then, e−iωt will be a constant phase factor that will
disappear when intensities are to be calculated in the end. We therefore drop it at this
point. Similarly, we will drop the corresponding factor when calculating the field on
the screen where the diffraction image is captured.

If we put the slit in the xy-plane (z = 0), we end up with a simplified expression
for the electric fields at different points across the slit:

#»
En = Ane

iθn #»u n (z = 0) . (13.10)

Let us look at the diffraction pattern captured on a screen parallel to the slit, at a
distance d from the slit. Numerically, we calculate the diffraction image in M points
symmetrically positioned relative to the centre of the slit. The calculations span a
width of s so that the position of the selected points Xm is from −s/2 to s/2. We
must choose a suitable value for s to capture the interesting parts of the diffraction
pattern (but not much more).

The electric field at any point Xm will be the sum of contributions from electro-
magnetic waves coming from all the points xn in the slit. Since the distance rn,m

between the relevant points changes as we pass all xn , the contributions will have
different phases at the screen. In addition, the distance differences make the ampli-
tude of the electric field reduced. In total, we then get the following expression for
summation of all contributions to the electric field at point Xm :

#»
Em =

∑
n

An√
rn,m

ei(2πrn,m/λ+θn) #»u n,m (since kr = 2πr/λ) .

The expression is problematic, because there is no easy way to find the #»u n,m

on each electric field contribution (unless the light is polarized in a special way).
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We are therefore more or less forced to process electric fields as scalar quantities in
such formalism. As alreadymentioned earlier in this chapter, this is not a big problem
when we consider the diffraction image far from the slit. However, very close to the
slit, the scalar approach will be a clear source of error in our calculations.

The basic expression for numerical calculation of diffraction from a slit is then:

Em =
∑
n

An√
rn,m

ei(2πrn,m/λ+θn) (13.11)

where
rn,m =

√
d2 + (Xm − xn)2 . (13.12)

The intensity at any point is proportional to the square of the electric field.

Note that we have used the square root of the distance when calculating reduced
electric field strength. This is because we have cylindrical symmetry. If we send out
light along a line, the intensity through any cylindrical surface with the centre of the
line will be the same. The area of the cylindrical surface is 2πr L , where L is the
length of the cylinder. Since the intensity is proportional to electric field strength
squared, then the electric field itself must decrease as 1/

√
r . Had we had spherical

geometry, the intensity would have been distributed on spherical surfaces with an
area of 4πr2, and the electric field would decrease as 1/r.

13.9.2 Different Solutions

Calculations based on the expressions (13.11) and (13.12)may be demanding in some
contexts, as calculations of sines, cosines, squares and square roots are included in
each term. In addition, it needs N × M calculations. For modern computers, this
is very affordable for straightforward calculations of diffraction. Nonetheless, if the
diffraction calculations are included in more comprehensive calculations of image
formation based on Fourier optics and more, the above expressions are in fact a bit
too computer-intensive even today.

Historically, therefore, different simplifications have been made in relation to the
above expressions in order to reduce the calculation time. In many current situations
where we study diffraction images of light, a � d and s � d are in Fig. 13.21. We
can then use a Taylor expansion in the expression of rn,m instead of Eq. (13.12). The
result is (you may try to deduce the expression for yourself):

rn,m =
√
d2 + (Xm − xn)2 ≈ d

(
1 + 1

2

(Xm − xn)2

d2
− 1

8

(Xm − xn)4

d4

)
. (13.13)
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In Eq. (13.11), themost important term, namely rn,m , occurs in the factor ei2πrn,m/λ.
If we substitute the approximate expression for rn,m , we get:

ei2πrn,m/λ ≈ ei2πd/λ eiπ
(Xm−xn )2

d /λ e−iπ 1
4

(Xm−xn )4

d3
/λ

. (13.14)

or with a more readable way to write exponentials:

exp
[
i2πrn,m/λ

] ≈ exp[i2πd/λ] exp

[
iπ

(Xm − xn)2

d
/λ

]
exp

[
−iπ

1

4

(Xm − xn)4

d3
/λ

]

In different situations, some of these terms will be practically constant, and this is
precisely the basis of some historical classifications of diffraction.

We will now try to provide an overview of different variants of computational
accuracy:

1. Less than a few wavelengths away from the edges of the slit. Here, we must
use Maxwell’s equations and bring polarization and surface currents in the ma-
terial surrounding the slit. “Evanescent waves” are part of the solution. (This is a
complicated calculation!)

2. For d3 ≤ 2πa4/λ. This is a problematic area where Maxwell’s equations can be
used for the smallest d, while the expressions (13.11) and (13.12) begin to work
reasonably well for the largest d which satisfies the stated limit.

3. For d3 	 2πa4/λ, we have Huygens–Fresnel diffraction. The expressions
(13.11) and (13.12) work. Even if we put 1/

√
rn,m = 1/

√
d and we skip the last

term of the Taylor expansion in Eq. (13.13), the result will be satisfactory.
4. For d 	 πa2/λ, we have Fraunhofer diffraction. The expressions (13.11)

and (13.12) work. Although we use the same approaches as for Huygens–Fresnel
diffraction, and then (Xm − xn)2 ≈ X2

m + 2Xmxn in the middle of the series of
Eq. (13.13), the results will be satisfactory.

Figure13.22 displays numeric calculations based on the expressions (13.11) and
(13.12) directly. In the first case, we are relatively close to the slit (Huygens–Fresnel
zone), while in the second case we are in the transition between the Huygens–Fresnel
and Fraunhofer zones.

Note that when we are near the slit (Huygens–Fresnel zone), the diffraction image
on the screen will have approximately the same size as the slit. However, some of the
intensity at the edge of the slit leaks into the shadow section (marked with arrow in
the figure), resulting in a continuous intensity distribution between shadow and full
light intensity. We get characteristic fringe patterns in the image of the slit. There are
larger “spatial wavelengths” on these fringes near the edge of the slit than towards
the centre. There are only faint fringes in the shadow section on each side of the
image of the slit.

Figure13.23 shows a photograph of two diffraction patterns that have features
similar to those used in the numerical calculation.
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Fig. 13.22 Diffraction from a slit calculated from the Huygens–Fresnel principle. The left part of
the figure corresponds to the screen being fairly close to the slit. The right part depicts the situation
a little farther away from the slit, yet not quite as far as in Fraunhofer diffraction, which was treated
analytically earlier in the chapter. The width of the slit is marked with a yellow rectangle

Fig. 13.23 Photograph of diffraction image of a slit with approximately the distances that were
used in the calculations in Fig. 13.22 correspond to. The size of the slit is marked at the bottom

Similarly, we have shown calculations and an example of diffraction pattern in
the border region between the Huygens–Fresnel and Fraunhofer zones in the right
part of Figs. 13.22 and 13.23. We see some wavy features here both in the image of
the slit and in the light falling on the shadow zone.

The Fraunhofer zone diffraction pattern is exactly the same as that derived ana-
lytically, and illustrative results are already given in Fig. 13.12 and a photograph in
Fig. 13.14. In that case, we only have wavy features in the zone outside the central
peak.

13.10 Diffraction from a Circular Hole

When a plane wave is sent to a circular hole, we also get diffraction (see Figs. 13.24
and 13.26), but it is more difficult to set up a mathematical analysis of that problem
than for slits. As a result, the image that can be collected on a screen shows a distinctly
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Fig. 13.24 Experimental
set-up for observing
diffraction from a circular
hole

central bell-shaped peak, with weak circles. The central peak seems to form a circular
disc, called the “Airy disc”.

Mathematically, the intensity at an angular distance θ away from the centre line
is given by:

I (θ) = Imax
[
1 − J 2

0 ( 12kD sin θ) − J 2
1 ( 12kD sin θ)

]

where Jn denotes the Bessel function of the first kind of order n, D is the diameter
of the hole, and the k is the wavenumber. When the distance to the screen is much
larger than the diameter of the hole, the intensity distribution becomes:

I (θ) = Imax

[
2J1( 12kD sin θ)

1
2kD sin θ

]2

where the values of Bessel functions can easily be calculated numerically from the
expression:

Jn(x) = 1

π

∫ π

0
cos(nτ − x sin τ)dτ .
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Fig. 13.25 Diffraction pattern for a circular hole far from the hole (red). The central peak that
makes up the Airy disc has an intensity profile shape very close to a Gaussian (blue dashed line)

The angle for the first minimum is given by:

sin θ = 1.22 λ

D

where D is, as stated above, the diameter of the hole. Since the angle is usually
very small, we can use the approximation:

θ = 1.22 λ

D
. (13.15)

The next pair of dark rings have a radius of 2.232 λ/D and 3.238 λ/D, and
the intensities of the first three rings are 1.75, 0.42 and 0.16% of the intensity
at the centre of the central disc. See Figs. 13.25 and 13.26.

It is of interest to look into some details within the central peak both for a single
slit and for an Airy disc. From Fig. 13.13, we can deduce that within the central peak
of the single-slit diffraction pattern, the wavefront is very close to plane (given that
the slit was illuminated by a plane wavefront). The deviation from the perfect plane
wavefront is λ/2 or less. This is remarkable, since the central peak at a screen easily
can be several thousand times as wide as the slit itself (for narrow slits).

Similarly, reasoning along the same lines, it can be shown that within the central
peak (the Airy disc) of the diffraction pattern from a circular hole, the wavefront
is very close to plane. The maximum deviation from the perfect plane wavefront is
slightly larger than λ/2. Since the intensity of the rings around the Airy disc is much
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Fig. 13.26 Airy disc as it
looks with some
overexposure in the central
portion to get the
surrounding circles.
Overexposure is difficult to
avoid since the maximum
intensity in the first ring is
only 1.75% of the maximum
intensity in the central disc.
There are some “speckles”
(bright spots), probably due
to scattered laser light in the
room

less than for the central peak, the diffraction leads to a kind of transformation from a
narrow circular beam with constant intensity and flat wavefront throughout the cross
section, to a much wider beam close to Gaussian intensity profile and a much larger
cross section, but even so, with an almost flat wavefront.

The expression in Eq. (13.15) and the diffraction-of-light-through-a-circular-hole
phenomenon has far-reaching consequences, and we shall mention some.

13.10.1 The Image of Stars in a Telescope

Light from a star comes towards a telescope. The light can be considered a plane
wave when it reaches the objective, and the light is focused by a lens or a mirror. In
geometric optics, we get the impression that we can collect all the light rays from a
distant object at one point, the focal point, as indicated in the left part of Fig. 13.27.
At the very least, it should be possible if the angular diameter of the object is very
small, such as when we look at the stars in the sky. That is wrong!

The light beam from a starwill follow a shape similar to that shown in the right part
of Fig. 13.27. The light bundle has a minimum diameter of d which is significantly
larger than what we would expect from the angular diameter of the object (the star).
The reason is diffraction.

It is actually diffraction from a circular hole we witness. However, it is now a
large hole with diameter equal to the diameter D of the objective of the telescope.
According to Eq. (13.15), the angle to the first minimum will be very small. It will
not be observable if we did not focus on the beam by the telescope objective.

We cannot use Eq. (13.15) directly to calculate the Airy disc size when we focus
on the beam the way we do. We therefore use another kind of reasoning and refer to
Fig. 13.28.

The light passes in the real life through the objective with diameter D, is focused
and forms a diffraction picture where the Airy disc diameter is d in the waist and
then continues to the right. However, waves can in principle move backwards as well
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CorrectWrong!

“waist”
Diameter d

Fig. 13.27 According to ray optics, light from a tiny distant star should be focused on a point
one focal length behind a telescope objective (left). However, due to diffraction the light beam will
have a finite diameter d at its minimum before the beam size increases again (right). The part of
the beam with minimum diameter is denoted the “waist”. The Airy disc will in practice be much
smaller than shown in the right part of this figure, but in principle it will have this pattern. Note also
the difference in wavefronts in the two descriptions

Fig. 13.28 To get an
estimate of the size of the
Airy disc in the case where
light passing through the
telescope objective is
focused, we can imagine that
the waves are moving
backwards from the Airy disc
in the waist towards the
objective. See text for details

Large circular hole

Small circular holeθ

D d

(imagined)

fo

Telescope
objective

Airy 
disc

as forwards and follow the same pattern. Thus, we may imagine that we actually
start with a reasonably flat wavefront passing through a small circular hole of the
same size as the Airy disc, and let the wave move to the left. We should then have a
situation not very differently from the starting point which lead to Eq. (13.15). The
diameter of the beam should increase in size so that the diameter is roughly equal to
D when the beam reaches the objective’s position.

Based on thewave-moving-backwards argument, diffraction from the tinyAiry
disc at the waist will cause the light beam to spread out at an angle θ (relative
to the centre line of the beam)
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θ ≈ 1.22 λ

d

This diverging conical light bundle due to diffraction must match in its
extension the converging conical light beam from the convex lens. Thus:

1.22 λ

d
= θ ≈ sin θ ≈ tan θ = D/2

fo

where fo is the focal length of the objective.
The radius of an Airy disc in the focal plane will then be:

d

2
= 1.22 λ fo

D
.

The Airy disc of a star will have this extension, even though the angular
extension in the sky is vanishing small. All stars will make equally sized
luminous discs in the focal plane, but the intensity of the disc will reflect the
brightness of the star under observation.

You will certainly have noticed that our argument with backward waves has obvi-
ous difficulties. We mix perfectly plane wavefronts with a wavefront not exactly flat,
and we neglect the difference between a constant intensity across a hole and a more
Gaussian intensity profile. We also neglect the rings around the Airy disc. Even so,
a more rigorous treatment leads to roughly the same conclusion as we have arrived
here.

The diffraction has important consequences. Two stars close to each other in
the sky will form partially overlapping discs in the focal plane. If the overlap
is very large, we will fail to notice that there are two discs, and will consider
them as one. If the overlap is small, we will conclude that there are two discs,
representing two stars.

Lord Rayleigh addressed this problem in the following manner:

When two objects (or details in objects) are viewed in a telescope, the ability
to separate the two objects will reach its limit when the central maximum in
the Airy disc of one object coincides with the first diffraction minimum of the
other object. This description is known as Rayleigh’s Resolution Criterion.

The minimum angle ψ where we can see that there are two Airy discs is
then given by:
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ψ ≈ d/2

fo
= 1.22 λ

D
. (13.16)

In other words, with a lens of diameter D and focal length fo, we can
distinguish two stars (or other point-like objects) from each other if the angular
distance between the stars is at least ψ .

Examples:
As we have just seen, we are not able to distinguish detail that subtends an angle of
less than 1.22λ/D, no matter howmuch we enlarge the image. For a prism binocular
with an objective of about 5cmdiameter, the smallest angular distancewe can resolve
with 500nm light becomes

1.22 × 500 × 10−9

0.05

which corresponds to 0.00069◦. For the Mount Palomar telescope, with a mirror of
5m diameter, the best resolution is 1/100 of this angle. TheMount Palomar telescope
can resolve details that are approximately 50m apart from each other on the moon,
while a prism binocular will only be able to resolve details located 5km from each
other.

The diameter of the pupil in our eye is about 5–10mm in the dark. This means
that without the help of aids we can only distinguish details on the moon which is at
least 25–50km apart (the moon’s diameter is 3474km).

In a prism binocular, the magnification is almost always so small that we cannot
see theAiry disc. In a telescopewherewe can change eyepieces and themagnification
can be quite large, it is common to see the Airy discs. A star does not look like a
point when viewed with a large magnification through a telescope. The star looks
exactly like the diffraction image from a small circular opening on a screen, with a
central disc (Airy disc) surrounded by weak rings. The rings are often so faint that it
is hard to spot them.

The optical quality of many binoculars and telescopes are so poor, that e.g. spher-
ical aberration, chromatic aberration or other imperfections so that we do not get
a nice Airy disc if we enlarge the image of a star. Instead, we get a more or less
irregularly illuminated surface that covers an even greater angular range than the
Airy disc would have done. For such telescopes, we fail to resolve the fine details
that the Rayleigh criterion indicates.

A telescope so perfect that its resolution is limited by the Airy disc is said to have
diffraction-limited optics. This is a mark of excellence!

Today, it is possible to use numerical image processing in a smart way so that we can reduce
the effect of diffraction. We theoretically know what intensity distribution we will get when light
from a fictitious point source goes through the optical system we use (telescope or microscope).
By an extensive iterative method, one can then slowly but surely generate an image with more
details than the original. The image so can get close to represent what we would observe in the



456 13 Interference—Diffraction

absence of diffraction. In this way, today, in favourable situations, we can attain about ten times
better resolution in the images than can be achieved without the extensive digital image processing.

13.10.2 Divergence of a Light Beam

At the Alomar Observatory on Andøya, an ozone detector has been installed where
a laser beam is sent 8–90km up in the atmosphere to observe the composition and
movements of molecules up there. The beam of light should be as narrow as possible
far up there, and we can wonder how this may be achieved.

The first choice might be to apply a narrow laser beam directly from a laser. The
beam is typically 1–2mm in diameter. How wide would this beam be, for example,
at a height of 30km?

We use the relationship of diffraction from a circular hole and find the divergence
angle θ :

sin θ = 1.22 × λ

D
.

For light with wavelength 500 nm and an initial beam diameter of 2.0 mm, at the
start, we get:

sin θ = 1.22 × 500 × 10−9

0.002
= 3.05 × 10−4 .

The angle is small, and if the radius of the beam at 30km height is called D30 km, we
find:

D30 km/2

30 km
= tan θ ≈ sin θ = 3.05 × 10−4

D30 km = 18.3m .

In other words, the laser beam that was 2mm in diameter at the ground has grown
to 18m in diameter at 30km altitude!

An alternative is to expand the laser beam so that it starts out much wider than
the 2mm. Suppose we expand the beam so that it is actually D = 50cm in diameter
at the ground. Suppose the wavefront is flat at the ground so that the beam at the
beginning is parallel (so-called waist) and eventually diverges.

How big will the diameter be at R = 30km height?
We must be meticulous in stating the divergence angle:

D30 km/2 − D/2

R
≈ tan θ ≈ sin θ = 1.22 × λ

D
.

On solving this equation for D30 km, we get 57.3cm. In other words, a beam that starts
out as 50cm wide only becomes 57.3cm wide at 30km height! This is significantly
better than if we start with a 2mm thin beam.

https://www.andoyaspace.no/alomar-observatory/
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We can, however, make things even better! We can choose not to place the laser
(light source) exactly at the focal point of the 50cm mirror we used in town (as a
part of making the beam wide). If we place the laser slightly beyond the focal point,
the beam will actually converge before it reaches the “waist” (corresponding to the
Airy disc) and then diverges again. See Fig. 13.27. How small can we make the waist
(Airy disc) at 30km altitude?

We can then work backwards and consider the “waist” at 30km height to be the
source of a diverging beam (on both sides of thewaist, sincewe have symmetry here).
In that case, the beam will on its way from the waist to the mirror have diverged to D
equal to 50cm at the location of themirror (imagining that the beamgoes backwards).
The calculator will look like this:

D/2 − D30 km/2

R
≈ tan θ ≈ sin θ = 1.22 × λ

D

D30 km = 42.7 cm .

In other words, we can even get a smaller beam than the one we started with.
Conclusion: A laser beam that has a 2mm diameter at the ground becomes 18m

in diameter at 30km altitude. However, if we start with a beam of 50cm diameter
and focus it so that the waist will be found 30 km above the ground, the beam is
“only” 43cm in diameter at this height. The energy density in the cross section is
then over 400 times as great as in the first case.

13.10.3 Other Examples *

1. Laser beams have often a “Gaussian intensity profile”. It may be shown that if
you send such a beam through mirrors and lenses, the Gaussian shape will be
preserved (“beam optics”), even though the width is changed. We do not get any
diffraction rings around the central beam of a Gaussian beam.

2. Diffraction takes place even in our eyes. The pupil’s opening is typically 6mm
or less during daily tasks. Thus, diffraction sets the lower limit on the angular
distance between two details in our visual field that we can distinguish. Another
limitation for the resolving ability of the eye is the size of the light-sensitive cells
in the retina. Evolution seems to have chosen an optimal solution since the size
of the Airy discs is roughly the same as the effective area of our light-sensitive
cells (rods and cones).

3. A camera is not necessarily well adapted. If we choose a sensor chip that gives
many pixels per image, it does not necessarily mean that we can exploit this
resolution. If the Airy disc for the selected lens and aperture (see Chap. 12) is
larger than the size of a pixel in the sensor chip, the effective resolution in the
image is not as good as the number of pixels indicates. You may test this on your
own camera!
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Fig. 13.29 Photograph of Arago’s spot in the shadow image of a small ball. The ball was held in
place by gluing it up with a small (!) drop of glue on a thin piece of microscope cover glass. In
addition to Arago’s spot, we see a number of details due to diffraction, both in the shadow section
and in the illuminated party. Note that there is no clear boundary between shadow and light

4. As we have seen, the width of the central peak in the diffraction image from a
single slit is given by:

�θ1/2 = λ

a
. (13.17)

In quantum physics, this result has occasionally been taken as a manifestation
of Heisenberg’s uncertainty relationship. Rightly enough, the expression in E-
q. (13.17) may support this point of view if we threat the phenomena superficial-
ly, but there are so many other details in our descriptions of diffraction that the
Heisenberg’s uncertainty relationship cannot give us.
Also, in other parts of this book we have had relationships that are reminiscent
of Heisenberg’s uncertainty relationship. In all these situations, there are funda-
mental wave features that lie behind.
It is therefore no wonder that many today perceive Heisenberg’s uncertainty rela-
tionship as a natural consequence of the wave nature of light and matter and that
it has only a secondary link with the uncertainty of measurement.

5. Diffraction has played an important role in our perception of light. At the begin-
ning of the nineteenth century, Poisson showed that if light had a wave nature
and behaved according to Huygens’s principle, we would expect to see a bright
spot in the shadow image of an opaque sphere (or circular disc). Arago conducted
the experiment and found that there was indeed a bright spot in the middle (see
Fig. 13.29). The phenomenon now goes under the name of Arago’s spot (or the
Poisson–Arago spot).
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Fig. 13.30 Photograph from a military grave field in San Diego, where the graves are placed very
regularly. In some directions, we see many gravestones in line. If these tombs emit elemental waves,
we would get interference patterns similar to those we have discussed for gratings in this chapter.
We would get a series of interference fringe pattern, but the centre of each set would correspond to
the different directions to the lines we see in the image. The distance between the lines in each set
would depend on the distance between the source points along the direction we consider

13.10.4 Diffraction in Two and Three Dimensions

In our treatment of interference and diffraction, we have so far only considered the
summation of waves from elementary wave sources located along a straight line. It
is a normal situation for interference and diffraction of light.

For other types of waves, we can find diffracting centres that form two- or three-
dimensional patterns. Most well known is perhaps X-ray diffraction. When X-rays
are transmitted to a crystal of some substance, single atoms will spread the X-rays so
that the elementary waves come from each individual atom in the area of the X-ray.

The atoms in a crystal are in a regular pattern. If we pick out atoms that are on
a line in a plane, the elementary waves from these atoms will provide interference
lines or interference points that can be calculated with similar equations as those we
have been through in this chapter.

Both physics and chemistry provide so-called X-ray diffraction information that
can be used to determine the structure of the crystals under investigation. It is this
type of research that lies behind almost all the available detailed information about
positions of the atoms in relation to each other in different substances.

Figure13.30 illustrates that points that are regular to each other form lines that
can cause interference/diffraction in many different directions.
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Fig. 13.31 Intensity distribution from a slit and a stick is complementary (really only when we
operate at amplitude level and not at intensity level as here). In this case, “Nothing” means light
with even intensity everywhere within the given θ interval

13.11 Babinet’s Principle

The superposition principle can be used in a very special way where we utilize
symmetries.

We have learned the form of the intensity distribution of light diffracted by a
narrow slit. Howwould the interference pattern look at the complementary structure,
which is a stick of exactly the same size as the slit? Babinet’s principle tells us
something about this:

Suppose that a wave is sent to a body A that leads to diffraction (e.g. a long
slit a light-tight screen). We send the same wave to a body A′ complementary
to the first one (e.g. a long stick with the same position and width as the slit on
the screen of A), and we see a different diffraction. If we overlap the diffracted
wave in the first case with the diffracted wave in the other, we get a waveform
that is identical to the one we would have had if neither A nor A′ existed.

Figure13.31 shows the principle. The figure is a simplification, since we specify
intensities, but summation of waves occurs always at amplitude level.

If we send a relatively narrow laser beam towards a gap and then to a thread of the
same thickness as the slit, we can use the principle of Babinet to find out how the two
diffraction patterns relate to each other. However, the relationships are quite different
from the very wide light-beam/plane-wave situation we show in Fig. 13.31. Outside
the narrow laser beam, the intensity is virtually zero when the gap or thread is not
found in the light path. But with a slit or thread inside the narrow laser beam, we get
diffraction patterns also in the area where there would otherwise be no light. This
can be understood by the fact that the superposition principle can only be applied at
amplitude level, not at intensity level. A wave E = E cos(kz − ωt) will have the
very same nonzero intensity as a wave E = −E cos(kz − ωt), but the sum of these
two waves is zero.
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Fig. 13.32 Diffraction of a
laser beam from a human
hair

a

Babinet’s principle is handy because we can use the theory of diffraction from
a slit also by analysing the diffraction image from a thread. Figure13.32 shows the
diffraction image from a single hair placed in the beam from a laser pen. With very
simple means, by measuring the distance between the minimum points between
the light spots we can determine the thickness of the hair, provided we know the
wavelength of the laser. A task at the end of this chapter provides a concrete example
of how a boiled measurement may fall.

13.12 Matlab Code for Diverse Cases of Diffraction

Here is a Matlab program that can be used to see examples of how diffraction is
affected by different initial light intensity patterns. The program is especially inter-
esting for calculating diffraction when it is not a very long distance between, for
example, a single (or double) slit and the screen where we capture the diffraction
image. Then, there is a wealth of details that cannot be calculated analytically, but
that matches what we can observe in experiments.

For all excitations, we assume that we have coherent light with wavefront in the
excitation plane and that we have a form of cylindrical symmetry for each strip in
the excitation plane.

The program must be used with a code (a number) as a parameter, such as:

diffraction(4)

if the intensity distribution on a screen after a double slit is to be calculated.Widths of
gap, distance between slots and screens, etc.,must bemanually entered in the program
(in function parameters). A bit of trial and error is required for the calculation area
to cover the entire diffraction image we are interested in (but also not much more).
Good luck!

Main Program

The code is available at the “supplementary material” Web page for this book at
http://www.physics.uio.no/pow.

http://www.physics.uio.no/pow
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function diffraction(code)

% This program calculates and plots intensity patterns for a

% variety of diffraction and/or interpherence phenomena with

% cylindrical symmetry.

% Functionalities: code = 1: One slit, 2: Gaussian intensity

% profile, 3: Straight edge, 4: Double slit, 5: Read excitation

% data from file (amplitude + phase)

% Program is written by AIV. Version 15. October 2017

% Establishes essential parameters for the calculations.

% Results depend critically on these. See the code for this

% function.

[lambda,a,b,nWavel,N,twopi,Nhalf] = parameters;

% Allocates arrays for the calculations:

[x,x2,x0,x1,sc,r] = allocateArrays(nWavel,N);

% Generate or read in excitation data:

[x0] = generateExcitation(code,lambda,a,N,Nhalf,twopi,x0);

% Calculates sines, cosines, distances and relative phase

% differences for vectors between the plane of excitation and

% the screen for the final pattern:

[sc,r] = generateRelPositionData(N,b,lambda,twopi);

% Sum all contributions to every point on the screen (main

% loop):

[x1] = summation(N,x0,r);

% Plots intensities for diffraction pattern along with a

% marking of the excitation

plotDiffraction(x,x0,x1);

% Calculates and write out linewidths in case the excitation

% was a single slit or Gaussian profile, and write to

% screen the actual linewidth of the intensity profile.

if (code==1) || (code==2)

linewidth(N,lambda,x1);

end;

% Plots expected theoretical intensity profile for a single

% slit:

if code==1
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plotTheoreticalSingleSlit(N,a,b,twopi,x,x1);

end;

% Option: Save data to a file (as a string of floating point

% numbers):

%writeToFile(x1);

% Removes all plots when we leave the program (cleans up):

input(’Close all figures’);

close all

Choose Parameters for the Calculations

function [lambda,a,b,nWavel,N,twopi,Nhalf] = parameters

% Choose parameters for the calculation.

% Written by AIV. Version 15. October 2017

% Choose resolution, distance to screen, and the width of the

% area on screen the calculation should include. Some constants

% are defined. Results depend critically on the parameters

% set by this function.

% Whether the result will be mainly a Fresnel- og Franuhofer

% diffraction depend on the b parameter. nWavel must be

% increased if b is large to include the full diffraction

% pattern within the calculated area on screen.

% The parameters given in this particular code is suitable

% for a double slit in the Fresnel regime (quite complicated

% pattern).

lambda = 4; % Four points per wavelength resolution in

% excitation points

a = 20; % Width of single slit, given in

% # wavelengths

b = 4000 * lambda; % Distance to screen is b wavelengths

nWavel = 1024*3/2; % # wavelengths along the screen (an

% integer!)

N = nWavel*lambda; % Width of excitation area as well as

% screen in # wavelengths

twopi = 2.0*pi; % Somewhat innecessary, but speeds up

% a bit...

Nhalf = N/2;

return;
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Allocate Arrays We Need

function [x,x2,x0,x1,sc,r] = allocateArrays(nWavel,N);

% Allocates space for various arrays

% Function is written by AIV. Version 15. October 2017

x = linspace(-nWavel/2, nWavel/2, N); % A relative position

% array for plot

x2 = linspace(-N,N,2*N+1); % Simil, but for plot/test of

% hjelp functions

x0 = zeros(N,2); % Excitation data, amplitudes

% and phases

x1 = zeros(N,2); % Amplitudes at screen, amplitudes

% and phases

sc = zeros(2*N + 1,2); % Store sin/cos for component

% calculations

r = zeros(2*N + 1,2); % Distance-table: reduction

% factor and phase-correction

% based on path length

return;

Generates the Various “Excitations” (Single or Double Slit, etc.)

function [x0] = generateExcitation(code,lambda,a,N,Nhalf, ...

twopi,x0)

% Generate or read in excitation data. NOTE: There are

% specific requirements for the various excitations that

% can only be changed in the code below.

% Function is written by AIV. Version 15. October 2017

switch code

case (1)

disp(’Single slit’)

m = a * lambda / 2; % Slit is a wavelengths wide

x0(Nhalf-m:Nhalf+m-1,1) = 1.0;

%x0(:,2)= [1:N].*0.05; % Phases are modifies so that

% it mimics a ray is not coming

% perpendicular towards the slit.

case 2

disp(’Gaussian excitation’)

% Intensity

width = 200*lambda/2.0;

dummy = ([1:N]-Nhalf)./width;

dummy = (dummy.*dummy);
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x0(:,1) = exp(-(dummy));

% Phase

R = 1000; % Radius of curvature in # wavelengths

y = [-Nhalf:Nhalf-1];

R2 = R*R*lambda*lambda*1.0;

dist = sqrt((y.*y) + R2);

fs = mod(dist,lambda);

x0(:,2) = fs.*(twopi/lambda);

%figure; % Plot if wanted

%plot(x,x0(:,2),’-r’);

case 3

disp(’Straight edge’)

% Excitation is a straight edge, illuminated part: 3/4

x0(N/4:N) = 1.0;

case 4

disp(’Double slit’)

% For the double slit, use sufficient large b in

% ’parameters’ in order to get the well known result

x0 = zeros(N,2);

a = 20*4;

d = 200*4;

kx = d/2 + a/2;

ki = d/2 - a/2;

x0(Nhalf-kx+1:Nhalf-kx+a,1) = 1.0;

x0(Nhalf+ki:Nhalf+ki+a-1,1) = 1.0;

case 5

disp(’Reads excitation data from file’)

% (often earlier calculated results.)

filename = input(’Give name on file with excitation ...

data: ’, ’s’);

fid = fopen(filename,’r’);

x0(:,1) = fread(fid,N,’double’); % Need to know #

% elements

x0(:,2) = -fread(fid,N,’double’);

status = fclose(fid);

% figure; % Testplot to check if data was read properly

% plot(x,xx0(:,1),’-g’);

% figure;

% plot(x,xx0(:,2),’-r’);

% aa= xx0(Nhalf);

% aa % Test print for one single chosen point
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otherwise

disp(’Use code 1-5, please.’)

end;

return;

Calculate Relative Position Data (from Excitation to Screen)

function [sc,r] = generateRelPositionData(N,b,lambda,twopi);

% Establish sine and cosine values for vectors from one

% position in x0 to all positions in x1, and find distances

% and relative phase differences between the points.

% Function is written by AIV. Version 15. October 2017

y = [-N:N];

b2 = b*b*1.0;

y2p = (y.*y) + b2;

rnn = sqrt(y2p);

sc(:,1) = b./rnn;

sc(:,2) = y./rnn;

r(:,1) = 1./sqrt(rnn);

fs = mod(rnn,lambda);

r(:,2) = fs.*(twopi/lambda);

% mx = max(r(:,1)); % For testing if field reduction vs

% distance is correct

% r(:,1) = mx;

% plot(x2,r(:,2),’-k’); % Test plot of these variables

% figure;

return;

Summation of all Contributions

{\footnotesize

\begin{verbatim}

function [x1] = summation(N,x0,r)

% Runs through x1 (screen) from start to end and sum all

% contributions from x0 (the excitation line) with proper

% amplitude and phase.

% Function is written by AIV. Version 15. October 2017

for n = 1:N

relPos1 = N+2-n;

relPos2 = relPos1+N-1;

amplitude = x0(:,1).*r(relPos1:relPos2,1);

fase = x0(:,2) - r(relPos1:relPos2,2);
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fasor(:,1) = amplitude .* cos(fase);

fasor(:,2) = amplitude .* sin(fase);

fasorx = sum(fasor(:,1));

fasory = sum(fasor(:,2));

x1(n,1) = sqrt(fasorx*fasorx + fasory*fasory);

x1(n,2) = atan2(fasory, fasorx);

end;

return;

Plot the Diffraction Pattern

function plotDiffraction(x,x0,x1);

% Plots intensities for diffraction picture along with a

% marking of the excitation. Some extra possibilities are

% given, for testing or special purposes.

% Function is written by AIV. Version 15. October 2017

%plot(x,x1(:,1),’-r’); % Plots amplitudes (red) (can

% often be skipped)

figure;

x12 = x1(:,1).*x1(:,1); % Calculation of intensities

hold on;

scaling = (max(x12)/8.0);

plot(x,x0(:,1).*scaling,’-r’); % Plot initial excitaion

plot(x,x12(:,1),’-b’); % Plot relative intensities (blue)

xlabel(’Position on screen (given as # wavelengths)’);

ylabel(’Relative intensities in the diffraction pattern’);

% figure;

% plot(x,x1(:,2),’-k’); % Plot phases (black) (most

% often skipped)

return;

Calculates Linewidths (FWHM) for Single-Slit and Gaussian Intensity Profile

function linewidth(N,lambda,x1);

% Calculates linewidths (FWHM) for single slit and Gaussian

% intensity profile.

% Function is written by AIV. Version 15. October 2017

x12 = x1(:,1).*x1(:,1); % Calculation of intensities

mx2 = max(x12(:,1))/2.0;

lower = 1;
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upper = 1;

for k = 1:N-1

if ((x12(k,1)<=mx2) && (x12(k+1,1)>=mx2))

lower = k;

end;

if ((x12(k,1)>=mx2) && (x12(k+1,1)<=mx2))

upper = k;

end;

end;

disp(’FWHM: ’)

(upper-lower)*1.0/lambda

return;

Plot Theoretical Single-Slit Pattern

function plotTheoreticalSingleSlit(N,a,b,twopi,x,x1);

% Plots the theoretical intenstity pattern for our single slit.

% Function is written by AIV. Version 15. October 2017

%figure;

theta = atan2(([1:N]-(N/2)),b);

betah = (twopi*a/2).*sin(theta);

sinbetah = sin(betah);

theoretical = (sinbetah./betah).*(sinbetah./betah);

x12 = x1(:,1).*x1(:,1); % Calculate intensities

scaling = max(x12);

plot(x,theoretical.*scaling,’-g’);

return;

Write Data to File (for Other Purposes Later)

function writeToFile(x1);

% Write data to file (as a string of floating point numbers)

% Function is written by AIV. Version 15. October 2017

filename = input(’Give the name of new file for storing ...

results: ’, ’s’);

fid = fopen(filename,’w’);

fwrite(fid,x1(:,1),’double’);

fwrite(fid,x1(:,2),’double’);

status = fclose(fid);

return;
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13.13 Learning Objectives

After working through this chapter, you should be able to:

• Explain the principle of Huygens–Fresnel.
• Derive the condition of constructive interference from a double slit (when
the slits are assumed to be very narrow).

• Describe the interference pattern from a double slit, and indicate why the
attempt by Thomas Young had a great historical significance.

• Give the main idea of a regular anti-reflection treatment of optics.
• Specify how the interference image changes qualitatively when using more
than two parallel identical slits.

• Explain the qualitative intensity distribution in a diffraction pattern for a
narrow single slit when we consider the pattern far from the slit.

• Calculate using numerical methods interference pattern also for Fresnel
diffraction.

• Specify how the diffraction pattern looks like for light passing through a
circular hole.

• Explain how diffraction sets limits on how close two stars can be on heaven
before we can no longer distinguish them when we view them through a
telescope.

• Calculate the maximum achievable angular resolution for lenses in many
different contexts (eye, camera objective, telescope, etc.).

• Know Babinet’s principle.
• Know the so-called Arago spot (also called Poisson’s spot) and why this
phenomenon has a historical significance.

13.14 Exercises

Suggested concepts for student active learning activities: Superposition,Huygens–
Fresnel principle, wavefront, coherent, double slit, single slit, optical grating, grating
constant, interference pattern, half-width of peaks, interference filter, thin film, d-
iffraction, border region, Huygens–Fresnel diffraction, Fraunhofer diffraction, Airy
disc, beam optics, beam waist, Rayleigh’s resolution criterion, Arago’s spot, X-ray
diffraction, Babinet’s principle, amplitude level summation.

Comprehension/discussion questions

1. Is it possible to conduct Young’s double-slit experiment with sound? Discuss a
possible experimental set-up and whether there is a difference between longitu-
dinal and transverse waves in this context.
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2. We use the superposition principle “on amplitude level” instead of “on intensity
level”. Explain why.

3. We have a telescope and want to check if an object we observe is a double star
or not. In other words, we need slightly greater resolution, and we assume that
the telescope has so-called diffraction-limited optics. What do we mean by this
expression? Can we increase the resolution by “shuttering down” so we only use
a central part of the lens? Or can we increase the resolution by inserting a filter
that transmits light either in the blue area or in the red area?

4. In a diffraction experiment with a single slit and light with wavelength λ, there
is no intensity minimum. What can we say about the width of the slit?

5. A regular rainbow we get when the drops are above a certain size. For very small
drops, the rainbow becomes almost white. How small do you think the drops
must be for it to happen?

6. Good speakers (in stereo systems) are often composed of at least one bass speaker
(woofer, low frequencies) and a treble speaker (tweeter, high frequencies). The
former often has a relatively large diameter, while the latter is usually only a
few inches in diameter. Try to give one explanation of this choice based on what
you know about diffraction. Also, come with an explanation that is based on a
physical mechanism different from diffraction.

7. Why is a diffraction grating (with many slits) better than a double slit if it is to
be used in a spectrometer by means of which we can measure wavelengths?

8. Diffraction from a single slit also affects the interference pattern from a grating.
Explain the relation.

9. Try to describe the essence of Fig. 13.27. Pay particular attention to the similar-
ities and inequalities between the left and right parts of the figure.

10. Will the interference intensity pattern depend on the diameter of the laser beam
when you send a laser beam through an diffraction grating? Explain.

Problems

11. Two coherent sources (always the same phase) for radiowaves are located 5.00m
apart, and the waves have a wavelength of 3.00m. Find points on a line passing
through the two sources where we have constructive and destructive interference
(if such points exist).

12. Two slits with a mutual distance of 0.450mm are placed 7.5m from a screen and
illuminated with coherent light with wavelength 500nm. What distance is there
between the second and third dark lines in the interference strips on the screen?

13. An anti-reflection coating on a lens has the refractive index n = 1.42 (and that
for the glass is 1.52). What is the minimum thickness the coating must have for
red light with a wavelength of 650nm to have minimal reflection?

14. In a Young double-slit experiment, place a piece of glass with refractive index n
and thickness L in front of one of the slots. Describe qualitatively what happens
to the interference pattern.

15. We use a 10cm diameter biconvex lens with focal length 50cm for focusing the
sunlight as a “burning glass”. The light does not accumulate at one point, but in
a disc with a diameter of d. There are two contributions to the size of the disc,
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Fig. 13.33 Angular distances between the four stars we perceive with the naked eye as one star,
namely Epsilon Lyrae

namely that the sun is imaged by the lens and that the lens causes diffraction.
Determine the two contributors to see which one is more important in this case.

16. The “star” Epsilon Lyrae is a double star in the constellation of Lyra, where
each of the components is again a double star. The angular distance between the
stars is as shown in Fig. 13.33. What demands must we impose on a telescope
so that it enables us to distinguish the first pair (observing “two stars”). What
requirements must be met to observe all four stars on an evening of calm and
clear air?

17. A digital SLR camera has a CMOS chip that is 15.8 × 23.6mm in size and has
2592 × 3872pixels. A 35mm focal length lens is used with f-number 3.3/22
(min/max). What size is the largest and smallest Airy disc from the lens? Enter
the answer in both absolute measure and relative to pixel size.

18. We consider the diffraction pattern from a human hair held in the beam of a green
laser pen of wavelength 532nm. It is 16.2cm between two minimum points with
11 light areas between when the laser pen (hair) is 185cm from the screen where
the measurements were made. How big diameter does the hair have? Is the
value you arrive at reasonable based on available information about diameters
for human hair?

19. A diffraction grating has its third-order light band at the angle 78.4◦ for light with
wavelength 681nm. Determine how many lines the grating has per centimetre.
Also, determine the angles of the first- and second-order bands. Is there a fourth
order of bands?

20. We light with a standard He–Ne laser wavelength 632.8nm perpendicular to a
CD. The “grooves” in a CD are 1.60µm apart. What are the angles of reflections
from the CD?

21. The Hubble Space Telescope has an aperture (opening) of 2.4m and is used
for visible light (400–700nm). The Arecibo Radio Telescope in Puerto Rico is
305m in diameter (built in a valley) and is used for radio waves of wavelength
75cm.
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(a) What is the smallest crater size on the moon that can be separated from a
neighbouring crater with the two telescopes? (Distance to the moon is about ten
times the perimeter of the earth, more specifically 3.84 × 108m.)
(b) Suppose we want to turn Hubble into a spy satellite that goes into a new orbit
around the earth. If we were able to read the number plates for cars with the
telescope, what height would the new path to Hubble be?

22. Observe themoonwith only the eyes. Try to notice the smallest structure you can
distinguish. Find a picture of the moon, and find the structure there. Determine
the distance across the structure, and compare it with what you would expect
from Rayleigh’s resolution criterion.

23. Take a photograph of a distant bright spot with your camera. Analyse the image
to see if you can detect the Airy disc. This would require blowing up the image
you took until you can see single pixels in the image. Attempt to calculate how
large the Airy disc is expected to be.

24. Start with Fig. 13.30. Assume that the distance between the gravestones sideways
is a and that they are a distance b behind each other. Determine the angle between
each row of gravestones that are behind each other as we see in the photograph.
Also, determine the distance between adjacent gravestones along the lineswe see
(the distance that will match the slit separation distance in a diffraction grating).

25. From a hotel window, interference-like patterns were observed when small light
spots were viewed through curtains (made of netting and partially see-through,
see Fig. 13.34). Examples of the light phenomenon we observed at night through
the curtains are shown in Fig. 13.35). The image does not change if we move
closer to or farther away from the curtain while viewing the light coming from
outside.

2.0 mm

Fig. 13.34 Picture of a light curtain which it was possible to look through. Details show how the
fibres in the curtain were in relation to each other. The bar in the middle part is originally 2.0mm
long
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2.0o

Fig. 13.35 Picture of distant light points observed through the curtain in the previous figure. The
bar indicates an angle of 2.0◦

(a) Describe which details in the observed light pattern which indicate that
diffraction/interference is responsible for what we see.
(b) Carry out calculations that can support such a conclusion (there is probably
an estimated 20% uncertainty in the measurements indicated in the figures).



Chapter 14
Wavelet Transform

Abstract The aim of this chapter is to present a time-resolved frequency analysis of
a signal. This is more demanding than onemight be inclined to think, due to the time-
bandwidth product (a classical analogue of Heisenberg’s uncertainty relationship).
We have chosen a so-called continuous wavelet transform with Morlet wavelets,
since it offers an extremely useful rationale for optimization. Morlet wavelets are
presented and a brute forcemethod of analysis is outlined, followed by amore elegant
transform utilizing FFT repeatedly in a kind of frequency selection procedure. A
computer program in Matlab or Python is given. The user must specify frequency
range as well as frequency resolution (through a K parameter). We discuss in detail
how to optimize frequency resolution vs time resolution in the analysis.

14.1 Time-Resolved Frequency Analysis

Fourier transformation, as described in Chap. 5, is well suited for “stationary” signals
(whose character does not change appreciably over time). For signals that change
over time, the temporal information is distributed over all frequency components,
and it is a hopeless task to determine how the frequency spectrum varies over time.
Therefore, the FFT of a signal that varies widely from one time interval to another
within the same data string is of very little value indeed.

There are several methods to explore how the frequency spectrum changes over
time. In frequency analysers and in analyses of long-lasting signals (very large data
sets), a so-called short-time Fourier transformation or piecewise transformation is
used (see Fig. 14.1). “Short-time FT” or “short-term FT” are shortened to STFT, and
mathematically STFT can be stated as follows:

STFT{x(t)}(τ, ω) ≡ X (τ, ω) =
∫ ∞

−∞
x(t)w(t − τ)e−iωtd t .

© Springer Nature Switzerland AG 2018
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Fig. 14.1 Toget temporal information by analysing a long string of time series data,we can break up
the total observation into several intervals and perform Fourier transformation interval by interval.
The intervals can be chosen so that they do not overlap each other (left part) or overlap each other
(right part)

Here, w(t − τ) is a so-called window function that has a bell-like shape. In practice,
the so-called Hanning or Gaussian forms are used, which have a significant value
only for a limited period of time around the reference time τ and fall to zero outside
the limited time period.

In practice, a fast Fourier transform (FFT) is used for analysing each timewindow.
By choosing a narrowwindow functionw, we get a high time resolution and a poorer
time resolution with a wide window function.

In the analysis, we let τ slide through the entire data string to be analysed. We
can often choose whether the next window function should overlap the previous one
or not, and if so, how large the overlap should be. The result is often shown in a
diagram where the intensity of Fourier components in each time window is plotted
as a function of time. Intensity is usually indicated by colour coding. The result is
usually called a “spectrogram” (see left part of Fig. 14.2).

The advantage of this method is that, if we wish, we can analyse continuous
signals for weeks on end. There is no limitation on the length of the data string,
since, in practice, we only pick out a limited segment for each round of analysis.

The downside is that we get a frequency resolution that is inversely proportional to
the time analysed in each window (i.e. how long the time window lasts). This means
that we get the exact same frequency resolution (and thus also time resolution)
whether we analyse low-frequency or high-frequency signals. We must select the
width of the window function for some typical frequency in the signal. However, if
there are widely different frequencies at the same time in the signal, it is impossible
to find an optimal window width suitable for all circumstances.

This is an important detail for STFT and for all time-resolved frequency analysers.
Due to the time-bandwidth product with which we became acquainted when we
studied Fourier transformation, it is impossible to get very precise information about
time and frequency at the same time. If we use a window w that extends over a
long period of time, we can get fairly accurate frequency information. However, we
cannot get precise information about changes over time. It is the classic analogy to
Heisenberg’s uncertainty relationship that surfaces again.
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Fig. 14.2 Spectrograms of the sound of a cuckoo bird. To the left is a result of Matlab’s built-in
STFT function, based on FFT of 300 points at a time, and a so-called Hamming window with 400
points. The overlap from one analysis to the next is 200 points. The vertical white stripe indicates
that this spectrum is built up line to line with vertical lines. To the right, a spectrogram is calculated
using wavelet transformation with Morlet wavelets, with the computer program given later in this
chapter. The horizontal white stripe indicates that such a chart is constructed line by line using
horizontal lines. See text for other details

By a “sliding filter” method, as in STFT, where the window changes a data point
at a time before new analysis, we avoid jumps in the results arising from randomness
in how the intervals are chosen. The problem is, however, that we must carry out
some apparently unnecessary calculations. This can be avoided by making a jump in
the position of the window function from one analysis to another, but the appropriate
jump length will depend on the frequency being analysed. With the STFT function
in Matlab, we can choose both the width and the degree of overlap for the window
function w, but it is difficult, on account of several reasons, to optimize the choice
using STFT.

In this chapter,wewill consider anothermethod that canprovide time-resolved fre-
quency information, the so-called continuous wavelet analysis withMorlet wavelets.
We end up with a chart showing how the frequency picture changes over time, just
as we often do with STFT, but there are major differences in how the analysis is
performed mathematically [see right part of Fig. 14.2)].

In STFT, we use FFT to analyse each segment of the time signal (picked out using
the w window) and then switch to the next segment of the time signal. We therefore
build up the “Fourier coefficient versus frequency and time” diagram (“STFT spec-
trogram”) stripe by stripe, using vertical stripes. We get all frequencies from zero to
half the sampling frequency, whether or not we are interested in the entire range.

Inwavelet analysis, we get a “wavelet spectrogram”, whichmay look quite similar
to an STFT spectrogram in certain contexts. In wavelet analysis, we also build the
spectrogram line by line, but now with horizontal lines (see white lines in Fig. 14.2).
Therefore, we must choose the entire time interval we want to analyse before the
analysis starts, which in some contexts is a disadvantage. The advantage is, however,
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that we can choose which frequency range will be studied (see Fig. 14.2). We can
further select a logarithmic frequency axis if we wish to fully exploit the fact that
the relative frequency resolution of this method is the same for all frequencies.

“Continuous wavelet analysis” resembles a sliding, short-time Fourier trans-
form (STFT), but the wavelet analysis with Morlet wavelets gives the same
relative frequency resolution for all frequencies. The secret is to use different
lengths of time, depending on the frequency to be analysed.

It may be mentioned that there are also many variants of wavelet transformation wherein we
make as few transformations as possible with only a fairly limited loss of information. Such a trans-
formation is much more efficient than the continuous variant and is used in technological contexts
where speed is of paramount importance. The disadvantage of such a wavelet transformation is that
the transformed signal is far more difficult to understand than the usual Fourier spectrum. This is
the main reason why we do not go into that method here.

Wavelet analysis is a wide-ranging field of mathematics/informatics, and courses
are offered on the subject at many universities. We will not go into details concerning
the strictly mathematical or computational aspects of the subject. The purpose of
including wavelets in this book is to point out that Fourier transformation is often
unsuitable for nonstationary signals and to draw attention at the same time to a
method of analysis that is preferable in such circumstances. In addition, work with
wavelets can contribute to a deeper understanding of time-limited phenomena in
general and the corresponding frequencies. Among other things, there are close
analogues between Heisenberg’s uncertainty relationship and wavelet analysis.

Some of you will probably use wavelet analysis in the master thesis or in a PhD
project (and later employment). For this reason, we place emphasis on showing when
wavelet analysis is useful andwhen themethod does not havemuch to offer.Wavelets
are used for analysing solar spot activity (and changes in the spot cycle over time), El
Niño Southern Oscillations, glacial cycles, roughness, grain size analysers, analysis
of, e.g. cancer cells vs. normal cells and much more.

Technologically, there is an extensive use ofwavelets in, amongother applications,
JPEG compression of image files and in MP3 compression of sound.

14.2 Historical Glimpse

Let us recapitulate the story of Fourier transformation: the French mathematician
Joseph Fourier (1768–1830) “discovered” Fourier transformation almost 200 years
ago. (Fourier also worked with heat flow, and was probably the first to discover the
greenhouse effect.)

Fourier transformation is largely used in analytical mathematics. In addition,
the transformation gained enormous currency in the data world after J. W. Cooley
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and J. W. Tukey discovered in 1965 the so-called fast Fourier transform (FFT) that
makes it possible to perform Fourier transformation much faster than before. In
FFT, symmetries in the sine and cosine functions are used to reduce the number of
multiplications in the calculation, but to get the most effective transformation, the
number of data points must be an integer power of 2, i.e. N = 2n .

It has been said that the Cooley–Tukey fast Fourier transform was actually dis-
covered by Carl Friedrich Gauss around 1805, but forgotten and partially reinvented
several times before 1965. The success of Cooley and Tukey’s rediscovery is due to
the emergence of computers at about the same time.

Wavelet analysis is of much later origin. Admittedly, wavelets were introduced
already around 1909, but the method was first taken seriously around 1980. There is
far greater scope for special variants of wavelet analysis than in Fourier transforma-
tion. It is both an advantage and a disadvantage. We can by far tailor-make a wavelet
analysis to suit the data we wish to analyse. The downside is that the wide variety
of possibilities causes us to use our head a little more in wavelet analysis than in
Fourier transformation, both when the transformation is to be carried out and when
we interpret the results. But the results are often the more interesting!

14.3 Brief Remark on Mathematical Underpinnings

14.3.1 Refresher on Fourier Transformation

We have gone through Fourier transformation in Chap. 5, but let us recall the
mathematical expressions here too.

Let x(t) be an integrable function of time. We can then calculate a new
function X (ω), where ω denotes the frequency, in the following manner:

X (ω) = 1

2π

∫ ∞

−∞
x(t)e−iωtd t . (14.1)

The interesting feature about this function is that we can make a corre-
sponding inverse transformation:

x(t) =
∫ ∞

−∞
X (ω)eiωtdω (14.2)

and recover the original function. Note the change in the sign of the exponent
in the exponential function.

We see from Eqs. (14.1) and (14.2) that when x(t) is real, X (ω) will be com-
plex. This is necessary in order that X (ω) should be able to indicate both how large
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the oscillations are at different frequencies, and the mutual phase of the different
frequency components. (A symmetry in X ensures that x , given by the inverse trans-
formation, will be real, as it was originally.)

It should also be mentioned that x and X (called conjugate variables) generally
do not have to be time and frequency. In Chap. 8, we also used FT to analyse a spatial
description of a wave. The result was a description in “spatial frequencies” which
we may equally well have called “wavenumbers”. Thus, position and wavenumbers
are also conjugate variables. Even more conjugates variables are in use in physics.

The above expressions are used for analytical calculations. When we use a com-
puter, we do not fully know how x(t) varies in time. We only know xn , the value of x
at discrete times tn , where n is an index that varies from1 to N , where N is the number
of measurements of x that have been made. We assume that the measurement times
are equally spaced. The total time over which x is measured is then T = Nδt where
δt is the interval between two successive times of measurement (details discussed in
a previous chapter).

When Fourier transformation is performed on discrete data, a discrete trans-
formation is used. This can be stated as follows:

Xk = 1

N

N∑
n=1

xne
−i2π fk tn = 1

N

N∑
n=1

xn exp
[ − i2π fk tn

]
(14.3)

where we have used the two common ways to write an exponential func-
tion, and k = 0, 1, 2, . . . , N − 1. Further, fk = 0, fs/N , 2 fS/N , . . . , fs(N −
1)/N where fs is the sampling frequency. Finally, tn = 0, T/N , 2T/N , . . . ,

T (N − 1)/N with N/T = fs .

It may not be easy to grasp the expression, but what we really do to determine
the Fourier transform at a frequency fk is to multiply (term by term) the digitized
function xn with a cosine function of frequency fk and sum up all the terms that
appear. (For the imaginary part of the Fourier transform, we multiply with a sine
function of frequency fk .)

The corresponding “inverse” transformation is given by:

xn =
N∑

k=1

Xke
i2π fk tn (14.4)

for n = 1, 2, 3, . . . , N .
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14.3.2 Formalism of Wavelet Transformation

Wavelet transformation can be stated in an apparently similar manner to a Fourier
transformation:

Let x(t) be an integrable function of time. We can then calculate a new func-
tion γK (ωa, t) which provides information about frequency and time simulta-
neously.

ωa can be termed “analysis angular frequency”. K is a “sharpness” param-
eter (also known as “wavenumber”) related to whether we want high precision
in time (K small) or high precision in frequency (K large).

Individual values for the new wavelet transformed function can be found
in the following way:

γK (ωa, t) =
∫ ∞

−∞
x(t + τ)Ψ ∗

ωa ,K (τ )d τ . (14.5)

Here,Ψωa ,K (τ ) is the wavelet itself, and the asterisk denotes complex conjuga-
tion. For the Morlet wavelet used here, Ψ ∗

ωa ,K
(τ ) = Ψωa ,K (−τ) (see below).

The special thing about wavelet analysis is that we can choose from almost
infinitely many different wavelets depending on what we want to get from the anal-
ysis. In our context, we only use Morlet wavelets, whose real part can be expressed
as an cosine function (plus a small amount of constant correction) multiplied by a
Gaussian envelope. The imaginary part is a sine function multiplied with the same
Gaussian envelope as before (see Fig. 14.3).

Fig. 14.3 Example of a
Morlet wavelet for K = 6.
Both the real part (the cosine
term) and the imaginary part
(sine term) are displayed
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A Morlet wavelet can be described as:

Ψωa ,K (τ ) = C{exp(−iωaτ) − exp(−K 2)} exp[ − ω2
aτ

2/(2K )2
]

(14.6)

where C is a “normalization constant”. When we describe Ψωa ,K (τ ) numeri-
cally, it is advantageous to use the following expression for C :

C = 0.798 ωa

fs K
(14.7)

where fs is the sampling frequency.

Some remarks:
There is still no uniform description of wavelets. Different sources indicate formalism in different
ways; including expressions such as “scaling parameter”, “mother” and “daughter wavelets” are key
concepts.We have chosen to use a presentation that is close to an article byNajmi and Sadowsky (see
the bibliography) because its similarity to other formalism in this book. The “constant” C , I found
through trial and error, after imposing the criterion that a wavelet transform of a pure sinusoidal
signal should be close to the amplitude of the sinusoid regardless of the parameters ωa , fs and K
(with a deviation usually not exceeding 1%). The actual expression for a Morlet wavelet we will not
be used in practice, except as an illustrative example. For efficient wavelet transformation, we will
be using the Fourier transform of the wavelet directly. Details are given in the text which follows.

In the wavelet analysis, we check if the signal we study contains different fre-
quencies at different times. The angular frequency used for the analysis is ωa . The τ

parameter specifies the time at which a specific wavelet has a maximum and corre-
sponds to the centre for the small time interval we investigate.

The parameter K , a real constant, can be called the “width” of the wavelet. Some
call it “wavenumber” because it specifies the approximate number of waves under
the Gaussian envelope for the wavelet, given by the last factor on the right-hand side
of Eq. (14.6). It is recommended that K is 6.0 or larger.

Because of the second factor on the right-hand side of Eq. (14.6), we see that the
wavelet Ψ is complex.

Figure 14.3 shows an example of a Morlet wavelet. We see that it bears the
correct name, because “wavelet” means a “small wave”. Be sure that you thoroughly
understand how the wavelet is formed, namely, as the product of a complex harmonic
function and a Gaussian envelope centred around time τ .

Note that the expression in Eq. (14.6) is a general description. When it is imple-
mented in a computer program for analysing a specific signal, we must know the
sampling frequency used. This enters the normalization constant C . If the specific
signal is described in N equidistant points in time, then the total time for sampling
equals T = N/ fs . We then choose to describe any Morlet wavelet used in the analy-
sis by an array with the same sampling frequency and the same length as the specific
signal to be analysed.
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If we compare Eq. (14.1) with Eq. (14.5), we see that the expressions look similar
to each other. We integrate the product of a function x and a wave. Both are thus
linked to an “inner product” within mathematics, but as already said, we would not
go into mathematical details here.

However, there are more differences than we might think at first. A significant
difference is that the wavelet transformation leads to a three-dimensional description
(value of γ as a function of both ωa and t), while a description based on Fourier
transformation is only two dimensional (value of X as function of frequency).

It is possible to make an “inverse” wavelet transformation similarly to an inverse
Fourier transform. This is essential when wavelets are used in JPEG image compres-
sion and MP3 music file compression. However, we do not include details regarding
this formalism in our context. (Those interested may consult the last reference in the
list of wavelet resources at the end of the chapter.)

14.3.3 “Discrete Continuous” Wavelet Transformation

First, a fewwords about the use of thewords “discrete” and “continuous”. A digitized
signal will be called discrete because we only have a finite number of measurement
results (equidistant in time). However, we will designate the particular wavelet trans-
formation described in this chapter as “continuous”, meaning that the “sliding filter”
(just the right part of Fig. 14.1) moves by one point across the digitized signal each
time a new calculation is performed. An alternative would be to shift the wavelet by,
for example, half the wavelet width.

Wavelet transformation is used almost exclusively on discrete signals, since the
calculations are so extensive that they are virtually impossible to perform analytically
(except in very simple model descriptions).

For digitized signals (discrete signals), the Morlet wavelet itself can be
expressed as:

Ψωa ,K ,tk (tn) = C{exp(−iωa(tn − tk)) − exp(−K 2)} exp[ − ω2
a(tn − tk)

2/(2K )2
]

.

(14.8)
Here, it is assumed that the signal to be analysed is described in equidistant
points using the number string xn for n = 1, 2, . . . , N . The time tk indicates
the centre of the wavelet (!).

The wavelet transformation for one particular frequency and one particular
instant will be:

γK (ωa, tk) =
N∑

n=1

xnΨ
∗
ωa ,K ,tk (tn) . (14.9)
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Fig. 14.4 A sinusoidal
signal (in the middle) along
with a (Morlet) wavelet with
the same period of time (top)
and a wavelet with a shorter
period of time (bottom)

Wavelet 10

Wavelet 2

Signal0

0

Time

Let us visualize the process in order to acquire a better understanding of what
it entails. In Fig. 14.4, we show a section of a time string along with two different
choices ofwavelets.Wavelet transformation consists in point-by-pointmultiplication
of the signal with the analysing wavelet, and calculating the sum of all the products.
The result is the wavelet transform of the signal for exactly the frequency the wavelet
represents and for the exact point in the signal where the wavelet has its maximum
value.

For wavelet 1, we see that the signal changes signs approximately at the same
instant atwhich thewavelet changes its sign. That is, the product at any point becomes
positive, and the sum of products is therefore quite large (since

∫
cos2 ωt dt is posi-

tive). For wavelet 2, the signal and the wavelet do not change sign at the same instant.
Some of the products are therefore positive and some negative. The sum of products
is significantly lower than for the first case (since

∫
cosω1t cosω2t dt is often close

to zero when ω1 �= ω2).
We have thus attempted to show that the wavelet transformation of a regular

sinusoidal wave will have a maximum when the “periodicity” (or frequency) of the
analysing wavelet corresponds to the “periodicity” of the signal in the time interval
where we perform the analysis.

To analyse the signal xn for other periodicities, we need to change the wavelet,
and this is done by using, for example, the ωa parameter.

14.3.4 A Far More Efficient Algorithm

Wavelet transformation defined in Eq. (14.9) is, what is called, a convolution of the
time signal x(t)with thewaveletΨ ∗

ωa ,K
. The appearance of the convolution integral is

of interest to us because it is easy to show that the Fourier transform of a convolution
is similar to the inner product (pointwise product of two functions) of the Fourier
transforms of each of the two functions that are included.
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Let us denote the Fourier transform of x and the Fourier transform of the wavelet
Ψ with, respectively, F (x) and F (Ψ ). Let us also denote the Fourier transformed
of x ∗ Ψ by F (x ∗ Ψ ). Then, the convolution statement states that

F (x ∗ Ψ ) = F (x) F (Ψ ) (14.10)

where right-hand side is pointwise multiplication of the two Fourier transforms. But
then we can make an inverse Fourier transformF−1 of the right- and left-hand side
of this equation and get:

F−1 (F (x ∗ Ψ )) = x ∗ Ψ = F−1 (F (x) F (Ψ )) . (14.11)

The Fourier transform of the signal, F (x), can be calculated easily and can be
used unchanged for the rest of the wavelet analysis. Fourier transformation of the
wavelet Ψ itself must, in principle, be repeated every time we change the analysis
frequency or wavenumber. However, we have an analytical expression of the Fourier
transform of aMorlet wavelet (see below), which makes the calculation significantly
faster.

When we then take an inverse Fourier transform of the productF (x) F (Ψ ), we
get the entire x ∗ Ψ envelope in a jiffy. That is, we get the entire time variation in
the convoluted signal for the selected analysis frequency (and K value) at one time.

To get a full wavelet analysis, we then have to carry out the procedure for an array
of analysing frequencies (which we basically choose for ourselves). For example, if
we choose to do the analysis at 1000 frequencies, it means that the calculations take
about 1000 times longer than a simple Fourier transform. So, although the method
based on the convolution theory is very effective compared to the brute force method,
the calculation of continuous wavelet transformation with Morlet Wavelets takes a
long computer time.

Now let us look at the Fourier transform of aMorlet wavelet defined in Eq. (14.6).
TheMorlet wavelet is complex, and it is very satisfying to find that whenwe calculate
the FFT of this complex function, we get a purely real result; moreover, there is no
mirroring in the spectrum!

The Fourier transform of a Morlet wavelet (Eq. 14.8) can be stated as follows:

F (Ψ ) ≡ Ψ̂ωa ,K (ω) = 2{exp (−[K (ω − ωa)/ωa]2
) − exp(−K 2) exp

(−[Kω/ωa]2
)} .

(14.12)

We see that this is a bell-shaped (Gaussian) feature (apart from a rather
insignificant correction term for most selections of K ). The peak of the Gaus-
sian function is at the analysis frequency.
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Fig. 14.5 Generated is used in our example. The left part shows the entire signal, while a detail
of this is shown in the right part. The amplitude of the 100Hz signal is 0.6, while the amplitude
of the 200Hz signal is 1.0. The signal is continuous everywhere, even at the instances where the
frequency changes abruptly (detail to the right)

14.4 Example

We will now show in practice an example of wavelet transformation and start by
generating a signal as a function of time.

The signal we generate changes between 100 and 200Hz at fixed intervals (see
Fig. 14.5). The outermost parts of the signal are set equal to zero. Note that when
we generate a variable frequency signal during the time the signal exists, we will
insist, for reasons that need not be spelled out here, that there is no discontinuity
in the signal at the instant when the frequency changes. We will be able to meet
this demand if we keep an eye on the phase of the signal throughout and upgrade
the phase at each new time step. This feature of the signal is demonstrated in the
expanded plot on the right half of Fig. 14.5.

We then implement the wavelet transform directly from Eqs. (14.9) and (14.8),
or we can use the more efficient method described by Eqs. (14.11) and (14.12). The
frequency of the analysing wavelet was selected as ωa = 2π × 100 (which equals
100Hz in the signal itself).

If we use Eqs. (14.9) and (14.8), we will shift the peak of the wavelet (along
the time axis), for each new point in the wavelet transform calculation, from being
completely at the outer left edge to being completely at the outer right edge. The
result is shown in Fig. 14.6. We see that we get a value of about 0.6 for the times
when the original signal had a frequency equal to the analysis frequency.

Figure 14.7 illustrates the more efficient method described by Eqs. (14.11) and
(14.12). The Fourier transform of the signal itself is multiplied point by point with
the Fourier transform of the wavelet (wavelet with analysing frequency 100Hz and
the given K value). The Fourier transform of the wavelet is a bell-shaped function
(almost Gaussian form) with a position of 100Hz in our case and has no “folded”
component. The result of the pointwise multiplication is that only one of the four
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Fig. 14.6 Wavelet transform of the time signal in Fig. 14.5 for an analysis frequency of 100Hz.
The K parameter was 12, which means that the wavelet was roughly about 12 × (1/100) s = 0.12 s
long. The width of the wavelet leads to rounding of sharp corners in the diagram
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Fig. 14.7 Fourier transform of our time signal at the top left, together with the Fourier transform
of the wavelet at the bottom left. The details on the right show that the Gaussian curve in a way
functions as a filter and will pick out only parts of the frequency spectrum of the signal. See the text
for details

“peaks” in the frequency range of the signal survives. An inverse Fourier transform
of this signal is then calculated, and absolute values are taken. Plotting the result, we
get exactly the same curve as shown in Fig. 14.6.

The wavelet diagram does not show any sign of the 200Hz signal, but that is
because we have only analysed the 100Hz signal. To get a more complete wavelet
diagram, one has to repeat the procedure for a whole set of frequencies. Then, the
wavelet diagram becomes three dimensional with time along the x-axis, frequency
along the y-axis and the intensity as a function of time and frequency indicated by
colour.
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A detail is worth noting here already: The curve in Fig. 14.6 has rounded corners.
This is due to the fact that the wavelet has a definite extent in time and therefore will
“detect” a 100Hz sequence even before the wavelet peak is within the 100Hz range.
Similarly, the wavelet will “discover” areas with no 100Hz, even when the peak of
the wavelet is within the 100Hz range. We come back to this effect in great detail
since.

It seems appropriate to list the steps involved in the calculation of a wavelet
diagram (using the most effective method):

• Calculate the Fourier transformed of the time signal we are going to analyse.
• Calculate directly the Fourier transformed of a Morlet wavelet with the
analysis frequency ωa and wavenumber K of interest.

• Multiply these with each other, point by point. (Note that there must be
consistency between the frequencies fk in the Fourier transforms of the
signal and of the analysing wavelet.)

• Perform an inverse Fourier transform.
• The absolute value of this will then provide information about the time
at which the original signal contained frequencies equal to the analysis
frequency.

• By changing theMorlet wavelet to the next analysis frequency, we gradually
build new horizontal lines in the wavelet diagram until we have covered as
many analytical frequencies as we want.

Since fast Fourier transform is such an efficient operation, the method we
just outlined is sufficiently fast to be useful.

In a program code a little later in this chapter, there is an example of how wavelet
transformation with the effective algorithm can be implemented.

14.5 Important Details

14.5.1 Phase Information and Scaling of Amplitude

In the usual Fourier transformation, we effect in principle two transformations simul-
taneously, one of the type

X (ω) =
∫ ∞

−∞
x(t) cosωt d t (14.13)

and the other of the type
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X (ω) = −i
∫ ∞

−∞
x(t) sinωt d t . (14.14)

The reason is that we have both sine and cosine terms and that we must be able to
capture, for example, a sinus signal in x no matter what phase it has.

In the usual Fourier transformation, we have one starting point for the analy-
sis. This means that it is easy to find the relative phases of the different frequency
components.

In continuous wavelet analysis, we have different starting points and lengths of the
analysis window along the way in the calculations. That makes it muchmore difficult
to keep track of phases. This is one of the reasons why we almost exclusively take
the absolute value of the wavelet transformation in one or the other variant when the
output of wavelet analysis is presented. (However, if wewere to do an inversewavelet
transformation afterwards, we would have to take care of the phase information.)

There are several ways of specifying signal strength in a wavelet diagram. Often,
the square of absolute values is used, which gives the energy of the signal.

Based on experience, I do not like to use the square of absolute value because
the difference between the powerful and weak parts is often so great that we lose
information about theweak parts. Then, it is often better to use absolute value directly
(“amplitude level”).

However, I often prefer to use square root of the absolute value. Then, the weak
parts show up even better than when the absolute value is plotted.

We are free to choose how the results of the wavelet transformation are plotted,
but we must not lose sight of our choice when we extract quantitative values from
the diagrams.

14.5.2 Frequency Resolution Versus Time Resolution

We figured out from Fig. 14.4 that, when the wavelength of the signal x is exactly
equal to the wavelength within the wavelet, wavelet transformation will give max-
imum value. If we make a small change in the wavelet by changing the analysis
frequency, the transformation will give a lower value, but not zero value. In other
words, a wavelet analysis will give rise not only to a different frequency from that
corresponding to the signal but also to nearby frequencies.

The theme of this section is to know how far this “adulteration effect” goes.
Let us assume that a wavelet transformation involves a “digital filtering” of a

signal, as illustrated in Fig. 14.7. The sharpness of this filtering is determined by
the width of the Gaussian function used in the filtering. We need to find the relation
between the width of the frequency picture and the width of the wavelet in the time
picture.

In Fig. 14.8, on the left, there are three different choices of wavelets [(calculated
from Eq. (14.8)] and to the right is the Fourier transform of the wavelet [calculated
from Eq. (14.12)].
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Fig. 14.8 Three different wavelets that indicate how the parameters ωa and K (analysis frequency
and “wavenumber”, respectively) affect the wavelet. A wavelet has a limited extent in time (left
part). We can specify a width for the envelope curve, e.g. by using the f 1/e criterion. If we make an
inverse Fourier transform of this wavelet, we get the frequency responses shown to the right. Notice
both the position in the frequency spectrum and the width of the Gaussian-shaped curves. There is
a relationship between the widths in the time domain and the frequency domain. If we increase one
the other will decrease, and vice versa

We know from before that the frequency spectrum of the Fourier transform of
the product of a sine signal and a Gaussian curve is itself a curve with a Gaussian
envelope. Again, this is get confirmed by Fig. 14.8.
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The temporalwidth of thewavelet can be determined by starting from the envelope
curve [from Eq. (14.8)]. If we define the width as the time difference between the
peak value and a point where the amplitude of the envelope curve has dropped to
1/e of the maximum value, the half-width is:

� t1/e = 2K/ωa .

The corresponding width of the Fourier transform of the wavelet is quite close to
[(as follows from Eq. (14.12)]

� f1/e = fa/K = ωa/(2πK ) . (14.15)

It is interesting to note that

� t1/e� f1/e = (2K/ωa) (ωa/(2πK )) = 1/π .

We can calculate the “standard deviation” for time and frequency by using
statistical formulas:

σ 2
t =

∫
t2Ψ 2(t)d t∫
Ψ 2(t)d t

and

σ 2
f =

∫
f 2Ψ̂ 2( f )d f∫
Ψ̂ 2( f )d f

,

and it can be shown that

σ 2
t σ 2

f = 1

2π
. (14.16)

This relation is analogous to the Heisenberg uncertainty relation. Examples
conforming to this relation are shown in Fig. 14.8.

The relationship is very important forwavelet analysis. Ifwe allowawavelet
to extend for a long time, the width in the frequency domain will be small and
vice versa. In other words:We cannot get accurate temporal details of a signal
at the same time as we get an accurate frequency description.

An interesting consequence of Eq. (14.15) is that

� f1/e/ fa = 1/K .

In other words, in a wavelet analysis, we usually keep K constant throughout
the analysis. Then, the relative uncertainty in the frequency values is constant
throughout the diagram.
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It is then natural to choose a logarithmic frequency axis, in the sense that
the analysing frequencies we choose are related to each other as

( fa)k+1 = ( fa)k ffactor .

Wehave chosen logarithmic axes for the selected analysis frequencies in all exam-
ples in this chapter, but it is of course possible to choose the analysis frequencies on
a linear scale, at least if the difference between the smallest and the largest analysis
frequency is small (e.g. factor two or less).

Comparing wavelets with piecewise FT
If we use piecewise FT, there will within each ‘piece’ (window) be room for only a few (or less)

time periods for a low-frequency signal but many time periods for a high-frequency signal. This
means we would get a poor frequency resolution for the lowest frequencies (measured as relative
frequency), but a far better frequency resolution for the higher frequencies. That means we would
end up with an analysis that would not be optimal.

The procedure used in wavelet analysis provides an optimum time resolution for all frequencies.
But we can nevertheless choose to somewhat emphasize time resolution at the expense of frequency
resolution and vice versa, depending on what we want to study. This makes the method a very pow-
erful aid in many contexts.

14.5.3 Border Distortion

When we calculate a wavelet transform, we basically multiply a signal, point by
point, with a wavelet and sum all the products. We then move the wavelet and go
through the same steps. This is repeated over and over again, beginning with the
situation in which the centre of the wavelet lies completely at one end of the signal
and finishing when the centre of the wavelet is located at the other end of the signal.

We then change the frequency of the analysing wavelet and go through the same
routine.

Here, however, we meet a problem. As long as the wavelet is not complete within
the data range, we would expect a different result than if the entire wavelet was used
in the calculations. This is illustrated in Fig. 14.9. For the position the wavelet has
in relation to the data in this figure, only about half of the wavelet will be used in
practice. This means that the sum of the products is expected to bemuch lower (about
a half) than what it would be if we had complete overlap.

It is therefore common to mark the wavelet spectrogram with what is called a
“cone of influence” in order to indicate the region where the analysis is susceptible
to border distortion (the name used for problems caused by incomplete overlap at
the edges).

In Fig. 14.10, an example of a wavelet spectrogram which shows an analysis
of temperature oscillations in the South Pacific. Figures (numbers) and colours are
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Fig. 14.10 Example of a wavelet spectrogram for temperature oscillations in the South Pacific. The
figure was produced with data and software provided by C. Torrence and G. Compo made available
at http://atoc.colorado.edu/research/wavelets/ and retrieved April 2016 [1]

used to display “energy” in different forms of oscillation (periodicity) as they have
evolved over the last one hundred years.

In this diagram, a V-shaped curve is also drawn, the abscissa of whose cusp is
at the middle of the scale and whose arms rise symmetrically on both sides, at first
slowly and then steeply near the edges. This V curve is the above-mentioned cone
of influence (COI), and it marks the area where most of the wavelets are complete
within the data string: everything above the COI represents reliable data, but the
results below the curve are suspect.

In the program examples given in the rest of this chapter, we have chosen to place
a mark to indicate where the outer part of the wavelet with a value less than 1/e of the
maximum is outside the diagram. We cover such a small frequency range that in our
own examples so that we do not get the entire V curve, but only a small near-vertical
part of the total V curve (except for Fig. 14.11). All parts of the wavelet spectrogram
that lie between thesemarks have insignificant errors attributable to border distortion.
We provide details below on how to set the selections.

http://atoc.colorado.edu/research/wavelets/
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Fig. 14.11 Wavelet diagrams for the time signal in Fig. 14.5 for six different “wavenumbers” K .
See the text for details

14.6 Optimization

Wavelet analysis is more demanding than normal Fourier transformation. One must
choose what kind of wavelet we are going to use. Even though we stick to the Morlet
wavelets, we do have to decide what “wavenumber” to use.

We have previously seen that by increasing the “wavenumber” K , the wavelet will
have a significant value over a longer period than at low “wavenumber” (at the same
analysis frequency). Further, we have seen that when the “width” of thewavelet in the
time domain is large (that is, large K value), the “width” on the Fourier transform of
the wavelet will be small. The product of the width of the wavelet in the time domain
and the width of the wavelet in the frequency domain is constant.
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The consequence is that there are no panaceas. If we want to get an accurate
indication of the time course, small K values will be preferred. If we want to get as
accurate frequency indications as possible, the K value should be large. In principle,
we want as good time resolution and frequency resolution as possible, but always
have to settle for a compromise.

The optimum result is often achieved if we keep an eye on the signal itself. The
signal has often inbuilt uncertainty in time and/or frequency. We can never get
a better resolution in time by wavelet analysis than the resolution in the signal
itself, and likewise for frequency analysis.

Spelled out even more clearly: when the signal itself in the time domain has
passages where oscillations are relatively constant in frequency and amplitude
for M oscillation periods, we often get best results in a wavelet transform if
the K -value is roughly equal to M (or slightly higher).

Figure 14.11 shows wavelet spectrograms of the signal (described above) that
alternated between 100 and 200Hz. Five different wavenumbers K are used. We
see that for low K values the time resolution is very precise, but the frequency
determination is poor. For high K values, the opposite holds: the frequency resolution
is good, but the time resolution is poor.

In this case, there is really not much more to get in frequency resolution when
we go from K = 48 to K = 96. This is because the signal itself has a “uncertainty
in frequency” since the duration of each period of “constant frequency” is limited.
In this case, there are 25 periods of oscillation within each 100Hz interval and 50
periods of oscillation within each 200Hz interval.

In Fig. 14.11, we have enhanced the marking of the left border distortion area. We
see that the distortion increases with increasing K value. It may be interesting to note
that the border distortion marking changes with the analysis frequency. Furthermore,
it is useful to observe that the distance from the side edge to the border distortion
mark also indicates smearing in the precision of time in the wavelet diagram. All
time information in the analysis is smeared out to an extent that exactly corresponds
to the distance from the edge to the border distortion mark.

What are the “best choices” of all the analyses presented in Fig. 14.11? Well,
it depends on what we want to get out of the analysis. The diagram for K = 6
demonstrates that the change from 100 to 200Hz (and vice versa) takes place very
sharply in time. The K = 96 chart shows that the frequency is as uniform as it can be
within each of the time intervals. If we need an overall optimization, perhaps K = 48
or so would be a good choice.

A standard Fourier transformation of the signal would yield two peaks, one for
100Hzandone for 200Hz.Hadwe taken the absolute value of the frequency spectrum
we would not have seen any trace that could show that the signal varied between 100
and 200Hz in time.



496 14 Wavelet Transform

14.6.1 Optimization of Frequency Resolution (Programming
Techniques)

Another form of optimization lies in the choice of frequency range for the analysis.
In a digital fast Fourier analysis, we automatically get “all” frequencies between zero
and the sampling frequency (but only half is useful due to folding). For a continuous
wavelet analysis, we usually choose to narrow down the frequency range to the area
where the frequency content is of interest.

In Fig. 14.11, we only chose to include frequencies between 70 and 300Hz in
the analysis. The reason is that we knew that the signal contained only frequencies
close to 100 and 200Hz. It may often be an advantage to start with a regular Fourier
transform to ensure that we choose a frequency range that is suitable.

However, it is important to consider how many intermediate frequencies we will
include in the analysis. In this context, we have to go back to the “width” of the
wavelet in the frequency domain. This width, as we have seen before, was:

� f = fa/K .

This “width” was determined by the Gaussian frequency curve having fallen to
1/e of the maximum value. We do not want to take such great steps in frequency
from one analysis frequency to the next, but maybe just a fraction of this.

Practical testing shows that an optimal choice of the difference between one
analysis frequency and the next is then about

fa,next − fa,now = fa,now/8K . (14.17)

If we are going to cover a frequency range [ fstart , fend ], then we can easily
show that we should use M analysis frequencies in a logarithmic order where

fend =
(
1 + 1

8K

)M−1

fstart .

The number of analysis frequencies is thus:

M = 1 + log( fend/ fstart)/ log

(
1 + 1

8K

)
. (14.18)
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14.6.2 Optimization of Time Resolution (Programming
Techniques)

A continuous wavelet diagram may sometimes consist of very many points. For
example, if we start with sound digitized at a sampling rate of 44.1kHz, and we
study sound with frequencies in the range of 102–104 Hz, we can in practice pick
out only every fourth point in time from the diagram without losing significant
information. Once we know that the wavelet has a width of about K times the period
of the analysis frequency, we realize that we can remove even more points in time
from the diagram without being detected in a wavelet diagram.

It may sometimes be of interest to optimize a wavelet diagram with the time
indication. Not least, this is important to get plot files that are so small that they are
easily incorporated into reports and the like.

In practice, one finds that it is enough to give each Pth item in the time
dimension in a wavelet diagram (without loss of information) when P is given
by:

P = Integer-Value-Of

(
K

24

fs
fa,max

)
. (14.19)

In the computer program, the “floor” function is used to get the integer value.

14.7 Examples of Wavelet Transformation

14.7.1 Cuckoo’s “coo-coo”

Figure 14.12 shows an example of optimized wavelet analysis. The signal is a CD
quality audio file that gives the sound of a cuckoo singing its “coo-coo”. The signal
is given in three variants, namely as a pure time signal, as a frequency spectrum after
a regular FT and finally as wavelet diagram.

In the total work plan, the first step is to select a suitable section from the audio
file. This is done by selecting the starting point and total number of points to be
retrieved from the available data file. Next, a Fourier analysis is performed. From the
Fourier spectrum, we see that the sound usually contains only frequencies between
450 and 750Hz. Accordingly, the wavelet analysis is limited to this frequency range.

Finally,wemust try different K values and choose the “best” compromise between
good time description and frequency description at the same time. We need to decide
whether we want to prioritize time resolution (by having a small K ), but at the
expense of a fairly wide frequency response, or accept a slightly poorer resolu-
tion (by choosing a larger K ) to get a slightly better frequency resolution. What is
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Fig. 14.12 Acuckoo bird’s “coo-coo” analysed in the time domain, in the frequency domain (within
a window) and in the combination frequency and time in the form of a wavelet diagram

optimal depends on the signal we analyse and will depend on what is important to
the individual analysing the data. In our example, K = 40 was used.

Note the beautiful details that appear in the wavelet analysis. Have you been
aware, for example, that the sound in the first “coo” actually changes significantly
within the short period during which the sound lasts? Details in the wavelet analysis
of birdsongs allow ornithologists to recognize birds individually. The details are finer
than what human auditory apparatus is capable of perceiving.

It should be obvious that, for a sound of such type,wavelet transformation provides
far more interesting data than a standard Fourier transform.

14.7.2 Chaffinch’s Song

We include two further examples of wavelet analysis. The first (Fig. 14.13) is similar
to the one we had for the cuckoo. We have chosen the chirping of a chaffinch, which
dominates the birdsong inApril. Chaffinch’s song is characterized in several different
ways. I even like the characteristic “tit tit tit tit tit …I-love-you”. The joy of wavelet
analysis is that the sound image is farmore complicated thanwhat we perceive. There
is a very fast variation in frequency within each “tit”, which we do not perceive. The
K value used in the analysis was 48.0.



14.7 Examples of Wavelet Transformation 499

Time (s)

Lo
g 10

(fr
eq

ue
nc

y 
in

 H
z)

Sqrt (Wavelet diagram), a “Frequency vs time domain”

0 1 2 3

3.4

3.5

3.6

3.7

3.8

3.9

Color code for intensity

0 4 8 120

100

200

300

400

Frequency (kHz)

In
te

ns
ity

  (
re

l)

“Frequency domain”

0 1 2 3

0.4

“Time domain”

Time (s)

Si
gn

al
  (

re
l) 0.2

-0.4

-0.2

0.0

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 14.13 Chaffinch’s “tit tit tit tit tit…I-love-you” analysed in the time domain, in frequency
domain and after wavelet transformation

14.7.3 Trumpet Sound, Harmonic in Logarithmic Scale

The last example is awavelet analysis of a trumpet sound (Fig. 14.14).Wehave chosen
a slice in time when the trumpet holds the same tone, and the intensity of the sound
we experience is quite constant. The time-domain picture of the sound shows more
variation in intensity than we perceive. However, the frequency spectrum (frequency
domain) is the way we expected it. It consists of a series of sharp lines that show the
fundamental tone and its harmonics.
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Fig. 14.14 A pure trumpet sound analysed in the time domain, in the frequency domain and in a
wavelet transform. Two different K values are used in the wavelet analysis
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The frequency axis is linear, and thus, the distance between two adjacent harmon-
ics is constant, more particularly the frequency of the fundamental tone.

A wavelet analysis of such a signal fails to match the sharpness of the frequency
spectrum; if we are primarily interested in the frequency of the fundamental tone and
the harmonics for a sustained tone, the Fourier analysis method is to be chosen.

However, if we are interested in variations in the sound over time, Fourier analysis
is not suitable. Then comes the wavelet analysis. We have included two different
variants of analysis based on the wavenumbers K = 24 and K = 96. In the first
case, the frequency resolution is rather poor, but the time resolution fits the signal.
In the latter case, the frequency resolution is good, but the time resolution is poor.

Are we getting something more out of wavelet analysis than out of Fourier anal-
ysis? Yes, as a matter of fact. We see that the strength of the fundamental tone and
harmonics varies slightly in time.We also see that there is a certain exchange between
the intensities of the fundamental tone and the first harmonic: when one is powerful,
the other is weak, and vice versa. This gives life to the sound and shows an example
that it is difficult to replace real sound with synthetic sound.

Additionally, note that the distance between the harmonics is not constant in a
normal wavelet diagram since we usually have a logarithmic frequency axis.

The frequencies fn of the harmonics are, we recall, fn = n f1 where f1 is the
fundamental frequency. We have

log( fn) = log(n f1) = log( f1) + log(n)

for n = 1, 2, 3, . . .. It follows that:

log( f1) = log( f1)

log( f2) = log( f1) + log(2) = log( f1) + 0.301

log( f3) = log( f1) + log(3) = log( f1) + 0.477 = log( f2) + 0.176

log( f4) = log( f1) + log(4) = log( f1) + 0.602 = log( f3) + 0.125

log( f5) = log( f1) + log(5) = log( f1) + 0.699 = log( f4) + 0.097

The distance between successive harmonics on a harmonic scale is seen to be:

0.301, 0.176, 0.125, 0.097, . . .

regardless of the frequency of the fundamental tone (see Fig. 14.14), in sharp contrast
with the usual Fourier spectrum.

It is sometimes very handy to use these distances both for recognizing harmonics
and for making sure that you have chosen a frequency range for the analysis that
includes the fundamental tone (where important).
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14.8 Matlab Code for Wavelet Transformation

Wehave included aMatlab program that can be used to analyse bits of audio files. The
code is available at a “Supplementary material”Web page at http://www.physics.uio.
no/pow, so you will not need to re-type it.

The code is divided into four different functions: a “main program”, a function
that reads wav format audio files and plots the time frame of the signal, a function
that performs a Fourier transform and plots the result, and a function that performs a
wavelet analysis of the signal (given a set of parameters that we choose ourselves).
The “main program” uses the three other features in turn.

Some remarks:
The program is self-written and bears imprints which reveal that I learned programming in an earlier
era. Feel free to write your own program version more in line with modern trends and requirements.
However, if you are short of time, you may want to use our Matlab or Python program directly to
get what you need to do, and in the longer term, improve the program on your own.

Main Program

The code is available at the “Supplementary material” Web page for this book at
http://www.physics.uio.no/pow.

function WLofWAV

% ‘‘Main program’’ that reads a wav-file, plots the signal

% in time and frequency domain as well as the wavelet

% trasformed signal. NOTE: All parameters in this program

% has to be chosen carefully according to your signal!

% The program is written by AIV. Version 16. October 2017

% Reads a wav-file

c = ’gjok.wav’; % Name of file

N = 1024*32; % Number points to be analyzed

nstart = 31000; % First point in file to be read

[fs,h] = readWavFile(c,nstart,N);

% Fourier transformation

[FTsignal] = fftAndPlot(h,N,fs);

% Wavelet-analysis

fmin = 400.0; % Use FFT and preferences to choose this!

fmax = 800.0; % (as above)

K = 32; % Must be optimized for every signal

[msg] = wltransf(FTsignal,fmin,fmax,K,N,fs); % Wavelet

% transform

http://www.physics.uio.no/pow
http://www.physics.uio.no/pow
http://www.physics.uio.no/pow
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Reading Wav-File and Plotting the Results

function [fs,h] = readWavFile(c,nstart,N)

% This function reads a wav-fil with the name c.

% Reading starts at point number ‘‘nstart’’ and N points are

% read. The sound is played, and the signal is plotted.

% The function returns the sampling frequency and

% one channel of the stereo signal in the wav file.

% The program is written by AIV. Version 16. October 2017.

nend = nstart+N-1;

[y, fs] = audioread(c, [nstart nend]); % Read array y(N,2)

% from file.

% ’fs’ is usually 44100 (sampling frequency at CD quality)

h = zeros(N,1); % Picks only one channel from stereo signal

h = y(:,1);

sound(h,fs); % Play the sound track read from file

T = N/fs; % Total time for the sound track read

% Plot the signal in time domain

t = linspace(0,T*(N-1)/N,N);

plot(t,h,’-k’);

title(’Wav-file signal’);

xlabel(’Time (sec)’);

ylabel(’Signal (rel units)’);

return;

Calculating FFT and Plotting the Results

function [FTsignal] = fftAndPlot(h,N,fs)

% This function perform a FFT of a signal h described in

% N points.

% Sampling frequency is fs. The Fourier transformed signal

% (absolute values) is plotted, but the full complex

% Fourier transform is returned to the calling function.

% The function is written by AIV. Version 16. October 2017.

% Calculate FFT of the time descripion of signal: h

FTsignal = fft(h); % This is what is returned at exit.

% Plot the frequency spectrum (absolute values only)
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f = linspace(0,fs*(N-1)/N, N);

nmax = floor(N/2); % Plot only lower half (due to aliasing)

figure;

plot(f(1:nmax),abs(FTsignal(1:nmax)));

xlabel(’Freqency (Hz)’);

ylabel(’Relative intensities’);

title(’Frequency spectrum of the signal’);

return;

Calculating the Wavelet Transform and Plotting the Results

function [msg] = wltransf(FTsignal,fmin,fmax,K,N,fs)

% This function carries out a wavelet transform using Morlet

% wavelets.

% Input is a full FFT of the signal that should be analyzed,

% as well as min and max frequencies for the wavelet analysis.

% K and N are ‘‘wavenumber’’ in the Morlet and number of points

% and sampling frequency for the input signal, respectively.

% fs is the sampling frequency.

% The function is optimized so that it chooses both the

% resolution of frequencies and time in the final diagram.

% Two different choises of intensity scaling are possible:

% intScale 1 and 2 correspond to a high or low ‘‘dynamical

% range’’ in the wavelet plot (Use 1 to make weak signal

% details visible). At the end the wavelet transformed signal

% is plotted.

% The function is written by AIV. Version 16. October 2017.

% Calculate # frequencies for analysis, write to screen,

% make list of frequencies ready for plot

intScale = 1; % 1 makes weak signal details visible

% Make sure that the FT signal is a column array

SZ = size(FTsignal);

if SZ(1) > SZ(2)

FTsignal = transpose(FTsignal);

end;

% Calculate/define parameters what will be used later

M = floor(log(fmax/fmin) / log(1+(1/(8*K)))) + 1;

NumberFrequenciesInAnalysis = M

fstep = (fmax/fmin)ˆ(1/(M-1));

f_analysis = fmin;
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T = N/fs; % Total time for the sound track chosen

t = linspace(0,T*(N-1)/N,N);

f = linspace(0,fs*(N-1)/N, N);

% Allocate array for the wavelet diagram and array for

% storing frequencies

WLdiagram = zeros(M,N);

fused = zeros(1,M);

% Loop over all frequencies that will be used in the analysis

for jj = 1:M

% Calcualate the FT for the wavelet directly

factor = (K/f_analysis)*(K/f_analysis);

FTwl = exp(-factor*(f-f_analysis).*(f-f_analysis));

FTwl = FTwl - exp(-K*K)*exp(-factor*(f.*f)); % Minor

% correction term

FTwl = 2.0*FTwl; % Factor (different choices possible!)

% Calculate a full line in the wavelet diagram in one

% operation! (Inverse of the convolution, see textbook.)

if intScale == 1

WLdiagram(jj,:) = sqrt(abs(ifft(FTwl.*FTsignal)));

else

WLdiagram(jj,:) = abs(ifft(FTwl.*FTsignal));

end;

fused(jj) = f_analysis; % Store frequencies actually used

f_analysis = f_analysis*fstep; % Calculate next frequency

end;

% The main loop finished! The wavelet diagram is complete!

% Reduce file size of the wavelet diagram by removing a lot

% of redundant information in time. The purpose is just

% to make the plotting more managable.

P = floor((K*fs)/(24 * fmax)); % The number 24 may be changed

% if wanted

UseOnlyEveryXInTime = P % Write to screen (monitoring)

NP = floor(N/P);

NumberPointsInTime = NP % Write to screen (monitoring)

for jj = 1:M

for ii = 1:NP

WLdiagram2(jj,ii) = WLdiagram(jj,ii*P);

tP(ii) = t(ii*P);

end;

end;

% Make a marking in the plot to visualaize border of
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% distortion

maxvalue = max(WLdiagram2);

mxv = max(maxvalue);

for jj = 1:M

m = floor(K*fs/(P*pi*fused(jj)));

WLdiagram2(jj,m) = mxv/2;

WLdiagram2(jj,NP-m) = mxv/2;

end;

% Plot wavelet diagram

figure;

imagesc(tP,log10(fused),WLdiagram2);

set(gca,’YDir’,’normal’);

xlabel(’Time (sec)’);

ylabel(’Log10(frequency in Hz)’);

if intScale == 1

title(’Sqrt(Wavelet Power Spectrum)’);

else

title(’Wavelet Power Spectrum’);

end;

colorbar(’location’,’southoutside’);

msg = ’Done!’;

return;

It should be noted that once in a while we may want to use an ‘intensity versus time plot’ instead of
a full wavelet diagram, to demonstrate particular details (as we did in Fig. 14.6). It is easy to pick
a particular horizontal (or vertical) line in the WLdiagram2(i, j) array and make a normal 2D plot
of the result. However, care has to be taken to get the right frequency since we use a logarithmic
frequency axis in our wavelet diagram.

14.9 Wavelet Resources on the Internet

1. A.-H. Najmi and J. Sadowsky: “The continuous wavelet transform and variable
resolution time-frequency analyses.” Johns Hopkins APL Technical Digest, vol
18 (1997) 134–140. Available on
http://www.jhuapl.edu/techdigest/TD/td1801/najmi.pdf accessed May 2018.

2. http://www.cs.unm.edu/ williams/cs530/arfgtw.pdf “A really friendly guide to
wavelets”, C. Valens and others. Accessed May 2018.

3. http://tftb.nongnu.org/, “Time-frequency toolbox”. Accessed May 2018.
4. http://dsp.rice.edu/software/, “Rice Wavelet Toolbox.” Accessed May 2018.
5. http://www.cosy.sbg.ac.at/ uhl/wav.html, Several wavelet links. Accessed May

2018.

http://www.jhuapl.edu/techdigest/TD/td1801/najmi.pdf
http://www.cs.unm.edu/~williams/cs530/arfgtw.pdf
http://tftb.nongnu.org/
http://dsp.rice.edu/software/
http://www.cosy.sbg.ac.at/~uhl/wav.html
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6. A 72-page booklet by Liu Chuan-Lin: “A tutorial of the wavelet transform” (dated
23 February 2010) is available on
http://disp.ee.ntu.edu.tw/tutorial/WaveletTutorial.pdf Not available May 21th
2018 (Will be available through the web-pages for this book if it is a contin-
uous problem with access.). The booklet also deals with the use of wavelets in
image processing.

14.10 Learning Objectives

After working through this chapter, you should be able to:

• Describe similarities and differences between Fourier transformation and
wavelet transformation.

• Describe for which signals Fourier transformation is preferred and for which
signals wavelet transformation is preferred. Explain why.

• Explain what we can deduce from a given wavelet diagram.
• Explain how we can adjust a wavelet transformation to accentuate temporal
details, or details in frequency.

• Explain qualitative analogues between wavelet transformation and Heisen-
berg’s uncertainty relationship.

• Use a wavelet analysis program and optimize the analysis.

14.11 Exercises

Suggested concepts for student active learning activities: Short-time Fourier
transform, time domain, frequency domain, fast Fourier transform, Morlet wavelet,
wavenumber K for wavelets, “discrete continuous”, optimization, classical analogy
to Heisenberg’s uncertainty relation, frequency resolution, time resolution, absolute
value of the transform, cone of influence.

Comprehension/discussion questions

1. What is themost important differencebetweenFourier transformation andwavelet
transformation?

2. In what situations does Fourier transformation provide a rather useless result?
3. What are the disadvantages of wavelet transformation compared to Fourier trans-

formation?
4. When was Fourier transformation implemented on a large scale (FFT) and when

did wavelet transformation come into vogue?

http://disp.ee.ntu.edu.tw/tutorial/WaveletTutorial.pdf
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5. Wavelet transformation is affected by “border distortion”. What is meant by this?
How big is the border zone?

6. Can you outline how wavelet transformation might be used to generate notes
directly from a sound recording? What problems do you think may occur?

Problems

7. (a) Calculate aMorlet wavelet (in time domain) for analysis frequencies 250 and
750Hz when the sampling rate is 5000Hz and the K parameter is 16. Plot the
result with correct time on the x-axis (a figure similar to Figure 14.3).
(b) Calculate the Fourier transform of each of the two wavelets. Use both an FFT
directly on the Morlet wavelet described in the time domain and by calculating
the Fourier transform directly using Eq. (14.12). Plot the results with correct
indications of frequency on the x-axis.
(c) Make sure that the peak occurs at the place you would expect. Do you see
mirroring?
(d) Repeat points a–c also when K = 50.

8. In this task, the underlying theme is the analogy with Heisenberg’s uncertainty
relation.
(a) Generate a numeric data string representing the signal

f (t) = c1 sin(2π f1t) + c2 cos(2π f2t) .

Use 10kHz sampling rate and N = 8192 points, f1 = 1000Hz, f2 = 1600Hz,
c1 = 1.0, c2 = 1.7. The signal must last throughout the period under considera-
tion. Plot an appropriate section of the signal in the “time domain” (amplitude as
a function of time) so that the details will become noticeable. Be sure to provide
correct numbers as well as text along the axes, preferably also a heading.
(b) Calculate the Fourier transform of the signal. Plot an appropriate section of
the signal in the “ frequency domain” (choose absolute values of Fourier coef-
ficients as a function of frequency), with numbers and text along the axes as
above.
(c) Calculate the wavelet transform of the signal (may well be based on the
programs given in this chapter, or you can write the program more or less from
scratch yourself). Use Morlet wavelets, and let the analysis frequency go, for
example, from 800 to 2000Hz (logarithmically scaled as usual within wavelet
transformation). Then, plot the result for the wavenumber K equal to 24 and
200. Comment on the result.
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(d) Let the signal be a harmonic signal as before, but now multiplied with a
Gaussian function so that we get two “wave packets”:

f (t) = c1 sin(2π f1t) exp
(−[(t − t1)/σ1]2

) + c2 cos(2π f2t) exp
(−[(t − t2)/σ2]2

)

where t1 = 0.15 s, t2 = 0.5 s, σ1 = 0.01s and σ2 = 0.10 s. Calculate the Fourier
transform of the signal and also the wavelet transform of the signal. Plot the
signal in the time domain, the frequency domain (match the section) and the
wavelet transform of the signal for K = 24 and 100 (please test more values!),
and other parameters as given in point (c) above. Comment on the results!

9. Analyse the song of a blackbird (svarttrost in Norwegian) using wavelet trans-
formation. An audio file is available from the “Supplementary material” Web
page. Use the program in this chapter (or own version) and analyse a time string
of 1.4 s. Parameters of analysis: Filename: ’Svarttrost2.wav’, Nstart = 17000,
data string length “64k” = 216, frequency range 1500–8000Hz, wavenumber K
equal 12 and 96 (and preferably some values in between as well). The signal
consists of five different audio groups. We are primarily interested in the fourth
of these!
Plot the signal in the time domain, in the frequency domain, and the signal anal-
ysed by wavelet transformation for this fourth audio group. Be sure to include
some sections of the original plots to get details. This applies in particular to the
time of the original sound! Hopefully you will then recognize a signal we have
encountered at least twice in previous chapters. You should recognize how we
can make such a signal mathematically.
Careful analysis of the fourth bit of the sound signal in the (1) time domain and (2)
wavelet diagram makes it possible to see how a close analogy to Heisenberg’s
uncertainty relationship comes into play. To get the full benefit, you should
extract time differences and frequency differences in the charts and compare
these with the wavelet evolution in the time and frequency domain for the two
selected K values.
If you are a student and have offer for help from teachers, we strongly recom-
mend that you discuss the relevant details with the teacher until you get a firm
grasp of the relationships we wish to bring to the fore. There is a lot of valuable
knowledge to extract from this problem, knowledge that can be valuable also in
many other parts of physics!

10. Make a wavelet analysis of chaffinch sound (the audio file “bokfink” on the
“Supplementary material” Web page). Try a K factor twice as large as in the
example in Fig. 14.13. Also, try an analysis for half the K value used in the
above figure. Describe the differences you see.

11. In this problem, the theme is to explore various ways to display a wavelet trans-
formed signal so that you get as much information from the diagram as possible.
The “dynamic rage” in a colour coded diagram varies with the different choices.
Repeat wavelet analysis of chaffinch sound again for K = 48. Choose succes-
sively “power spectrum” (absolute value after inverse Fourier transformation
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squared), wavelet analysis “on amplitude level” (absolute value after inverse
Fourier transformation directly) and wavelet analysis with the square root of the
wavelet analysis (square root of absolute value after inverse Fourier transfor-
mation). Make your assessments of which of these methods you like best for
this particular signal. Perhaps you would prefer one of the other viewing modes
(squares or square roots) for another signal?

12. Use the knowledge from Chaps. 2 and 3 to calculate the timing of a spring
pendulum after it is set in motion by a harmonic force with a frequency equal
to the resonance frequency. Follow the oscillations also some time after the
harmonic force is removed. Then, perform a wavelet analysis of the oscillation
process. Attempt to optimize the analysis with respect to the K value. Do you
find an apparent correlation between the Q value for the pendulum oscillation
and the K value that gives the optimal wavelet diagram?

13. Use the various wav files available at the “Supplementary material” Web page
in order to get used to wavelet transform, how to use it in practice, choice of
parameters and analysis of the results. Everyone need practice in order to utilize
new tool as well as possible.

14. Select yourself an audio file that you can transform into a .wav file and select a
slice that you may want to analyse. Optimize the analysis and tell what informa-
tion you get from the chart.

16. Find data online that show a time sequence you think might be interesting to
study. It may be weather data, solar spots, power consumption or what you
need to find. Analyse the data set both in traditional Fourier transformation and
wavelet analysis. Which method do you think is best suited to the data you
selected? (Should have data with some form of loose periodicity with at least
20–30 periods within the data you have available.)

17. Compare the voices of Maria Callas and Edith Piaf (sound files available at
the “Supplementary material” Web page at http://www.physics.uio.no/pow.). Is
the vibrato an oscillation in frequency and/or in intensity? Which one of the
two artists has the highest number of harmonics? Could you guess this just by
listening to their voices?

Reference
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Chapter 15
Coherence, Dipole Radiation and Laser

Abstract This chapter is focusedmainly on coherence, a vital concept if onewants to
go beyond a rudimentary understanding ofwaves; the notion is rooted in the statistical
properties of a wave. We also elucidate how mixing of real physical waves leads to
unexpected relationships: for example, it would be disastrous if the members of a
choir managed to sing in perfect tune. This is related to the difference between light
from a lamp compared to laser light. A computer program is provided for numerical
explorations of both temporal and spatial coherence. The discussion of coherence is
followed by a conceptual explanation of how electric charges in motion may lead to
radiation of electromagnetic waves, and the radiation diagram for a dipole antenna
is presented. The chapter concludes with a brief description of the basic principles
for generating laser light.

15.1 Coherence, a Qualitative Approach

“Coherence” is a very useful concept when we want to describe how regular a wave
is. In modern physics, it is clear that waves may interact very differently in various
systems, depending on the statistical features of the waves. It is insufficient to char-
acterize a wave only with amplitude, frequency, wavelength and the spatial volume
where the wave is found. Figure15.1 tries to illustrate this point using pictures of
various surface waves on water.

The dictionary meaning of the word coherence, “the quality of being logically
consistent”, may be inferred from its etymology (co together + hæreo to stick).
In physics, however, coherence is defined differently, and they are comparatively
recent concepts. They describe important statistical properties. Wikipedia states that
“two wave sources are perfectly coherent if they have a constant phase difference
and the same frequency, and the same waveform”. Additionally, it says: “Coherence
describes all properties of the correlation between physical quantities of a single
wave, or between several waves or wave packets” (emphasis added).
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Fig. 15.1 Three examples of surfacewaves onwater, illustrating the need for a statistical description
of waves in addition to the parameters we have used so far

Thus, coherence is a term related to waves and other time-varying signals.
When we say that waves at two points A and B in space are coherent, we mean
that there is a certain relationship between the waves passing at points A and
B at any time.

We distinguish between temporal and spatial coherence. For temporal
coherence (or longitudinal coherence), we consider the wave at two points
A and B which lie along the direction of the wave motion (see Fig. 15.2). We
then check if there is a sustained definite relationship between thewave at point
A and the wave at another point B which the same part of the wave passed a
little earlier.

For spatial coherence, we compare the wave at a location A with the wave
at location B, the two points being adjacent to each other, but the direction
from A to B is perpendicular to the direction of the wave motion.

For real waves, there is often a high degree of correlation between the waves
at A and B if the two points are very close to each other (less than the smallest
wavelength found in the wave). On the other hand, it is always true for real waves
that the correlation between the waves at A and B becomes exceedingly poor if the
distance between A and B is made big enough.

If the distance between A and B must be less than a few wavelengths to get a high
degree of correlation, we say that the wave is incoherent. If, on the other hand, we
can find a high degree of sustained definite relationship between the wave at point
A and the wave at point B even when the distance between A and B is very many



15.1 Coherence, a Qualitative Approach 513

A BA

B

Fig. 15.2 Temporal (also longitudinal) and spatial (also transverse) coherence tell us something
about the regularity in waves in the direction along which the wave moves or in the perpendicular
direction, respectively. The wave is believed to be two dimensional in this case (e.g. surface waves
on water). The black stripes indicate wave peaks, and their thickness indicates the amplitude of the
wave at the current location. The wave in this figure is rather irregular

wavelengths, we call the wave coherent. However, there is a continuous transition
between incoherence and coherence.

The term coherence length will be used for the largest distance between A and B
for which significant correlation can still be found. We can specify both a temporal
and a spatial coherence length. For temporal coherence, we can also operate with
coherence time which is the time the wave uses in traversing the temporal coherence
length.

Since there is always a certain degree of variability and unpredictability in real
waves, and randomness can be described by statistics, the degree of coherence may
be quantified statistically.

15.1.1 When Is Coherence Important?

Coherence is always important when two or more waves superimpose on each other.
Thus, coherence is an important condition for interference. In deriving the intensity
distribution at a double slit, we assumed that the wave has the same amplitude at all
times in the two slit openings. It is equivalent to saying that the spatial coherence
length must be at least as large as the distance between the two slits. In order to
have several interference fringes outside the central one, it is also necessary that the
temporal coherence length is at least several wavelengths since we add, in that case,
one wave with a time-shifted part of the same wave.

An implicit consequence of a long temporal coherence length is that the wave
must last for at least as long as the coherence time. This implies that there is a
close relationship between temporal coherence length and width of frequency (or
wavelength) distributions. The relationship is given by the time-bandwidth product
discussed in Chaps. 3 and 5. Thus, narrow linewidth light emitted from atoms will
have a long temporal coherence length,while lightwith a broad frequencydistribution
will have a short temporal coherence length. Light from the sun has a temporal
coherence length of only a few wavelengths. In comparison, a laser may have a
temporal coherence length of the order a million wavelengths.

If a source of waves is very small (“point-like”, of the order one wavelength
or less), the source will radiate waves with circular wavefronts. If the medium is
isotropic, there will be more or less perfect circular wavefronts, at least within a
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sector of radiation. For such a system, the spatial coherence length can be very large,
even if the temporal coherence length is short.

Even for a very extended object with many independent sources of radiation,
the spatial coherence length can be large if the distance to the object is very large
compared to the size of the object. We will return to the point later in this chapter
whenwe discuss a famous experiment performed byHanbury Brown and Twissmore
than 60 years ago. We also often use a so-called pinhole in optics in order to increase
spatial coherence length of light, as will be discussed later in this chapter.

15.1.2 Mathematical/Statistical Treatment of Coherence

Waves can be irregular in many different ways. Several methods are worked out to
characterize the irregularities. We will limit ourselves to one of the simplest methods
based on the calculation of a first-order correlation function.

If we want to characterize a wave, we can either record the amplitude at one point
in space as a function of time, or we can record the amplitude at one instant as a
function of position in space. In both cases, we acquire real measurements as a row
of numbers, an array. If we make measurements at two points, as is indicated in
Fig. 15.2, we end up with two sets of numbers, two signals.

There are many ways to compare two such arrays, but for analysing coherence
physicists chose many years ago a strategy similar to Fourier transformation. In
Fourier transformation, we actually do a correlation analysis between the signal we
are studying and a perfect mathematical harmonic function with a given frequency
(and we change the frequency to get the entire frequency range). Fourier transforma-
tion thus involves calculating the inner product between the signal we analyse and a
perfect harmonic function.

When analysing correlation between signals (waves), we also calculate the inner
product, but now between the two signals we compare! In a manner of speaking, we
use one of the signals as a reference to check howmuch it resembles the other signal.

If the signal recorded at point A is called f (t) and the signal at B is called g(t), our
predecessors have chosen to calculate the correlation between f and g as follows:

C =
∫

f (t)g(t) dt
√∫

f 2(t) dt
∫

g2(t) dt
. (15.1)

The integrations extend over an arbitrary interval of time. If the signals are station-
ary (in the sense that their statistical character does not change over time) and also
ergodic (in which case the statistical information derived by analysing many inde-
pendent signals will be equivalent to the statistical information derived by following
only one sufficiently long-lasting signal), C will approach a well-defined value when
the integration time increases.
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Defined this way, correlation is simply a number. There will be no function before
we find some means of systematically changing how f and g are measured or gen-
erated.

15.1.2.1 Autocorrelation

In the left part of Fig. 15.2, we chose to compare waves at two points A and B
situated along the direction in which the wave moves. Practical measurements could
be carried out if we chose to analyse sound, because very small microphones are
available that perturb the wave so little that the signal at A would not be affected by
the presence of the microphone at point B.

In other contexts, it is not feasible to place a sensor at B without interfering with
the wave that reaches point A.

This is one of the reasons why we often choose, when we analyse temporal
coherence of a wave, to use only one detector, for example at point B, and no
detector at point A. We assume that the shape of the overall wave pattern (as given
by the black lines in Fig. 15.2) does not change much during the time it takes for the
wave to move from B to A; the signal in point A will be approximately the same as
at point B, only time shifted (because of the wave pattern moving at a given speed).

In such cases, we will have

f (t) ≈ g(t + τ)

where τ is the time used by the wave (wave pattern) to move from B to A.
The temporal correlation between the wave at A and at B is then given by:

C =
∫

g(t)g(t + τ) dt
√∫

g2(t) dt
∫

g2(t + τ) dt
. (15.2)

If the statistical properties do not change over time, we say that the wave is
stationary. For such waves

∫
g2(t) dt ≈

∫
g2(t + τ) dt .

With this viewpoint, we are able to calculate correlations for many different dis-
tances between points A and B. In practice, we do this by changing the time shift τ
in Eq. (15.2) above. If we let τ vary continuously from zero onwards, the correlations
C(τ ) will become what we call autocorrelation function for the signal.
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Thus, the expression for the autocorrelation function for a signal g becomes:

C(τ ) =
∫

g(t)g(t + τ) dt
∫

g2(t) dt
. (15.3)

For a digitized signal gi ≡ g(ti ) for i = 1, 2, . . . , N (discrete instants), the
corresponding expression is:

C( j + 1) =
∑M

i=1 gi gi+ j
∑M

i=1 gi gi

(15.4)

for j = 0, . . . , N − M .
Note that since we shift the selection of points used for describing the

signals at points A and B from the same data string, M < N . The largest j
value we can calculate for a signal described by N points is j = N/2.

The left part of Fig. 15.3 shows an example of an autocorrelation function for a
wave. Along the x-axis, we have the time difference as f (t) = g(t + τ) is offset
relative to g(t). If the sampling rate is Fs , the relation between the index j and the
time delay τ will be:

j = round(Fsτ)

where “round(· · · )”means the integer nearest to the numerical value of the expression
enclosed in the parentheses.
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Fig. 15.3 An example of how the autocorrelation function of a wave might look like. To the left,
the usual autocorrelation function is plotted, while in the right part the absolute value is plotted.
The time shift τc that causes the correlation to decrease to 1/e of the maximum value is called the
coherence time of this wave. (Note: The curve in the right part of this figure seems to never touch
the x-axis. The reason for this is that the sampling frequency is not much larger than the signal
frequency. We just do not happen to measure values very close to zero.)
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We see that the autocorrelation varies from +1 to near −1 and oscillates up and
down while the amplitude of the variation decreases to zero. Correlation equal 1 (for
the standard formula we used here) corresponds to the fact that f and g are identical.
They are always at the first point (no shift). Correlation−1wouldmean that f = −g.
For a wave, just say that when f has a wave peak, g will have a valley, and vice
versa. In that case, there is still perfect correlation, but the sign has reversed.

When the distance between points A and B in Fig.:15.2 increases, in Fig. 15.3,
there is a gradual transition from high correlation (dashed upper envelope
curve has a value close to 1) to a smaller and smaller correlation (envelope
near zero). After about 1.8 ms, the number has fallen to 1/e of max. We say
that the temporal coherence time τc for this signal is 1.8ms. The corresponding
temporal coherence length is τcv where v is the wave phase velocity.

In the right part of Fig. 15.3, we have plotted the absolute value of the autocor-
relation function as a function of the displacement τ . We have seen that correlation
+1 and −1 both correspond to a perfect correlation, only with a change of sign in
the amplitude in the latter case. It is therefore best to draw a hypothetical envelope
curve touching the peaks in the above plot, when we want to determine the value of
τ at which the correlation decreases from 1 to 1/e.

It should be noted that in practice, the autocorrelation will never vanish when the distance
between A and B increases. However, if the average value of g is zero and if the total observation
time is much longer than τc’, the asymptotic value of the autocorrelation ratio will come so close
to zero that the remaining variation does not affect the determination of coherence time.

It turns out that the variation in the first part of the autocorrelation function is quite stable if we
make more subsequent recording of the signal g(t), but the oscillations around zero when we have
passed at least twice the coherence time will change from one data record to the next.

If we take the average of many runs and add the autocorrelations, the first part of the correlations
will be added constructively while what we like to call the “noise” around zero will eventually be
considerably reduced. The autocorrelation function can then often be written almost:

C(τ ) = cos(ω̄τ ) exp[−(τ/τc)
2] (15.5)

where ω̄ corresponds to themean of the angular frequencies in the original signal. τc is the correlation
time and corresponds (with some reservations) to what we also call the “coherence time” for our
wave/oscillation. The coherence time is then defined by Eq. (15.5).

If g was a perfect sinusoid, a shift of τ = 2πn (n an integer) would cause
g(t)g(t + τ) in Eq. (15.3) in practice to be a sin2 function. The autocorrelation
function C will then simply be the mean of sin2 divided by the same value, which is
1.

Similarly, we can show that when τ equals (2n + 1)π in the perfect sinus signal
g, the calculation will mean the mean of − sin2 and the answer would be −1. For a
quarter wavelength offset relative to the cases we have already mentioned, C will be
the mean of a sin× cos expression, which is equal to zero.
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The autocorrelation function for a perfect sine will therefore be a periodic func-
tion that varies from +1 to −1. The autocorrelation function simply gets a cosine
shape and will never get an amplitude that decreases to zero as shown in Fig. 15.3.
Coherence time would then become infinite.

No real waves have infinite coherence time, but if the time framewe have available
for analysis is no more than twice the coherence time long, we cannot determine the
coherence time.

15.1.3 Real Physical Signals

We will now take a few real physical signals to show important features when we
mix real waves. We have at our disposal three different analytical methods to study
the time signal, namely Fourier transformation, wavelet analysis and calculation of
the autocorrelation function.

The signals aremicrophone signals after sampling soundwaves froma personwho
sings “eeeeee” throughout the sampling process. Eight separate audio recordings of
the same person have been made. From these recordings, we have constructed three:
signal 1 is simply one of the sound recordings. Signal 2 is the sum of two recordings,
and signal 3 is the sum of all eight recordings. Signal 2 simulates a data recording of
two people who sing “eeeeee” simultaneously, and likewise for signal 3. The signals
are shown in Fig. 15.4 together with the analyses we have performed.

Signal from one source
We see in the left-hand column in Fig. 15.4 that the amplitude of the signal (and
thus the sound intensity) remains quite similar throughout the period. The frequency
range has a width of about 15Hz. The wavelet diagram shows how the frequency
and the amplitude changed during data recording. At the bottom of the figure, the
first part of the autocorrelation function is given, and we can estimate the coherence
time of the signal to about 0.18 s.

The sound speed in air is about 340m/s. Thismeans that we can predict correlation
in the phase of the signal in handwithin a range of aboutΔL = 340 × 0.18m, that is,
about 60 m. This quantity we call the coherence length for our wave (more precisely
the temporal coherence length).

There seems to be nothing special about data recording for one source. Everything
is as we expected, but we realize that the instability in frequency (pitch) about the
middle of the data recording probably affects the calculated coherence time. We also
notice that the autocorrelation function does not settle down to the zero baseline after
we have passed the coherence time, which is as expected.

Signal from several sources
We see from the middle column in Fig. 15.4 that the amplitude in the sum of two
almost similar waves varies drastically during data recording, although the ampli-
tudes of the individual contributions remained rather stable. The reason for this is
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Fig. 15.4 Three examples of real sampled audio signals, with left to right one, two and eight voices
at the same time. Frequency analysis is also shown (a little second harmonic component is not
included), as well as wavelet analysis and the first part of the autocorrelation function. For the
wavelet analysis, K = 100 was applied to the first two signals and K = 32 to the last

that the sound waves from singer 1 and singer 2 add constructively for some periods,
so that the amplitude becomes about twice as large as that for each single wave. At
the same time, the sound waves in other periods happen to add destructively, and the
total amplitude of the sound waves falls almost to zero.

All waves seem in general to have the following properties:
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The amplitude at an arbitrary place in thewave can havemany contributions.
However, the amplitude has only one value within a sufficiently small volume
(lengths in each direction much smaller than the shortest wavelength in the
waves that contribute). For example, the sound pressure will only have one
value in small volumes when a sound wave passes, the height of the water
surface has only one value in any place, and the electric field in the sum of all
electromagnetic waves has only one value in each small volume even though
many electromagnetic waves contribute.

We can only recognize different contributions to the waves and their origins
by examining the pattern in the sum of all the waves and seeing how this
pattern evolves in time. Contribution from circular ripples on a water surface
impacted by a stone can only be recognized by looking at the rings in the
region surrounding the small volume under consideration.

It is the summed wave which evolves in time, not every single contribu-
tion separately. However, when the physical system behaves linear, we can
still describe the evolution of a wave mathematically as a sum of several con-
tributions that individually conform to the wave equation. That we can use
mathematics in this way should, however, be considered more a happy excep-
tion than the rule (because when we deal with nonlinear processes, it does not
apply).

When we add more independent waves, there will always be some periods
of constructive interference and some periods of destructive interference. The
duration of the periods of constructive interference depends very much on
the frequency variation in the signals that are added (which is related to the
temporal coherence time). We will show more examples of this a little later in
the chapter. The effect is manifested particularly well in continuous wavelet
analysis with Morlet wavelets.

Besides displaying the characteristic fluctuation in amplitude due to the summa-
tion, Fig. 15.4 shows that the frequency spectrum becomes larger as more signals
contribute. Each signal has its centre frequency and variation, and the sum of sig-
nals therefore gets a wider width than each individual contribution. In our case, the
centre frequencies of the eight contributions do not differ by more than 1Hz (tested
separately, data not shown).

An increase in the width of frequency distribution affects also the coherence
time. With more contributions, we get a shorter coherence time than with individual
signals. However, it is impossible to draw conclusions about relationships between,
for example, the width of the frequency spectrum and coherence time, on the basis
of these files alone. The statistics are too poor for the task. We will come back to the
issue about a little.

The wavelet diagrams in columns 2 and 3 in Fig. 15.4 show essentially the same
characteristic features as the amplitude variation in the time domain. However, the
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frequency is sowell defined that sometimeswe can see small changes in the dominant
frequency in the sum signal as time passes.

Amplitude and spatial distribution of the summed signal
It is worth noting that the average amplitude of the sum of eight similar signals is
about 20 on a scale where the average amplitude of one of the signals is about 7. It can
easily be shown that 20 ≈ 7 × √

8. With the addition of independent waves of only
approximately the same amplitude, frequency and degree of variation over time, the
sum of amplitudes is not proportional to the number of signals that contribute, but
only roughly proportional to the square root of the number of signals. The intensity
(proportional to the amplitude squared) is proportional to the number of signals.

However, if the contributionswere close to perfect harmonic signals with the same
frequency, amplitude and phase, the sum would have got an amplitude proportional
to the number of signals we add, and the intensity proportional to the square of
the number of signals added. That is what makes the intensity of a laser beam so
impressive even if its power is only a few milliwatts.

Let us go back to our singers who sing “eeeeee”s. If the singers had sung exactly
and constantly in phase, eight singers would give an intensity equal to 64 times the
intensity of each individual. This is quite different from the eight times intensity we
found in practice with our real signals. Is this something we can utilize?

Unfortunately, “There ain’t no such thing as a free lunch”. We get nothing for
nothing. It may appear that eight hypothetical singers who sing in unison would give
eight times greater sound intensity than eight singers who do not sing coherently.
How, then, can the requirement for energy conservation be satisfied?

The energy ledger will stand up if spatial relationships are also taken into account.
Eight hypothetical singers who sing coherently will not give eight times larger sound
energy everywhere in space, only in those places where the signals from all eight
are in phase with one another. At other places in space, where the signals are out of
phase, the sound energy could drop to almost zero. That is not what happens with the
real singers. In no region of space will there be permanent constructive or destructive
interference for these singers. We hear the sound of the real singers everywhere.

If we integrate the sound energy over all space, it will be about the same regardless
of whether the singers are singing coherently or incoherently.

These spatial considerations are analogous to the intensity distribution in the
interference fringes from many slits. When the number of slits increases, the fringes
become narrower and narrower, and the bright streaks become more intense even
though the total luminous flux out of the slits is unchanged.

15.2 Finer Details of Coherence

As stated above, there is a close relationship between temporal coherence length and
width of frequency (or wavelength) distributions. We also claimed that the spatial
coherence lengthmaydepend on the size and other features of the source of thewaves.
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In this sub-chapter, we will explore finer details of coherence which in fact can be
very useful to know—useful for experimental physics and for better understanding
of some exciting phenomena in physics.

Weare nowgoing to analyse signalswherewecan choosebetweendifferentwidths
in the frequency (or wavelength) distributions of the wave. We could avail ourselves
of audible noise found in nature or other types of waves with similar characteristics.
However, we choose to generate the signals numerically that makes it easy to change
the characteristics.

15.2.1 Numerical Model Used

Wewill make a kind of noise signal, a signal similar to the sound of a large waterfall.
The sound may be composed of many sources that act independently of each other
(the sound of small and large masses of water hitting rocks and water surface at the
bottom of the fall). Since the sound is created in a variety of unrelated processes, we
call it “random” or “stochastic”. The sound has many frequency components that
cover an entire frequency band.

We choose an approach in which we create the frequency spectrum of the signal
we wish to work with, and then, we use an inverse Fourier transform to generate the
signal in the time domain.

We choose that the frequency spectrum (frequency image) should have many
frequency contributionswith an optional centre frequency and aGaussian distribution
of nearby frequency components. The width of the frequency distribution must be
optional. In order to get a large variation each timewegenerate a signal,we alloweach
frequency component to have an arbitrary value between zero and the variance of the
Gauss distribution. In addition, we allow the phase of each frequency component to
be arbitrary, lying between 0 and 2π .

AMatlab function that generates such arbitrary signal with given centre frequency
and given full spread in the frequency distribution is given at the end of this chapter.

In Fig. 15.5, one sees three examples of arbitrary signals generated in this way,
alongwith the analysis of the signals by the same threemethods of analysis as before.
The same centre frequency (5000Hz) has been selected for all three signals, but three
different full widths (down to 1/e of max), namely 50, 500 and 5000Hz. 216 points
are used, and the sampling rate is 44,100Hz (same as audio on CDs). There are a
number of interesting results.

15.2.2 Variegated Wavelet Diagram

It is particularly interesting to see the wavelet diagram for these arbitrary signals.
Already in Fig. 15.4 we saw that the sum of several signals led to the amplitude in
some time intervals being large, but small in other periods. We got a “clumping” of
the signal in time. However, in Fig. 15.4 there was little difference in frequency.
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Fig. 15.5 Three examples of synthetic chaotic fluctuations, with a width in the frequency range
of, from left to right, 50, 500 and 5000Hz. The centre frequency is 5000Hz. Frequency analysis,
wavelet analysis and the first part of the autocorrelation function are also shown. For the wavelet
analysis, K = 120, 36 and 12 were used on the analyses from left to right (almost optimal values).
Note the differences in time scales for the three signals in the wavelet diagrams and autocorrelation
graphs

We see this much better in Fig. 15.5. The clumping of the signal occurs in a
rather chaotic manner both in frequency and time when the width of the frequency
distribution is large enough. There are up to thousands of contributions (frequency
components) to the final signal (all frequency components within the frequency dis-
tribution), and the result is a rather chaotic variegated pattern in the wavelet diagram.



524 15 Coherence, Dipole Radiation and Laser

If we scale frequencies and sampling rates in our calculations to visible light, the
last column in Fig. 15.5 would be comparable to electromagnetic waves from the
sun. In that case, it is tempting to make believe that one is dealing with photons.
Each red spot in the wavelet diagram could then be associated with a photon coming
at a given time and having a certain frequency. But we know from the way we have
generated this signal that the effect is due to a straightforward summation of many
random waves with a width in frequency distribution. This is a fingerprint of the sum
of many simultaneous independent wave contributions which is quite natural since
the light emitted from some parts of the sun arises in a chaotic manner and there is
no correlation between light coming from one part of the sun surface with what is
coming from other parts.

Note that the time excerpt of the wavelet diagrams is ten times smaller for the
right one compared to the left one. It shows that the duration of each red spot (peri-
ods with a significant amplitude for the frequency to which the spot corresponds)
becomes shorter when the width of the frequency distribution increases. It is difficult
to estimate some sort of average duration for the red spots, and the result is partly
also dependent on the choice of K value for the wavelet analysis. Nevertheless, we
can give a (very rough) estimate of the duration of the spots as follows:

Frequency width (Hz) Duration of red spots (ms)
50 20–50
500 6–10
5000 1–2

We see that the duration of the spots decreases as the width of the frequency
distribution increases. We further note that for the smallest width of the frequency
distribution it is not possible to detect that more frequencies occur simultaneously,
but when the width of the frequency distribution increases, there are many examples
that more than one frequency can be significantly present at the same time.

15.2.2.1 Width of Frequency Distribution Versus Coherence Length

Wefind the following relation between thewidth of frequency distribution and coher-
ence length.

Frequency width (Hz) Coherence time (ms) Product-of-these
50 18 0.9
500 1.8 0.9
5000 0.18 0.9

The interesting point is that if the width of the frequency distribution is small, it
takes a relatively long time between the occurrence of constructive and destructive
interference (for fictitious sub-signals with slightly different frequencies). Each time
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Fig. 15.6 Sections from the signal in the time domain to show that each “bubble” with relatively
pure signal ismuch largerwhen the frequencywidth is small thanwhen it is large.Note the difference
in time intervals displayed

the signal gets an increased amplitude, it will take a time equal to the inverse of
the width in the frequency distribution before the amplitude again decreases towards
zero.

Figure15.6 shows a detail in the time-domain description of a signal generated
with widths (in the frequency distribution) of 50Hz (left) and 5000Hz (right). The
centre frequency is still 5000Hz. Note that for the smallest frequency band, each
bubble takes in the time domain 15–40 ms (more than 100 time periods, individual
oscillations donot appear in the plot).With a hundred times greaterwidth in frequency
distribution, the width of each bubble (to the extent that it is possible to define such)
is only about 0.3–0.5 ms (about two periods). With goodwill, we can say that an
increase in the width of the frequency distribution by a factor of hundred led to a
100-fold reduction in the duration of each bubble. This accords with the relationship
between width of the frequency distribution and coherence time of the signal.

The result is related to the so-called Wiener–Khintchine theorem which states that
the Fourier transform of the autocorrelation function of a function is equal to the
power spectrum of the function (also called the spectral power density). We do not
go into details about this last relationship.

15.2.3 Sum of Several Random Signals; Spatial Coherence *

So far, when we have discussed random signals (chaotic signals), we have only
studied each signal in itself. In calculating coherence time, however, we have in a
way compared a chaotic signal with itself, but slightly shifted in time. We saw that
coherence length was very small when the width of the frequency distribution was
about as large as the centre frequency.

We shall now study spatial coherence; that is, we will investigate the correlation
between the wave passing point A with the wave passing point B in the right part of
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Fig. 15.2. A key for understanding spatial coherence is a spatially distributed source
of waves.

This subsection deals with the experiments carried out by Hanbury Brown and
Twiss more than 60years ago. Our treatment explains how we can generate light
with considerable spatial coherence by sending a light beam (initially with much
less spatial coherence) through a “pinhole” with a few micrometre diameter.

The description is, however, somewhat demanding and is not expected to be treated
at bachelor level in physics. Jump to Sect. 15.3 if you want to skip these finer details.

A hypothetical “point source”
Suppose we have “point source” of a wave with an extent less than a wavelength.
Assume further that the wave exits from this source with an almost spherical sym-
metry (at least for the part we are interested in). Assume further that A and B are
equally distant from the source. In that case, the wave at A will be equal at each
instant to the wave at B. A wave peak will pass A and B at the same time. We can
say that A and B are on the same well-defined wavefront, which is part of a spherical
surface with the source at the centre. In that case, the spatial coherence is as long as
the extent of the part of the sphere where this relationship holds.

This means that we could insert a double slit perpendicular to the wave motion
direction and see interference on a screen behind the double slit. If the coherence
time is more than a few time periods, we will be able to get more fringes in the
interference pattern.

Similarly, we could put a spherical obstacle and demonstrate the existence of
Arago’s spot (bright point) in the centre of the shadow (image) of the obstacle.

A more realistic source of light
However, for light it is difficult to create a light source with an extent less than the
wavelength. It is possible in the so-called quantum dots, but when a filament lamp
emits light, we can look at the filament as a mass of independent light sources, each
emitting chaotic light signals. If we now study light waves passing two points A and
B at the same distance from the incandescent lamp, there will no longer be a good
correlation between the waves at the two points. This is because there is a certain
distribution of distances between the different parts of the filament and the point A,
and a different distribution of distances between the same parts of the filament and
the point B.

The same reasoning can also be used for light from the surface of a star. Hanbury
Brown and Twiss developed an elegant method in 1954 and 1956 that can be used to
measure the extent of a star using the properties of chaotic waves (see references at
the end of this chapter).

A simple model to point out the essence we want to discuss
In Fig. 15.7, the principle of the Hanbury Brown and Twiss effect is shown. For the
sake of simplicity, we have only included two independent sources with the same
type of chaotic signal, near each other, and two detectors A and B. The signal into
A consists of the sum of waves from sources 1 and 2 travelled equal path lengths.
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Fig. 15.7 Principle sketch to show the basis of the so-called Hanbury Brown and Twiss effect. See
the text for details

The signal into B is also a sum of the signals from the sources 1 and 2, but this
time the path length is slightly different. The signal from source 2 is delayed relative
to the signal from source 1, which is different to the situation at A.

The signals from the sources 1 and 2 are both chaotic, and their sum is also chaotic.
The spots in the wavelet diagram will have short duration and will be distributed
chaotically in time and frequency (assuming a largewidth in the frequency spectrum).

Since the path length are equal between A and source 1 and 2, and equal to the
path length between B and source 2, but not between B and source 1, the wavelet
diagrams of A and B may be quite different. This means that there may be a bad
correlation between the signals into detectors A and B. However, if we placed A and
B in the same location, the correlation would be maximum.

Although the distribution of distances is always different at points A and B, if
these points do not coincide, the difference may not be demonstrated in practice.
If the differences in the distribution of distances of A and B differ by significantly
smaller than a wavelength, we cannot expect to see any difference in the waves at
points A and B. In that case, there will be a high degree of correlation between the
waves in these points. If wemake the distance between A and B larger, wewill sooner
or later get a difference of more than one wavelength in distributions of distances
from different parts of the light source to point A and corresponding to B. In that
case, we would expect the correlation between the waves at A and B to decrease.

The largest distance between A and B for which we can still get a significant
correlation will be called the spatial coherence of the wave at the place under
consideration.

If the light source, which consists of independent chaotic parts, has an
extent given by an angular diameter θ judged from observer, and the average
wavelength is λ, the spatial coherence length a will be in magnitude

a = λ/θ
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Hanbury Brown and Twiss used this relationship in 1956 to calculate the
size of the star Sirius which is 8.6 light years away from us. The spatial coher-
ence length of the light from Sirius was about 8 metres here on earth. The
angular diameter was estimated at 0.0068 arc seconds which correspond to
3.3 × 10−8 rad.

If we use this relationship and consider a halogen bulb (with a filament of 1cm
extension) as light source and considering the light from this 100m away, we will be
able to find correlation in the signals at points A and B, which are up to about 6mm
apart. In other words, the spatial coherence of this lamp at 100m distance would be
about 6mm.

For random (chaotic, stochastic) light, we have so far only considered how the spots in a wavelet
diagram change, for example, when two chaotic signals are added with and without a time offset.
Basing our discussion on the signals with the given frequency and the width of the frequency
distribution, we have calculated temporal correlations in the amplitude (first-order correlations).
This approach works well when the frequency is less than a few GHz, but we have no detectors that
can follow the time variation of the signal for visible light (6 × 1014 at 500nm). Accordingly, we
cannot sample and calculate the autocorrelation function for light waves.

The detectors for light are so-called square law detectors that provide a response proportional
to the square of the amplitude of the light coming in. The detectors cannot follow the instantaneous
intensity, which varies as fast as the underlying sinusoid itself, but provides an integrated intensity
over a significantly longer period. This means that light detectors can only detect time variations
in intensity in a frequency range below 1 GHz. When Hanbury Brown and Twiss performed their
famous experiment about Sirius in 1956, the available bandwidth of detectors and amplifiers was
only 38 MHz. How could they follow the much faster changes in the light signals themselves?

The clue is that when we sum up two frequencies and squares the sum, we get the following:

(cosω1t + cosω2t)2 = 1 + 1

2
cos(2ω1t) + 1

2
cos(2ω2t) + cos

[
(ω1 + ω2)t

] + cos
[
(ω1 − ω2)t

]
.

In addition to the constant term, the frequency of three terms is about twice the original, and for
the detection of light, they are completely beyond the possibility of detection. The term cos

[
(ω1 −

ω2)t
]
is, however, a kind of “beat frequency term”. For continuous frequency distributions we

have worked with, this term will provide contributions from the frequency zero to a frequency that
corresponds to the width of the frequency distribution.

Because of this “beat frequency term”, Hanbury Brown and Twiss (and everyone else for that
matter) could transform the variation in the visible light frequency range to a much lower frequency
range. The signal that forms within the “beat frequency range” can in our modelling case also be
analysed by wavelet analysis, and we will have similar chaotic patterns there as well. This illustrates
that the correlation of signals as shown in Fig. 15.7 can also be studied in cases where detection
occurs with “square law detectors” in a completely different frequency range than the original
waves.

Spatial coherence in the light from the sun
If we use the same relation for the light from the sun seen from the earth, we find that
the spatial coherence length is only about 60µm. This means that it is impossible
to use sunlight directly for double-slit experiments and to detect Arago’s spot. What
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Fig. 15.8 We do not get interference fringes when light from a halogen bulb is sent directly through
a double slit. However, if we first send the light from the bulb through a very narrow slit, we can
get sufficiently large spatial coherence that interference fringes can be detected. To get a sizable
amount of light through the slit and enough light to be able to see the fringes on a screen or on a
photographic plate, it is advantageous to use convex lenses (cylindrical) both before and after the
first slit

did Young do in 1801 and Arago in about 1820? The secret lies in making the angle
of the light source we actually use small enough. We can achieve that by sending
light through a so-called pinhole. We can make a pinhole by sticking a very thin
needle through an aluminium foil, or we can buy foils with a well-defined pinhole in
a holder for about a hundred US dollars. We have a wide choice of the hole sizes, and
if we choose, for example, the diameter to be 10µm, the spatial coherence length
of the light passing through the hole will be about 5cm after the light has travelled
1.0m from the hole (at 550nm).

However, the cross-sectional area of a hole with a diameter of 10µm is exceed-
ingly small. If we want to experiment with a filament lamp or sun as a light source
(incoherent light source), we can increase the intensity of the light that passes through
the hole by passing the light through a convex lens and positioning the hole exactly
where the image of the sun (or filament) is formed. In this case, one captures only a
small part of the light from the source, but much more than if one did not use a lens.

It may also be advantageous to use a lens after the hole to prevent the light from
spreading too much. This last lens should then be positioned so that the hole is at the
focal point of the lens (see Fig. 15.8).
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Fig. 15.9 Surface waves on water at some point. Within small patches on the surface, we have a
rather “pure” wave. See the text for further discussion

15.3 Demonstration of Coherence

It is no easy matter to get a good understanding of coherence. We therefore choose
to include a photograph of surface waves on water to illustrate coherence in an
altogether different way.

Within small patches on the surface we have a rather “pure” wave (see Fig. 15.9).
Within these patches, it is possible to predict with fair confidence mutual phase
relationships in the direction along which the wave is moving (red lines). Within
the patches, the phase and amplitude of the wave are approximately constant in a
direction that is normal to the propagation direction (yellow lines). The patches are
very different in size. In the direction of propagation, the patches vary between two
and twelve wavelengths. This means that the temporal coherence length is of the
order of 5–7 wavelengths, but this is hardly a sound estimate of size. In a direction
normally to the direction of propagation, the yellow lines in this case are on average
about as long as the average red line. This means that the spatial coherence length is
about as long as the temporal in this case. Perspective conditions, however, make it
difficult to specify the width of the patches in terms of uniform waves.

If we consider waves in three dimensions, the “patches” where one sees moder-
ately well-defined waves will be replaced with small volumes where there are fairly
well-defined (and almost flat) waves.

However, the patches or volumes with fairly well-defined waves will change in
time, which aggravates the complexity even more. One readily appreciates what an
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enormous statistical challenge it is to describe this dynamic situation, which one
often comes across in practice when waves propagate in space.

A small detail in Fig. 15.9may beworth reminding. At any point, thewater surface
at a certain moment has a fairly well-defined height. Put another way: The height
of the water surface does not have multiple values at the same time! We are so used
to thinking that “there are several waves at the same time”, but at one and the same
place, the local air pressure has only one value at a given moment for sound waves
in air, and at one place, the electric field has only one value and only one direction
for the sum of all contemporaneous electromagnetic waves at this location.

This is a property well worth pondering over!

15.4 Measurement of Coherence Length for Light

Visible light has such a high frequency that we cannot detect the sinusoidal vibration
of the electric field as the wave passes. We cannot use the mathematics mentioned
above directly.

However, we can perform an analogue calculation of a quantity closely related
to the autocorrelation function. This is done by splitting a light beam into two sub-
beams by a so-called beam splitter. The two sub-beams are then reunited, but only
after one has been made to travel a longer path than the other. When the sub-beams
are brought together, their electric fields are added, and so are the magnetic fields,
and we deal with the intensity of the sum. We simply consider:

G(τ ) = 1/T
∫ T

0
[ f (t) + f (t + τ)]2dt

= 1/T
∫ T

0

[
f 2(t) + 2 f (t) f (t + τ) + f 2(t + τ)

]
dt

= 1 + 2/T
∫ T

0
f (t) f (t + τ)dt .

(15.6)

Here is f (t) to be considered as, for example, the electric field in the beam after
it is divided into two and the amplitude is normalized to 1.

This means that we can simply change the path of one sub-beam compared to the
other before they combine, and then, we get the autocorrelation function just like
the curve in the left part of Fig. 15.3, except that the entire curve is offset by +1 so
the minimum is zero (intensity cannot be negative). Figure15.10 shows the principle
of a so-called Michelson interferometer commonly used in such measurements. The
path difference between the two sub-beams is ΔL = 2L1 − 2L2.
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Fig. 15.10 In a Michelson interferometer, a beam of light is brought to a beam splitter. Half of the
beam goes to a fixed mirror and is reflected from here, while the other half goes to a movable mirror.
Half of the light reflected from the mirrors is sent to a screen or detector where electric fields from
the two contributions are added. In the right part of the figure, the light path for the two sub-beams
is marked schematically

Light from thermal light sources, such as incandescent lamps, may have a tem-
poral coherence length of only a few wavelengths (that is, just a few microns).
Light with such small coherence length is called “incoherent”. Light from a
good laser can have a coherence length of up to several hundred metres. A
laser that costs a few thousand dollars typically has a coherence length of a
few centimetres (i.e. in the order of 100,000 wavelengths). Light with long
coherence length is called “coherent”. There is no sharp boundary between
incoherent and coherent light.

Albert Abraham Michelson (1852–1931)
was an eminent experimental physicist. He is perhaps best known for the Michelson–Morley exper-
iment in 1887. Michelson and Morley concluded that their experiment and showed no evidence for
the relative motion of the earth and ether. Michelson measured the speed of light with great pre-
cision. Furthermore, he developed stellar interferometers, thus measuring the diameter of distant
stars, and measuring the distance between star pairs (“binary stars” in English). He received the
Nobel Prize in Physics in 1907, the first American to win this distinction.

15.5 Radiation from an Electric Charge

Coherence is linked to the mechanisms of how waves are generated. We have pre-
viously discussed mechanisms for producing waves on a string, sound waves and
surface waves on water. For electromagnetic waves, we have so far shown that, for
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Fig. 15.11 A charge at rest has spherical equipotential surfaces around it (black circles) and radial
electric field lines (red lines). The electric field is drawn at four points in the plane. The field is
strong close to the charge and decreases with increasing distance. In the left part, the distance
between the equipotential surfaces does not reflect the differences in potential between them. In the
right part, the potential difference is equal for every set of neighbour surfaces, so that lines close
to each other reflect a space with higher electric field than a space where the lines are further apart
from each other. However, for point sources the equipotential curves get so close to each other near
the charge that the lines overlap. Equipotential lines are therefore often drawn with a somewhat
arbitrary selection of electric potentials (as in the left part)

example, plane waves are solutions of Maxwell’s equations in the remote field zone
in vacuum (at least in the absence of free charges). But what is usually the source
or the mechanism behind the generation of electromagnetic waves? We will barely
touch this vast field of physics. First, we will see how charge in motion can produce
waves, and then, we will look at some of the main features behind the laser.

We can through calculations show that we can make electromagnetic waves in the
radio frequency range by sending an alternating current to an antenna. In this case,
we have free charges and free currents in action, and Maxwell’s equations give us
an inhomogeneous second order partial differential equation for the electric field

#»
E

and a corresponding equation for the magnetic field
#»
H . Calculations of this type can

be done with finite element methods as mentioned earlier. We do not go into details
here.

We choose a “picture and words” presentation instead of a rigorous mathematical
treatment, but hope that it will be sufficient to throw light on the key features.

Figure15.11 shows schematically that a charge q at rest has electric field lines that
point radially outward (if q is positive). Equipotential surfaces are spherical shells
centred at the charge.

If the charge ismoving at a constant speed (left part of Fig. 15.12), the equipotential
surfaces according to the theory of relativity will become “squeezed”, that is, slightly
discus-shaped with the shorter axis in the direction of motion. In a system where the
charge is at rest, there is only an electric field. In a system where the charge is in
motion, there will be both an electric and a magnetic field. However, when we talk
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Fig. 15.12 Left part: A charge in steady rectilinear motion has spherical equipotential surfaces
around it, but only in the sense that the equipotential surface at a certain distance is centred at the
charge position at the time d/c earlier, where d is the distance from the equipotential plane and the
charge at the earlier time. On account of the relative displacement of the equipotential surfaces, all
the electric field lines, except thosemoving in the same (and opposite) direction as the charge, do not
remain purely radial and acquire a tangential component. Right part: An oscillatory charge (black
arrow) will give equipotential surfaces that are slightly offset relative to each other, as suggested.
This causes electrical field lines in tangential direction (blue arrows), and these change in principle
similarly as in an electromagnetic wave

about generating waves, we must include the so-called retarded potentials. We will
not go into a more advanced treatment of this topic, but only look at some superficial
features.

We assume that changes in electrical and magnetic fields move in space with the
velocity of light. We do not see a supernova when it happens, but only after light
has travelled the enormous distance from the nova to us. What we see today is the
supernova as it was for the exact time d/c since, where d is the distance between us
and the supernova and c is the velocity of light.

This is also true when we move a charge in space. The field somewhere in space
has a distribution corresponding to the location of the charge at the time

t ′ = t − d/c

where t is the present time and d is the distance from the charge to the point where
the field is being measured at the instant t ′.

If we draw equipotential surfaces from a charge moving with constant speed, the
planes will have relative positions as indicated in the left part of Fig. 15.12. The effect
is greatly exaggerated as the charge would actually have a velocity above half the
light velocity as the figure is now drawn.

The electric field is usually given as the gradient of the electrical potential, and
we apply this rule also when we use retarded potentials. Then, we get electric field
lines that are curved, as shown in the figure.
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Suppose that we are at rest and a charged particle is going past us at constant
speed. We will first experience an electric (and magnetic) field at our location that
has a time development in which the electric field has the same direction as that of the
moving charge (for positive charge), and then, we will experience a much stronger
field perpendicular to this direction as the charge passes, and end up with a weak
field in the opposite direction. This is a “pulse” of electrical (and magnetic) field,
and not a wave in the usual sense.

An observer who happens to be following a charge moving at constant speed
will describe the electric field as static, and it would appear to him to conform to
Fig. 15.11. Such a situation does not qualify for the radiation of energy. In our own
reference system, where the charge is in motion, the electric fields will be built up
at one place in space, while a completely equivalent depletion of fields takes place
somewhere else in space. To be sure, the region that has the highest electromagnetic
field energy density will move, in the same way as the charge, but this displacement
is of local character, and does not represent energy flowing out of the region around
the charge.

To get a wave that extends beyond the vicinity of the charge, we must strive
for a situation similar to that of an electromagnetic wave in Chap. 9. Electrical
(and magnetic) fields must oscillate and have a direction perpendicular to the
direction of wave motion. To get this with our charge in motion, we must
have a charge that is subjected to an acceleration. For example, the charge
can oscillate back and forth in space, preferably in a harmonic motion. The
electric field a little away will then oscillate as outlined in the right part of
Fig. 15.12. This change in electrical fieldwill have both a radial and a tangential
component relative to the radius vector from the charge to the pointwe consider.

The component in the radial direction (when we are at some distance from
the charge compared to the amplitude of charge oscillation) will (almost) not
change over time. Therefore, this component will (almost) not give rise to any
wave that will propagate.

However, the component perpendicular to the radial direction (in the plane
perpendicular to the charge oscillation direction) will oscillate (almost) as a
sinusoid over time. This component could give rise to an electromagnetic wave
that spreads into space.

The curvature of the electric field increases with the speed of charge while it oscil-
lates. The time derivative of this again determines how large ∂ E/∂t becomes. These
two factors together cause the radiated energy to be proportional to the square of the
frequency of oscillation. Therefore, we often say that the radiation is proportional to
the acceleration of the charge.
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Some side remarks:
It may be tempting to think that the electric field from a charge “radiates” outward all the time.
Such thoughts could be nourished by the notion of a retarded potential where we think the field in
one place is due to the charge where it was a while ago. However, a constantly radiating electric
field would soon contradict energy conservation, etc. Fortunately, there is no need to think along
these lines. There are changes in electrical andmagnetic fields that propagate with the light velocity.
Before a particular change has spread and reached a given location, it is the field distribution that
is rooted in the relationship before the change that applies. The electric field from a charge at rest
is in equilibrium with itself. It is a solution of Maxwell’s equations, and there are no changes in
fields and no transport of energy. As soon as movement and particularly acceleration enter, things
become different.

15.5.1 Dipole Radiation

An alternative way of generating electromagnetic waves is to use an electrical
(or magnetic) dipole that varies in time. This is a very effective way to make
waves. We can understand this by considering electrical field distribution from
a permanent electrical dipole (see left part of Fig. 15.13). The electric field is
directed perpendicularly to the radial direction in the plane normal to the dipole
direction.

If we change the polarity of the dipole in a harmonic way, we get an elec-
tric field in this equatorial plane that will vary just the way we want it for
generating an electromagnetic wave that can propagate in space (electric field
perpendicular to the direction of motion). In the direction of the dipole itself
(and in the opposite direction), the electric field from the dipole is nearly radi-
ally directed and has negligible component across the radial direction. In these
two directions, virtually no waves are transmitted.

In the right part of Fig. 15.13 is shown a diagram of electric field distribution
near a dipole antenna at a given time. The electric field is the strongest where the
field lines are closest. The entire pattern moves outwards with the velocity of light,
and new loops form near the antenna twice for each period (direction of the field
changes direction in the two systems of loops that form each period in the dipole
variation). An animation of the time course (andmuch other information) is available
on Wikipedia under the heading “dipole radiation”.

[A remark: The right part of Figs. 15.12 and 15.13 has a certain relation to each other, but is still
different. Try to point out differences and similarities.]

It is common to draw direction diagram for antennas. A direction diagram indi-
cates the relative temporal intensity of the transmitted waves for different directions
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Fig. 15.13 Left part: A static electric dipole consists of two identical charges, but with opposite
signs, slightly spaced apart. Equipotential surfaces (black, with lobes pointing upward and down-
ward) are drawn as well as electric field lines (red, with belly outwards to the sides). The physical
extent of the dipole is greatly exaggerated in relation to the field line pattern. Right part: An oscil-
lating electric dipole will create an electric field in the surrounding space as indicated. The field
pattern moves outwards at the speed of light
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Fig. 15.14 Directional diagram for a single vertical dipole antenna (also called “antenna diagram”
or “radiation diagram”). The diagram only applies to a distance from the antenna which is large in
relation to the length of the antenna. Linear scale for the intensity in the radial direction is used in
the left part of the figure and a logarithmic scale in the right part. Intensities are all relative to the
maximum value. The diagram is read as follows (left part): the relative intensity at 0◦ is set to “10”.
Then, the relative intensity at 30◦ is about 7.3 and at 60◦ about 2.8. For the right part, see the text

in space, in a so-called polar diagram. Figure15.14 shows the direction diagram in
a vertical plane passing through a single vertical dipole antenna.

The intensity (time-averaged Poynting vector) as a function of angle θ deviation
from the meridian plane of the dipole is given by:

I (θ, r) = constant × f 4 cos2(θ)/r2
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where f is the frequency of the alternating current and r the distance from the dipole
(has to be many wavelength away to avoid near-field conditions).

A direction diagram can be givenwith a linear scale in the radial direction (left part
of the figure), but most commonly used is a logarithmic scale in the radial direction
(right part of the figure).

A remark:
Suppose we create a polar graph with logarithmic scaling of intensity in the radial direction. Since
the logarithm of 0 does not exist, a cut-off intensity needs to be chosen when the graph is drawn.
In our case, a relative intensity of 1.0 corresponds to the outer radius in the chart, while a relative
intensity of 0.001 is chosen at the centre of the diagram. Relative intensities less than 0.001 would
be negative on a logarithmic scale and would appear on the opposite side of the chart. To avoid
misunderstandings, we remove negative values before plotting.

The Matlab program used to create Fig. 15.14 is given below:

function antennaDiagram3

N = 1024;

theta = linspace(-pi/2.0,3.0*pi/2.0,N); % Angles

costheta = cos(theta);

intensities = costheta.*costheta;

intensities = log10(intensities*1000.0);

for i = 1:N

if(intensities(i)<0)

intensities(i)=0;

end;

end;

polar(theta,intensities);

A dipole antenna can in some ways be viewed as a single slit of very small width.
The radiation becomes identical in all directions perpendicular to the direction of the
dipole. However, if we insert two dipoles next to each other and feed both antennas
with identical signal, the radiation diagram will look like a double-slit pattern. By
placing many identical antennas in sequence, we get a radiation diagram similar
to a single slit (in a “meridian plane” including the complete line of antennas). By
inserting reflectors and directors, we can further influence the radiation diagram, and
an example is given in Fig. 15.15. There is an antenna diagram for an antenna that
is widely used in base stations for mobile telephony. Note that the diagram is radial
with decibels in radial direction.

The thinking that lies behind the antenna pattern diagrams is much the same as for
the intensity distribution of light after passing one or more slits. The principal motif
in the calculations is interference between sufficiently coherent waves. Thus guided,
we use the idea of differences in the path lengths and add various contributions with
the correct mutual phase.
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Fig. 15.15 Directional diagrams for a commonly used base station antenna for GSM 900 mobile
telephone (Kathrein 80010621). One diagram gives angular distribution in the vertical direction and
the other for horizontal direction

15.6 Lasers

One of the most important light sources in science nowadays, lasers, is used in
everyday technological appliances, such as CD, DVD players and laser printers.
Lasers are also used for cutting metals and other materials, and in medicine, for
example, by reshaping the cornea in our eyes, and other operations. Even my dentist
has switched to using lasers for “drilling” in the teeth. Some car manufacturers
now use lasers as headlights. The range of laser applications is impressive and still
increasing!

The word laser is an acronym for Light Amplification by Stimulated Emission of
Radiation. Theodore Maiman at Hughes Research Laboratories managed to make
the world’s first laser (see Fig. 15.16). This happened on 16 May 1960. The laser
celebrated its 50th anniversary in 2010. However, there are many physicists who
have been involved in the development and utilization of the laser, and it was Charles
H. Townes who in 1964 received the Nobel Prize in Physics “for the development of
laser principles”. Also, other Nobel prizes in physics are fairly closely linked to the
laser in one way or another. It is therefore natural that we devote some time to the
concepts that lie behind a laser. However, only the main principles are mentioned,
and here too we will use a “picture and words” approach.

A laser is based on the so-called stimulated emission. Einstein had already shown
in 1917 that we could get stimulated emissions from, for example, atoms. By that we
mean that we do not have to excite an atom andwait until it finds it convenient to send
out light and fall back to its ground state. By shining some light on an excited atom,
we can actually trigger/stimulate it to return to the ground state. The laser requires a
medium that is amenable to stimulation and an arrangement where light produced by
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Fig. 15.16 Photograph of
the first laser. A flash tube
encircles a ruby rod, which is
coated with an almost 100%
reflective mirror at one end
and approximately 95%
reflective mirror at the other
end. The laser emitted pulsed
coherent light. Image
courtesy of HRL
Laboratories—Malibu
California

Fig. 15.17 Main
constituents of a traditional
laser (schematic)
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stimulation may lead to the stimulation of even more light from the medium. In this
way, we get a positive feedback in the process that makes it almost self-sustained.
However, since the energy that is consumed in bringing about the emission of laser
lightmust be compensated for, an external source of energy is necessary if the process
is to be sustained.

Figure15.17 shows themain ingredients in a traditional laser. It contains an ampli-
fication medium to which energy can be supplied from an external source. The
medium is in an optical cavity (“cavity” or “box”) limited by two mirrors. Light that
is produced in the mediumwill initially spread in all directions, but light that hits one
mirror tends to be reflected back through the media, hit the mirror on the other side,
is reflected once more and sets up a standing wave of electric and magnetic fields in
the cavity. The light that is reflected back and forth many, many times can stimulate
the medium to give even more light.
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Fig. 15.18 A photograph showing the innards of a standard HeNe type laboratory laser. An electric
current is sent through a low-pressure mixture of helium and neon and leads to the emission of
chaotic, incoherent light emitted in all directions. Part of this light energy is (at proper conditions)
building up in a cavity between two mirrors. The result is a strong, coherent beam of light between
the two mirrors. We do not see this beam from the side because the light beam in the cavity is
almost perfectly aligned along the axis between the mirrors, and does not exit from the sides. A
tiny fraction of this light beam is transmitted through the mirror to the left in this figure

With ordinary sources, the light comes frommany atoms or molecules that appear
quite independent of each other. Then, we get a state that corresponds to our real
singers and our chaotic waves mentioned earlier in this chapter. The light intensity
from the light source increases approximately proportionally with the number of
atoms/molecules emitting light and the light goes in “all” directions.

The conditions are different in lasers, whichwill be exemplified through a descrip-
tion of a HeNe laser (see Fig. 15.18). A low-pressure mixture of helium and neon
(in a ratio of approximately 10:1) is held in a glass receptacle. Between a cathode
and an anode a high voltage is applied, which generates an electric current through
the intervening gas mixture. Electric current through the gas volume between the
cathode and anode leads to the emission of chaotic, incoherent light emitted in all
directions. This process is similar to what is found in a standard fluorescent lamp
used in coloured advertisement lighting at night (“neon lights”).

Energy of helium atoms (the majority species) excited by the electric current is
transferred to the neon atoms during collisions. The excited neon atoms emit light
initially through the so-called spontaneous emission in the samemanner as the helium
atoms.

Part of the light emitting atoms is located in a cavity between two mirrors. Some
light will be reflected back and forth between the mirrors as described above, and
standing electromagnetic waves may form. The presence of the electromagnetic field
with correct wavelength leads to an enhanced probability for an excited atom to emit
light, and the process is called “stimulated emission”. Light coming from the different
atoms through stimulated emission has nearly the same phase and is directed in the
same directions as the standing waves between the mirrors. Then, the amplitudes
of electrical and magnetic fields will be added directly and the intensity of the light
within the beam will be proportional to the square of the number of emitting atoms.
This leads to increased stimulated emission and thus a positive feedback. The light
intensity within the cavity builds up in time, but after few seconds the intensity will
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reach a plateau which depends among others on the efficiencies to excite He atoms
and transfer of energy to Ne atoms.

One of the two mirrors reflects only 95–99% of the light. About 1–5% of the light
intensity will be transmitted and is responsible for the laser beam available for use
in the laboratory.

It should be mentioned that the energy levels for helium and neon allows us to
make lasers with several different wavelengths. Usually, the wavelength of light from
a HeNe laser is about 633nm. Other wavelengths would lead to less efficiency and
even light that is not visible for the human eye. Special tricks are used in order to
avoid building up standing waves with wavelengths different from about 633nm.

Since the light waves of a laser are created in a “cavity” (with mirrors at both
ends, see Fig. 15.18), the light will form standing waves as mentioned. Then, the
frequency will be very precise, in a similar way as the sound of a guitar string
attached to both ends is pretty precise. If the distance between mirrors is 30cm for
a HeNe laser wavelength of about 633nm, there will be about 473,940 wavelengths
between the mirrors. The actual line width of the energy transition we use in the neon
gas is so wide that sometimes there may be more simultaneous wavelengths in the
cavity (the line width is broadened due to collisions with other atoms). With 473,940
wavelengths between the mirrors, the wavelength will be 632.9915nm, but with one
wavelengthmore or less than this, thewavelengthwill be 632.9902 and 632.9929nm,
respectively. We are talking about “modes” for the laser light. Mechanical heating
of the laser cavity will cause small changes in the distance between the mirrors. In
that case, the wavelengths will also change, which will lead to what is called “mode
hopping”.

In some contexts, lasers are constructed to play an active part in the various modes
the laser can operate in. We can then achieve many wavelengths whose mutual
difference is almost constant, and the phenomenon is called a “frequency comb”.
Theodor Hänsch received the Nobel Prize in 2005 for creating a “frequency comb
synthesizer” that made it possible for the first time to measure the oscillations in light
with extreme precision. The method forms the basis for our most modern atomic
clock.

The laser light that escapes from the cavity through the 95–99% reflecting mirror
is quite different from light emitted by, for example, an incandescent lamp. If we
compare the phase of the electromagnetic wave on a plane normal to the beam, the
phase throughout the plane will be almost identical. As stated earlier in this chapter,
this is equivalent with a high degree of spatial coherence. This is unlike the light
that originates frommany atoms which have no definite phase relationship with each
other, for example light from a filament lamp. Such light has little spatial coherence,
and the wavefront is very uneven.

The stimulated emission in the cavity is fairly stable, and the frequency is so
well-defined all the time that we can predict the phase of the laser light beam many
wavelengths in the future. Thus, even the temporal coherence is high in laser light.

Since thewavefront is verywell defined across the beam,while at the same timewe
can predict the phase of the laser light long distances along the beam itself and a laser
is a far superior light source for interference and diffraction experiments compared
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to so-called thermal light (“incoherent” light). It also means that a laser beam will
maintain a very well-defined shape where diffraction is kept to a minimum. The light
in a laser beam is one of the closest we can come to a mathematically idealized wave
description in practice. Laser light is therefore sometimes called “classic light”, but
such a term confuses more than it instructs.

15.6.1 Population Inversion

While we are explaining lasing action, we cannot completely leave out a detail called
population conversion. We will not go into detail since this theme is not so important
in our context. Nevertheless, a brief review is given below.

An atom may be in one of the several different energy states. We often draw the
energy states schematically as in the left part of Fig. 15.19. The ground state is usually
labelled E0 and the first excited state as E1. An atom can be exited from the ground
to the first excited state by, among other ways, placing it in an electromagnetic field
with the frequency ν = (E1 − E0)/h where h is Planck’s constant. An atom in an
excited state can fall back to the basic state entirely on its own. The transition may
then be accompanied by the emission of light (called spontaneous emission which is
a radiative process), or it may be through a so-called nonradiative processes. We can
also stimulate the transition with an electromagnetic field with the same frequency
as indicated for absorption (a radiative process called stimulated emission).

For the simple system in the left part of Fig. 15.19, energy is stolen from a beam
of light to excite the atomat an absorption,while in stimulated emission, energy
is released by the atom. There is the same probability of one transition as the
other per atom, assuming that the pertinent initial state is occupied. In order
to release more light than we insert (as required by a laser), there must be
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rapid transition
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Fig. 15.19 Left part: Two energy states in one atom, and schematic transitions between these (very
simplified). Right part: Population inversion can be achieved by pumping between energy levels
other than those involving the emission of laser light. See text for details
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Fig. 15.20 Energy levels
which are involved in a
common HeNe laser.
XuPanda, Wikipedia
Commons, CC BY-SA 4.0.
Modified from [1]
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more atoms in the excited state than in the state to which the atom falls back
after emission. The population of energy levels usually follows Boltzmann
statistics. Then, there are more atoms in a low energy state than in a higher
one. That is, it is usually impossible to form a laser from atoms in a state of
thermal equilibrium and few energy transition possibilities available.

The right part of Fig. 15.19 shows a way to get to a higher population in an energy
state than in a lower state. The principle is used in neodymium YAG lasers and is
based on four energy levels. The atoms are excited, by the use of strong light from
some light source, from the ground to the fourth energy level (E3). The atom then
spontaneously falls rapidly to the energy state E2 through a nonradiative process, but
stays here (in a “metastable state”). There is also a fast spontaneous transition from
E1 down to the ground state. However, the transition from E2 to E1 is not fast, and
after some pumping, there are more atoms in E2 than in E1.We have got a population
version!

If we now send a (weak) light with the frequency ν = (E2 − E1)/h, we will get
more emitted light than absorbed light from the atoms, and we may form a laser.
However, the intensity of the laser will be limited by how fast we can pump atoms
from the initial state to E3.

For the helium–neon laser, the energy levels involved are a bit more complicated.
A sketch (for orientation) is shown inFig. 15.20. In this case, heliumatoms are excited
by sending an electrical current through a gas mixture of helium and neon. Electrons
with significant speed supply the excitation energy for helium atoms. Helium has
two excited levels that are “metastable” so that helium can be in these states quite
long before they fall into lower energies. If such an excited helium atom collides with
a neon atom, the excited energy can be transferred from helium to neon. The neon
atom can then be further deexcited through a transition that gives light at 632.8nm.
It is this red light we recognize from a HeNe laser. The transition from the 3p to the
ground state is rapid and involves both radiative and nonradiative processes.

Today, there are many different ways to make a laser. Most people have more and
more lasers in their homes, as CD and DVD players use lasers. In addition, many
also have a laser pointer. In all these examples, semiconductor laser diodes are used.

https://en.wikipedia.org/wiki/Helium-neon_laser#/media/File:HeNe_Laser_Levels.png
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The light from such laser diodes is continuous in time. There are also lasers that only
give off, in part, very short light pulses. The pulse length can be completely down
in the so-called femtosecond area, even down to the so-called attosecond area (uses
this term for pulses a bit shorter than 1 fs). The wavelength is not well defined for
such short laser pulses!

Relevance for us?

When we went through the generation of electromagnetic waves using an oscillatory charge or
oscillating dipole, we based the treatment on Maxwell’s equations. The process was described as
continuous, andwe obtained an electromagneticwave that lasted as long as the oscillation continued.

When we explained the laser, we used energy levels and jump from one energy state to another.
Such an image is based on quantum physics, but only a quantum physics based on energy states
where we use perturbation theory to look at probabilities for transitions. How should such energy
diagrams as shown in Fig. 15.19 be understood? When a transition first takes place, does it take
place immediately or does the transition take some time? A good answer to this question is difficult
to get, since there are no consensus on this matter!

We like to draw “photons” like small wave packages (wavy lines) in diagrams like the ones
in Fig. 15.19, which implies that there is a small wave when a photon is released from an atom.
But how long is this wave? Can we have waves that come out having a phase memory (coherence
length) that corresponds to several hundred thousand wavelengths, but which itself has almost no
extent?

And how come that electrons at lower frequencies provide a continuous, sustained wave in
Maxwell’s formalism, but all of a sudden electromagnetic waves with frequencies corresponding
to light cannot be described as continuous waves (but as photon particles)?

There are similarities in how quantum mechanics and classic electromagnetism describe the
emission of electromagnetic wave/light, but the interpretation of the formalism is quite different.

In spite of the fact that physicists today often refer to light as “photons” which have a slightly
fuzzy particle nature, the vast majority of phenomena involving light may be explained by the wave
model of light. There are very few phenomena where we must use a particle model.

But what is meant by waves and what is meant by particles after all? Could it be the wave–
particle duality and the apparent paradoxes that follow from such an opinion may disappear if we
try to get a little more precise in our description?

The problems regarding the wave–particle dualism is intimately connected with philosophy. If
we take Niels Bohr’s view that the purpose of physics is not to tell how the world is, but just to find
relations between properties we can measure, it is no problem to switch between a particle and wave
description of light. However, if we have a philosophical stance close to realism, the huge differences
between a physics behind particle and wave phenomena in nature make the wave–particle dualism
unacceptable.

It is now 100years since the last time physicists shifted from one paradigm about light to another
paradigm. Perhaps, the time is now ripe for a new paradigm shift?

15.7 A Matlab Program for Generating Noise
in a Gaussian Frequency Band

Actually, the full program code for the Hanbury Brown and Twiss model, is available
from this Web page (Matlab version only).
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function [xx] = whiteNoiseGauss(Fs,N,fcenter,fullFwidth)

% Parameters: Fs : Sampling frequency, N : # data points
% fcenter, fullFwidth : The frequency spectrum has a gaussian
% distribution with center frequency fcenter and full width
% (1/e) in frequency spectrum equal to fullFwidth

% In the calling program, use for example:
% Fs = 44100;
% N = 2ˆ16;
% fcenter = 400.0;
% fullFwidth = 100.0;

fsigma = fullFwidth/2.0;
y = zeros(N,1);
xy = zeros(N,2);
T = N/Fs;
t = linspace(0,T*(N-1)/N,N);
f = linspace(0,Fs*(N-1)/N,N);
ncenter = floor(N*fcenter/(Fs*(N-1)/N));
nsigma = floor(N*fsigma/(Fs*(N-1)/N));
gauss = exp(-(f-fcenter).*(f-fcenter)/(fsigma*fsigma));
ampl = rand(N,1);
ampl = ampl.*transpose(gauss);
phases = rand(N,1);
phases = phases*2*pi;
y = ampl.*(cos(phases) + i*sin(phases));

% Mirror of lower half (Nhalf+1) to make upper half correct
Nhalf = round(N/2);
for k = 1:Nhalf -1

y(N-k+1) = conj(y(k+1));
end;
y(Nhalf+1) = real(y(Nhalf+1));
y(1) = 0.0;
% plot(f,abs(y),’-g’); % Plotting as a check if desired
% figure;

xy = ifft(y);
xr = real(xy*400);
xx = xr;

plot(t,xr,’-b’); % Plotting if wanted
hold on;
plot(t,imag(xy),’-r’);
xlabel(’Time (s)’);
ylabel(’Sound signal (rel units)’);
sound(xr,Fs); % Playing the sound for proper frequencies if wanted
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15.8 Original and New Work, Hanbury Brown and Twiss

R. Hanbury Brown and R.Q. Twiss. A test of a new type of stellar interferometer on
Sirius. Nature 178, 1046 (1956).

R.Hanbury Brown, R.C. Jennison, and M.K.D.Gupta. Apparent angular sizes of
discrete radio sources:Observations at Jodrell BankObservatory,Manchester.Nature
170, 1061 (1952).

R.Hanbury Brown and R.Q.Twiss. Correlation between photons in two coherent
beams of light. Nature 177, 27 (1956).

A relatively new article 6:37980—https://doi.org/10.1038/srep37980 “The col-
ored Hanbury BrownTwiss effect” based on a quantum approach by Silva et al. is
available for free at Nature.

15.9 Learning Objectives

After working through this chapter, you should be able to:

• Explain what distinguishes a real wave from an idealized simple mathemat-
ical description of a wave.

• Explain what is meant by temporal coherence and coherence length, and
how they can be determined.

• Explain what is meant by spatial coherence.
• Explain why coherence plays a role in experiments involving interference.
• Explain qualitatively why the line width in a frequency spectrum is related
to coherence length.

• Explain why summation of N perfectly coherent waves leads to an intensity
of N 2 times that of each wave, while the intensity is only N times that of
each wave for the summation of N incoherent waves.

• Explain how energy conservation is fulfilled in the two cases in the previous
learning objective.

• Explain why we claim that it would have been disastrous if all members in
a choir sung perfectly in tune with each other.

• Explain how we can measure coherence lengths with a Michelson interfer-
ometer.

• Explain qualitatively why an oscillating charge leads to the emission of
electromagnetic waves.

• Provide a qualitative correlation between a composite radio frequency
antenna and the diffraction pattern of light from two or more slits.

• Explain why a laser basically gets a (temporal and longitudinal) coherence
length that is far greater than does thermal light from, for example, an incan-
descent lamp.

• Explain qualitatively why population inversion is important for making a
laser work.

https://doi.org/10.1038/srep37980
https://www.nature.com/articles/srep37980.pdf
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15.10 Exercises

Suggested concepts for student active learning activities: Temporal/longitudinal
coherence, spatial coherence, autocorrelation function, correlation function, coher-
ence time, coherence length, chaotic signals, intensities after summation of coher-
ent/noncoherent waves, frequency width, pinhole, interferometer, retarded potential,
dipole radiation, dipole antenna, antenna diagram, laser, population inversion, stim-
ulated emission, spontaneous emission, cavity, standing waves.

Comprehension/discussion questions

1. Attempt to explain why the signal in the middle of Fig. 15.4 varies so much in
amplitude even though the signals we started with had a more even distribution
of amplitudes.

2. If you have sung in choirs, you have probably noticed that the volume reached
with more and more singers does not increase as much as we might think. A
soloist with a good voice is not outsung by a choir of maybe 30 people. Why is
not that one voice totally drowned by that of the 30?

3. Will a singer who sings a “dead” tone be expected to have a greater or less
coherence time for his/her voice than a singer who has significant “vibrato” in
his song?

4. Indicate the advantages and disadvantages of people who sing in a choir having
relatively short coherent times for the voice (the sound).

5. In Fig. 15.21, red lines mark the portion of the wave pattern that will pass a
double slit as waves are passing by. Do you think you would be able to detect
interference fringes for the case on the left and/or the case on the right? Explain
what would happen in the two cases.

6. Some believe that when we talk about coherent and incoherent waves, there are
two well-defined types of waves. In reality, there is a continuous range all the
way from “incoherent” to “coherent”. Explain.

7. There are advantages and disadvantages associated with both coherent light and
incoherent light. In which contexts would you prefer one and when would you
prefer the other? As usual, explain your answers.

Fig. 15.21 Marking the position of the two apertures in a double slit relative to the wave pattern.
The gap between the slits is much larger in the example to the left than in that to the right
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8. What will it take to obtain at least five interference fringes after sending light
through a double slit when the light we use comes from the sun?

9. Try to describe in your own words what we mean by coherence and coherence
time for a wave. What is the difference between spatial coherence and temporal
coherence?

10. What is themain idea behind themethod of Hanbury Brown and Twiss portrayed
in a simplified form in Fig. 15.7?

11. What is the main idea behind “retarded potential”?
12. What is most important for creating an electromagnetic wave from an oscillatory

charge or oscillating dipole: the radial component of the electrical field or the
tangential component? Explain!

13. Antennas are often designed as electrical dipoles as indicated in Fig. 15.13.
Occasionally, however, magnetic dipoles are used as antennas (a simple circular
current loop). Sketch the magnetic field around a magnetic dipole, and use this
as a basis to argue that the antenna can be expected to be quite effective.

14. In a previous chapter, we found intensity distribution of light diffracted at a
single slit. Howwould intensity as a function of angle from the symmetry axis be
expressed in a polar graph (qualitative)? Would the plot have some resemblance
to what we find in one of the antenna diagrams in this chapter?

15. Explain how population inversion can be achieved in a four-level system.

Problems

16. Use the program code earlier in the chapter to generate a chaotic signal with
centre frequency 5000Hz and a 3000Hz width in the frequency distribution.
Create a function that can calculate the autocorrelation function. Make a plot. Is
the coherence time you arrive at close to that expected? Comment on the results.

17. Use the programcode given earlier in the chapter to generate a chaotic signalwith
centre frequency 5000Hz and width in the frequency distribution of 3000Hz.
Make a Fourier and wavelet analysis of the signal. Then, calculate the square of
the original signal (elementwise squaring). Make a Fourier and wavelet analysis
of the squared signal (be sure to include a large enough frequency range in the
wavelet analysis). Comment on the results.

18. Determine the coherence time for your own voice. Specifically, the task entails
the following steps:
(a) Create a computer program where you can digitize audio, calculate the auto-
correlation function, and plot a selected part (see program snippets in Chap. 5).
Use the plot to estimate the approximate coherence time of the signal. If you
have created a program for digitizing audio when working with Chap. 5, you
may save a lot of time using it here as well.
(b) In particular, explain how you chose to utilize the data string you received
when digitizing in the analysis. Specifically: How did you choose to let the i and
j in Eq. (15.4) run in relation to the total data string?
(c) Determine the approximate coherence time of your own voice when you sing
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Fig. 15.22 Waves on water surface at some instant

“eeeeee” as evenly as you can. Perform this for 2–3 different pitches. Does the
correlation time seem to change much with the pitch?
(d) Perform a wavelet analysis of the signal. Comment on the results.
(e) Digitize another sound and determine the coherence time also for this (Sug-
gested sound: Own voice, same pitch as you used in point c, except that you are
now singing “oooooo” instead of “eeeeee”. Alternatively: Audio from a piano,
guitar or someothermusical instrument.). Do youfind any interesting differences
or similarities compared to what you found in point c?

19. Try to mark, in Fig. 15.22, regions where the waves are relatively well-defined.
How big are these regions approximate? And how much of the entire surface
have you taken into account in the selection of these areas? Enter lengths in
numbers of “approximatewavelengths”. [It is helpful to draw a line indicating the
approximate direction of waves moving in. To get a correct picture of coherence
lengths, the entire surface must be included in the statistical processing.]

20. Can you suggest a way to make an interferometer for sound that corresponds to
a Michelson light interferometer? (Must be used to measure coherence lengths
for sound from, for example, different musical instruments.)

21. Let us look at the antenna diagrams in Figs. 15.15 and 15.23. The radiation pat-
tern in the horizontal plane is approximately what one expects for a single dipole,
except that the radiation backward is damped heavily. The radiation diagram in
the vertical plane is different and has something in common with the diffraction
pattern for a single slit, but with a great deal of deviations. Figure15.23 shows
a photograph of a regular base station for mobile telephony and indicates how
the antenna is built up of multiple dipole antennas that have identical radiance.
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Fig. 15.23 a Base station with many different antennas for mobile telephony. b Each antenna is
assembled by pair of dipole antennas opposite each other (here are six identical antennas drawn).
Each dipole antenna is a half wavelength long. c Radiation diagram in the vertical plane of the
antenna in Fig. 15.15 (Kathrein 80010621). For this antenna L = 1.4m, and it is intended for signals
at approximately 2 GHz

This basic construction shows that the comparison with diffraction from a slit is
not completely groundless. Note, however, that “slit” may be completely con-
fusing since we use the length of the antenna as slit width.
(a) Use the radiation diagram in Fig. 15.23c as well as the formula of the angle
to the first minimum by diffraction from a single slit:

sin θ = λ/a

and the information that the antenna is used for approximately 2GHz signals, to
calculate a, the “effective slit width” based on the given formula.
(b) Compare a with the antenna’s outer vertical length. By the way, approxi-
mately howmany dipole antennas (half a wavelength long) would there be room
for within L?
(c) There is a mismatch between L and a even if they are of the same order of
magnitude. Do you have any ideas about what the disagreement can bump into?
Could you test your ideas using numerical calculation?

22. (a) In Figs. 15.15 and 15.23 are given antenna diagrams for a much used base
station antenna. In a specific case, such an antenna is on a mast 22m above
the ground. Determine the intensity at ground level at a distance of 30m from
the mast (measured along the ground) relative to the intensity 500m from the
antenna in that direction in the horizontal plane where the intensity is greatest.
[Hint 1: The radial direction in the antenna diagram indicates relative intensity
in the number of dB for waves that go out in different directions (in a vertical
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plane) from the antenna. Hint 2: We can only specify relative intensities. In the
right part of the figure, the origin indicates that the intensity is 40 dB lower than
in the maximum direction (0◦).]
(b) Perform the same calculation if instead a single dipole antenna was used (use
Fig. 15.14).
(c) Is it favourable that the base station antenna has the intensity profile it has,
or would it be advantageous if a single dipole antenna was used instead?

23. (a) Use the “bandwidth theorem” (the classic counterpart of Heisenberg’s uncer-
tainty relationship) to determine the width of the frequency spectrum of a laser
pulse using 40 fs (femtoseconds) to pass a point in space (image from the laser
is shown on the first page of this chapter). The wavelength corresponding to the
centre of the frequency spectrum is 810nm. [The pulses have a near Gaussian
envelope curve in both time and frequency.]
(b) How many wavelengths are there in a pulse?
(c) How “long” is the light pulse (measured along the direction of propagation)?
[It will get rather messy if you mix the theory of relativity into such calculations,
so we recommend that you stick to a nonrelativistic description.]
(d) Repeat the same calculations as above for a 7.7 fs pulse. [This is a laser
currently used in Munich in their attempt to create attosecond laser. Interested
is referring to a notice on 7 May 2015 in http://www.Photonics.com headed:
“Laser Design Brings Attosecond Spectroscopy Closer” (http://www.photonics.
com/Article.aspx?AID=57412 accessed 10 May 2015.)
It is interesting to see what the researchers behind this work write:
“This field of ultrafast physics focuses on phenomena such as electron motions in
molecules and atoms, which can take place on attosecond time scales. The abil-
ity to generate attosecond laser pulses would effectively permit electron motions
to be ‘photographed’.” As you can see, exciting development is taking place in
physics today!

24. Search the Internet to get an impression of the status of lasers in the X-ray region.
How far has the development come?Which applications will anX-ray laser find?
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Chapter 16
Skin Depth and Waveguides

Abstract The last chapter begins by asking how far electromagneticwaves penetrate
into a metal and introducing the concept of skin depth. It is pointed out that this
behaviour will depend both on the frequency of the waves, and whether we are
considering a near-field or a far-field situation. This is followed by a treatment of
waveguides and how thesemay be used for transportingwell defined (“singlemode”)
electromagnetic waves in the microwave and optical region (single-mode optical
fibres). The concept of a “cut-off frequency” is introduced.

16.1 Do You Remember …?

Wehavepreviously pointed out in the book that the solution of awave equation largely
depends on the boundary conditions. In Chap. 9, we echoed the same remark in the
context of electromagnetic waves. The well-known plane electromagnetic waves are
found far from the source and far from structures that can perturb the electrical and/or
magnetic field. Plane waves are just one solution of Maxwell’s equations, a solution
that is only valid in media without free charges, in the remote zone.

What happens if an electromagnetic wave is an incident on a flat metal plate
or some other material containing free charges? The charges will be influenced by
electromagnetic forces, including the Lorentz force, and will move. The movement
will set up a secondary field that will tend to counteract the original field. The free
electrons will be able to move over distances amounting to several atomic radii.
During their movement, these electrons will collide with atoms and some of their
energy will be converted to heat. It is then natural to expect that the electromagnetic
field will decrease as it penetrates the material deeper and deeper. The term “skin
depth” quantifies this effect and tells us how far into the metal the waves penetrate.

In other situations where the geometry is different, there may sometimes be solu-
tions of the wave equation (orMaxwell’s equations) completely different from planar
waves. This opens up the possibility to transport waves without significant loss over
long distances, and the waves are then transmitted through so-called waveguides.
This chapter will deal with skin depths and waveguides.

© Springer Nature Switzerland AG 2018
A. I. Vistnes, Physics of Oscillations and Waves, Undergraduate Texts in Physics,
https://doi.org/10.1007/978-3-319-72314-3_16

553

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72314-3_16&domain=pdf


554 16 Skin Depth and Waveguides

electrical 
current 

(increasing 
with time)

magnetic field 
(incrising with time)

induced 
electric current

alternating current
electrical
current

(constant)

magnetic field 
(constant)

force acting
on electrons

direct current

Fig. 16.1 Electric andmagnetic fields inside a cylindricalmetal conductorwith an electrical current.
To the left, we have a constant direct current and to the right an alternating current. The directions
of the induced currents pertain to the period during which the current grows over time. In a period
during which the current decreases, the local induced current loops go in the opposite direction

16.2 Skin Depth

When electromagnetic waves are incident normally on a metal surface, they will be
damped as they propagate inside the metal. However, we start with a simpler picture
to get the underlying mechanisms.

When we send an alternating electric current through a conductor, the current will
not spread evenly over the entire cross section. The current tends to be greatest in
the outer parts (or the “skin”) of the conductor. The thickness of the layer where the
current density is greatest, we call the skin depth.

When we send an alternating current through a cylindrical metal conductor, it
is relatively easy to explain the most important mechanism responsible for the skin
effect.

A snapshot of the resulting current and fields that this generates is shown in
Fig. 16.1. The electrical current will generate circularly oriented magnetic fields
perpendicular to and centred in the axis of the conductor. If direct current is flowing
through the lead, the electrons will be affected by a force that pulls them towards
the centre of the conductor. Called “Hall effect”, this phenomenon gives rise to a
small potential difference between the outer part of the conductor and the axis of the
conductor. The potential difference quickly leads to an electric field that precisely
counteracts the transport of electrons towards the centre of the conductor. Aside from
this “once and for all” effect that comes into playwhen power is turned on, the current
will be distributed relatively evenly across the cross section with direct current.

With an alternating current, the situation is different. In addition to the effects
we have for direct current, change in current with time will lead to local current
loops that will try to counteract the magnetic field increase (“Lenz’s law”). The local
current loops cause the current density in the central parts of the conductor to be
counteracted while the current density in the outer part of the conductor increases
(see Fig. 16.1). However, the local current loops are phase shifted in relation to how
current changes over time. Therefore, the overall picture becomes rather complex
when we take into account phase shifts, the sum of more contributions to the electron
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motion, and geometry. As a result, we get a skin effect that causes the alternating
current to be greater in the outer parts of the conductor than in the central ones.
Therefore, the alternating current does not utilize the entire cross section of the
conductor equally efficiently. This means that the resistance of the conductor for AC
is different from that for DC.

The induced current loops influence the local current density more and more ef-
fectively as the frequency increases. As a result, the layer where the current is flowing
becomes thinner with increasing frequency. Skin depth is frequency dependent.

We will shortly derive an expression for skin depth, but can already mention that
for aluminium, which is often used in power lines, the skin depth is 11–12mm at
50Hz. This means that for thick power lines with a diameter of about 3cm, most of
the flow will involve an outer layer about 1cm thick and to a lesser degree the central
parts of the wire. Occasionally, such power lines are made hollow because the central
part does not contribute significantly to the overall conductivity anyway. On other
occasion, a steel wire is used as the central core with an aluminium sleeve around it.
The steel core provides increased strength to the lead, and the poorer conductivity of
steel compared to aluminium plays little role since the current density in the centre
is still quite modest.

Instead of one wire that is extra thick when transferring large amounts of power
(high current), one sometimes chooses to add two (“duplex”) or three (“triplex”)
lines within each of the three phases of one power line. The two or three wires are
then kept at a constant mutual distance of 10–20 cm for, among other reasons to
reduce the overall skin depth effect.

16.2.1 Electromagnetic Waves Incident on a Metal Surface

What will happen if an electromagnetic wave in the radio frequency range falls
normally onto a metal surface?

In Chap. 9, we showed howMaxwell’s equations lead under certain conditions to
the following wave equation:

∂2 #»E
∂t2

= c2
∂2 #»E
∂z2

(16.1)

where

c = 1√
εrε0μrμ0

≡ 1√
εμ

. (16.2)

The reader is supposed to be familiar with the symbols.

When the wave is perpendicular to a medium where the conductivity σ �= 0
(e.g. a metal), the current density is also different from zero. It can be shown
that the wave equation under these conditions gets the form:
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∂2 #»E
∂z2

= μσ
∂
#»
E

∂t
+ με

∂2 #»E
∂t2

. (16.3)

We can guess a solution in which the fields decrease exponentially in the
metal:

E = E0e
i(kz−ωt) (16.4)

where k now can be complex.

If we substitute this trial solution in Eq. (16.3), we get:

k = √
μω

√
iσ + εω .

Wesee that thewavenumber k in this expression is a complex quantity. It is in linewith
the fact that the exponent on the right-hand side of Eq. (16.4) has an exponentially
decreasing term, as expected.

If the conductivity is large, or more precisely: if σ � εω, the k expression can
be simplified to:

k = √
i
√

μσω .

Since (1 + i)2 = 1 + 2i − 1, it follows that

√
i = 1√

2
(1 + i) .

Consequently k can be expressed as:

k =
√

μσω

2
(1 + i) ≡ 1

δ
(1 + i)

where δ is the skin depth. By inserting this expression in Eq. (16.4), we obtain:

E = E0 e
i(z/δ−ωt) e−z/δ .

The physical solution is the real value of the expression, which is:

E(z, t) = E0 cos
( z
δ

− ωt
)
e−z/δ . (16.5)

The question is, however, whether this is too simple a solution.We assumed above
σ � εω. If we set the current sizes for copper, we will:



16.2 Skin Depth 557

σ

εω
= 6.4 × 1018

ω
F−1 �−1 .

It turns out that the approximation we made holds for all electromagnetic waves
from about the X-ray region and longer wavelengths. However, the formula is only
valid for frequencies that are far from significant atomic or molecular resonance fre-
quencies, and also from the normal collision frequency of electrons in their migration
through the metal under consideration. For nonmetals, a somewhat more complicat-
ed correlation between skin depth and electromagnetic properties is derived from the
material, but we do not deal with these details here.

Equation (16.5) seems to be adequate for the chosen geometry. The equation
shows that the electromagnetic wave continues inside the metal, but its am-
plitude decreases exponentially, the attenuation factor for each distance δ (the
skin depth) being 1/e. We put in the data for copper in the expression of the
skin depth:

δ =
√

2

μσω
(16.6)

we find the skin depth to be
• 9mm at 50Hz
• 66µm at 1MHz
• 100nm at 30GHz (radar)

This means that the waves at radio frequencies and higher are severely attenuated
in the outer part of a metal. For low frequencies, the damping is far less pronounced.

Figure16.2 shows the relationship between the skin depth δ and the frequency f
for five different metals or alloys in a log–log plot.

From the figure, we see that at 1MHz the skin depth of aluminium is 90µm, and
for 0.9–1.8GHz mobile phone frequencies the aluminium skin depth has decreased
to about 3µm! This means that, so far as resistance is concerned, at such high
frequencies there is little to be gained by making the wires much thicker. A large
surface is more important than total cross section. The word “skin depth” seems to
be a good choice!

Skin depth lies also at the basis of induction cookers. The commonly used fre-
quency here is around 24kHz. Using steel pots, in which the conductivity is not
particularly high and the relative magnetic permeability is close to 1 (nonmagnetic
material), the skin depth becomes so large that large portions of the electromagnetic
field from the stove passes straight through the bottom of the pots. Only when we
have materials that have a high relative magnetic permeability (containing magneti-
zable iron), almost all energy in the fields from the oven will be deposited as heat in
the bottom of the pan.
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Fig. 16.2 Skin depth as a
function of frequency for
different metals (idealized).
A log–log plot is chosen to
cover many decades. Zereks,
Wikipedia Commons, CC0
1.0, Modified from original
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In pots and pans intended for induction cookers, magnetic steel, such as carbon
steel 1010 or stainless steel 432, is used, both of which have a relative magnetic
permeability of about 200. From Eq. (16.6), we see that the skin depth then drops
considerably compared to nonmagnetic material. The skin depth at 24kHz will on-
ly be 0.1–0.2mm, and accordingly virtually all the energy from the stove will be
deposited as heat in the bottom of the pot.

Comments
The derivation of the expression for the skin depth must be put in perspective. We
have shown that Eq. (16.5) is one possible solution of Maxwell’s equations. It has
not been said that the solution in a concrete case actually is this solution! Far from
that! We pretended that the solution could be written as a plane wave meaning that
the solution does not depend on x and y. To be applicable, the physics must be such
that there are no boundary conditions that affect the wave in the x- and y-direction
near the place we consider.

This means that Eq. (16.5) must be used with great caution. Geometry in specific
situations is often much more important than skin depths calculated blindly from
Eq. (16.5).

16.2.2 Skin Depth at Near Field

The mathematical derivation in the previous section was based on electromagnetic
waves in the remote zone. That is a situation involving basically electrodynamic
conditions in which time variation in electric field creates a magnetic field, and time
variation in magnetic field in turn again creates an electric field.

When we are dealing with near field, the situation is different. For example, we
might have a power line with strong electric fields without any particular magnetic

https://commons.wikimedia.org/wiki/File:Skin_depth_by_Zureks.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Fig. 16.3 Electric field from a power line (50Hz) is damped strongly by new woodwork (left part:
conductivity σ = 1 × 10−6 �−1 m−1) while old crushed wood does not dampen the electric field
(right part: conductivity σ = 1×10−9 �−1 m−1). The 50Hz magnetic field went through the walls
without noticeable cushioning in both cases. The figure is derived from a master thesis in physics
at University of Oslo: Ellen Røhne: Electrical Fields in Houses Near Power Lines—Measurements
and Element Method Calculations, 1997

field, and the converse. In such situations, it is often meaningless to talk about skin
depth.

A static magnetic field is not noticeably damped, for example, by an aluminium
plate, even if it is thick.At 50Hz, the induced currentswill be so small that the induced
magnetic field only causesmoderate attenuation of an outermagnetic field. The effect
is also highly dependent on geometry. If aluminiumplates are used to dampen a 50Hz
magnetic field, they must be fully welded so that the induced currents should flow
as freely as possible. At the outer edge of the area the aluminium plates cover, the
magnetic field is often stronger than if there were no plates there.

It is completely different with electric fields. Static electric field is shielded very
efficiently by having a conductive screen connected to earth. Then charges will be
drawn to the screen and will neutralize the field on the opposite side of the source.
Even at 50Hz it is easy to remove, for example, electrical fields in homes near power
lines. Even a chickenwire under the roof and connected to the ground provides a very
effective damping. In fact, even the small electrical conductivity found in relatively
new wood is often sufficient to provide a good damping of electric fields from a
power line inside a wooden house close to a power line (see Fig. 16.3). The time
period of a 50Hz period is so long (10ms for each half-period) that there is sufficient
time to draw enough charges through the wood to get a good neutralization of the
outer electric field. For old, very dry wooden houses, however, the conductivity of
the wood is not good enough to provide a good damping.

Summary: In houses near power lines, themagnetic field from the power lines suffers
little damping as it permeates through thewalls, while the electric field often becomes
quite efficiently damped. This is the reason that in the 1980s and 1990s, there was
much focus on magnetic fields from power lines and possible health damage, while
the electric fields did not attract similar attention. This difference between electric
and magnetic fields shows that skin depth is often an inappropriate term in cases
where near fields dominate.
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Fig. 16.4 Photograph of some microwave components where waveguides are involved. 1 Straight
waveguides, 2 Waveguides with a semiconductor diode working as a detector, 3 Twisted straight
waveguides to rotate the polarization 90◦, 4 A “phase shifter” for microwaves, 5 90◦ bend, one
conserving the direction of E, the other conserving the direction of H, 6A“wavemetre”, a resonance
cavity, to determine the microwave frequency accurately

16.3 Waveguides

A waveguide is a mechanical structure that directs waves from one place to another.
In old boats, there was usually a metal pipe from the wheelhouse to the engine room.
Someone talking into one end of the pipe could be heard by those at the opposite end
several metres away.

An even more well-known waveguide is the doctor’s stethoscope. Sound from the
heart and lungs is caught in a small funnel held against the skin, and the sound is
directed to the ears of the doctor. There is more physics involved in a stethoscope
than many are aware of!

In our context, we will concentrate on waveguides for electromagnetic waves. At
the bottom lieMaxwell’s equations and thewave equation derived inChap. 9, but now
the differential equationsmust be solvedwith a set of boundary conditions completely
different from what we had in the far field and representing plane electromagnetic
waves.

Waveguides for electromagnetic waves are common in the microwave range, that
is, frequencies between 2 and 40GHz (wavelengths from 15 to 0.67cm). [The range
is actually even wider.] Themost commonly used forms are hollow rectangular metal
pipes, like those shown in Fig. 16.4.

When Maxwell’s equations are to be solved for such geometry, the boundary
conditions are as follows:
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• Electromagnetic waves do not pass through the metal, but are reflected.
• Any electrical field that meets a metal surface must be (approximately) perpen-
dicular to this surface.

• Any magnetic field that meets a metal surface must be (approximately) parallel to
the surface.

The electric and magnetic field can of course have other directions towards the
metal than those we just listed. However, the above listed boundary conditions are
chosen to find a solution of Maxwell’s equations that cause as small currents as
possible in the metal. It is necessary that the wave does not lose too much energy per
unit length as it moves through the waveguide.

There are generally a number of different solutions of Maxwell’s equations for a
waveguide with a rectangular cross section. Electric and magnetic fields have very
different distributions and direction in space compared with the planar wave solution
in the remote field zone discussed in Chap. 9.

However, for a given frequency there are only a finite number of possible
solutions, and if the wider dimension of the waveguide cavity is less than half
the wavelength, it is actually no solution. When the wider dimension in the
cavity is between a half and an entire wavelength, and the shortest dimension is
only half the longest, there is only one possible solution ofMaxwell’s equation
that corresponds to a wave. The wave pattern we obtain in the waveguide is
uniquely determined. We say we have single-mode transmission. The lowest
frequency that can be sent through a waveguide is called “cut-off frequency”.

If we increase the frequency of the electromagnetic waves so that the wider di-
mension in the cavity of the waveguide is larger than a wavelength, there are at least
two different solutions of Maxwell’s equations. Then the wave can go through the
waveguide in (at least) two different ways. We get a multimode propagation.

In a rectangular waveguide, the smallest dimension is usually half the size of the
wider dimension. This ensures that the polarization of the electromagnetic waves
can be one way only.

Referring to Fig. 16.5, the following list state the names of frequency band, ap-
proximate dimensions for waveguides, cut-off frequencies and optimal frequency
ranges:

Frequency Wider dimension Cut-off frequency Optimal frequency
band (mm) (GHz) range (GHz)
G 58 2.6 3.2–4.9
X 27 5.6 6.9–10.5
Ka 8.3 19 22–34
Q 5.9 25 32–48
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Fig. 16.5 Photograph of waveguides for four different frequency bands. The dimension varies with
the frequency so that only one mode will be present for the signal of interest

16.3.1 Wave Patterns in a Rectangular Waveguide

Figure16.6 shows a schematic representation for the field distribution in a so-called
TE10 waveguide. TE stands for “transverse electric”. The electric field is perpen-
dicular to the wider surface of the waveguide with rectangular cross section. The
field distribution is not the same as a plane electromagnetic wave. Where does the
difference lie?

Imagine a plane electromagnetic wave as we discussed it in Chap. 9. If we had
such a field distribution within the rectangular waveguide, the electric field would
be parallel to two side edges. Such a field would cause large currents of electrons in
the metal wall of the waveguide, and thereby a large loss.

In a waveguide, initial conditions and boundary conditions force a solution
of Maxwell’s equations that can be at least as “beautiful” as the planar wave
solution. The field distribution in a TE10 waveguide is such that the electric
field is always perpendicular to the larger internal surface, but the field de-
creases towards zero as we approach the side surfaces. As a result, there will
be far weaker electrical currents in the side surfaces than would be with a plane
wave.

Occasionally, it is said that the wave pattern of a waveguide corresponds to a
planar wave being reflected back and forth between the walls of the waveguide.
This is a misleading description. The waves are solutions of Maxwell’s equations
under the given boundary conditions and are a distinctive solution. However, when
the waveguide dimension becomes large relative to the wavelength, there are many
different solutions of Maxwell’s equations. In such cases, it makes sense to compare
solutions with reflected plane waves through the waveguide.
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Fig. 16.6 Field distribution of a TE10 mode for the electric field inside a rectangular waveguide.
To fit the dimensions of the waveguide relative to the wavelength, only the TE10 mode survives.
The wave moves at close to the speed of light in vacuum in the z-direction (right in sections1 and
2)

However, the electrical field lines across the waveguide start and end in electri-
cal charges on the surface inside the waveguide. Since the wave moves along
the waveguide, these charges must also move. This causes induced currents
in the inner surface of the waveguide. This is unfortunately not shown in our
figure. The inner surface of waveguides is usually coated with silver or gold
in order to make the conductivity as large as possible. Then the loss will be
minimal. The silver or gold need only be a few microns thick since the skin
depth at these frequencies happens to be so small.

Electromagnetic waves with frequencies in the range of 2–60GHz have tradition-
ally been used for radar, but now these frequencies are also used for mobile telephony
and data transmission. Particularly for radar purposes, large powers on the signal
transmitted from a transmitter to the radar antenna are often used. It is problematic
to send such signals through common wires and coaxial cables—waveguides can
often withstand higher powers in the transmission. The microwaves then follow the
tube system up to several metres from the generator (preferably so-called klystron)
to the antenna where the microwaves are transmitted.

The waveguides are usually made as tubes with rectangular cross sections and
flanges to unscrew different pieces. Some pieces can turn the field 90◦, and other
pieces can make a 90◦ break on the waveguide itself (see Fig. 16.4).
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One attempts to avoid cracks in the waveguides, which prevents currents in the
surface. The currents go along the wide walls. To avoid interrupting these currents,
we can only make long slots along waveguide if the slot is made on the wide side.

By placing two waveguides on top of each other and making a common hole
through the walls (on the broad side), some of the waves from one waveguide can
be allowed to leak into the other. That way one can make wave dividers and wave
combiners.

If a semiconductor diode is placed across the waveguide (and one end is directed
as a separate wire), we get a detector that gives a signal proportional to the intensity
of the waves passing (an example is given to the far right in Fig. 16.4).

If the wavelength is less than the wider dimension of the waveguide, the electric
field may form several different patterns/distributions (multiple “modes”) in rect-
angular (and circular) waveguides. Waves that have different motion patterns, or
modes, go at slightly different speeds through the waveguide. For certain layouts,
this is unfortunate. A “single-mode” solutions are preferable. We do not enter any
mode other than TE10 in this round.

It is an interesting challenge to useMaxwell’s equations to determine the direction
of a TE10 wave when we have a drawing of the field distribution in a waveguide (see
problems at the end).

16.4 Single-Mode Optical Fibre

A single-mode optical fibre consists of a very thin cylindrical core made of very
pure silica or fused quartz and diameter only a few microns, surrounded by a layer
of another type of glass with a slightly different refractive index than the core. It is
usually surrounded with plastic sleeves of different types.

The core may also be made of plastic, but the attenuation is then larger than for
glass. Plastic core fibres can only be used for communications over short distances.

It is common to hear that in an optical fibre the light stays in the fibre because
of total reflection (based on Snel’s refraction law). We have partly done the same
earlier in the book.

For large-diameter optical fibres in relation to the wavelength, it is perfectly ap-
propriate to use such an explanatory model. In that case, the interface between the
core and the casing satisfies the preconditions we made when we derived reflection
laws based on Maxwell’s equations.

When the diameter of the core of the optical fibre is shrunk to about six times the
wavelength, it will be different. Then we can no longer consider the light as plane
waves, because plane waves will not survive in such a fibre.

Then there are other solutions of Maxwell’s equations that force themselves for-
ward. In Fig. 16.7, is shown the cross section of several possible solutions of the
wave equation for this type of geometry and wavelength. We show different patterns
that show where the electromagnetic field is greatest (red and blue only indicate that
if the electric field across the fibre in a red area has a maximum value, the field in a
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l = 0, m = 1 l = 1, m = 1 l = 2, m = 1 l = 3, m = 1

l = 0, m = 2 l = 1, m = 2 l = 2, m = 2 l = 4, m = 1

Fig. 16.7 Distribution of electric field across an optical fibre for eight different “modes”. Only
the simplest survives in a “single-mode fibre” (“single-mode fibre”). Red and blue signify different
directions of the electric field in the two areas. The modes are classified using two numbers that give
the symmetry properties of the mode. Try to find out what the two parameters really tell us. Figure
generated with the software RP Fibre Power. R. Paschotta, Modified from original [2]. Reproduced
with permission from the author and publisher

blue area is negative along the current direction). We say that the field has different
modes to organize itself within an optical fibre. A complete description of the modes
would require a three-dimensional sketch, but we do not go into detail here.

The point is that when the diameter of the fibre is made smaller and smaller, the
higher modes will not be able to propagate along the fibre. For an appropriate
diameter, only the simplest mode will survive. If we shrink the diameter still
further, even this mode will not survive over long distances.

Anoptical “single-modefibre” is therefore characterizedby a “cut-offwave-
length” and can be used to “clean up” laser light that does not have a perfect
Gaussian intensity profile.

When light in the infrared region is sent through a single-mode fibre that has
the right dimensions and has ultrapure glass in the core, the loss is incredibly low!
Furthermore, as seen from Fig. 8.6 in Chap. 8 the index of refraction n is very close
to constant over a wide wavelength range in the infrared region (e.g. FK51A glass).
Thus, dispersion is very low indeed.

Since both the loss and dispersion are incredibly low, the IR light can move in a
very carefully defined manner, and short pulses can be sent many, many kilometres
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Fig. 16.8 To connect laser light from a laboratory laser into a single-mode optical fibre, one uses a
microscope objective mounted on a three-dimensional stage with precision screws. The Airy disc
at the waist of the laser beam after passing the microscope objective should be of the same size as
the effective fibre diameter. Thus, diffraction comes into play even in this part of physics

before the pulse shape needs to be cleaned before the signal is forwarded. The result
is a very high pulse rate and flow of information.

These are the optical fibres that ensure our impressive Internet. In other words:
a special solution of Maxwell’s equations, where initial conditions and boundary
conditions are alpha and omega, in concert with development of materials with low
dispersion, is what keeps the Internet going! Plane waves are not involved!

One disadvantage of using single-mode fibre is that the diameter of the core is so
small that it is a challenge to get sufficient light from an laser beam in open air into
the fibre. In our laboratory, we often use single-mode fibres, for example, to clean up
laser light with a wavelength of 405nm. The inner part of the fibre (where the light
is going to go) is then only 2.7µm in diameter. Around this core, a “cladding” zone
with a lower refractive index extends to 125µm and a “coating” zone is added to a
diameter of 245µm. Outside this comes a protective layer made of plastic.

If we start with a laboratory laser that normally sends the beam with a diameter
of at least 1mm into the open air, the beam must be focused strongly. It is done
with a microscope objective (see Fig. 16.8). The end of the fibre must then be placed
just in the focal plane of the focused beam, and the fibre must have a direction that
completely coincides with the optical axis of the beam. It is a great patience test to
get as much of the light into the fibre as possible! Also when the light is released by
a single mode fibre, we often need to use a microscope objective to prevent the laser
beam from diverging too much (freshly from Chap. 13 how is light going through
round holes with very small diameter!).

For telecommunications, special adapters have been developed that make the
connection far easier. In such systems, laser beams in air are not used at all.
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16.5 Learning Objectives

After working through this chapter, you should be able to:

• Explain the term skin depth when an alternating current passes through a
metal wire.

• Explain the concept of skin depth when electromagnetic waves meet a metal
surface.

• Knowwhat parameters affect the size of the skin depth and know about skin
depths for a few frequencies and metals.

• Explain that a simple analysis of skin depth may have significant weakness-
es.

• Explain the distribution of electrical and magnetic fields and electrical cur-
rents in the walls inside a TE10 rectangular waveguide if you are given a
figure like Fig. 16.6.

• ExplainwhySnel’s refraction law is not relevant for explaining how a single-
mode optical fibre works.

• Indicate why single-mode fibres are attractive in research and technology.
• Explain why it is a challenge to connect light from an open laboratory laser
into a single-mode optical fibre, as well as coupling from such fibre back to
a free laser beam in air.

16.6 Exercises

Suggested concepts for student active learning activities: Skin depth, waveguides,
single mode, multimode, field distribution, wave pattern, boundary conditions, rect-
angular waveguide, circular waveguide, cut-off wavelength/frequency, optical fibre.

Comprehension/discussion questions

1. Whydoes anold-fashioned aluminiumcasserole notworkon an induction cooker?
2. What is the big difference between the physics involved when sending electro-

magnetic waves against a piece of glass and a corresponding piece of metal?
3. Why do we need to change the dimensions of a rectangular waveguide when we

switch the frequency of microwaves to be transmitted through the waveguide?
4. The cross section of a conductor used in power lines can sometimes look as shown

in Fig. 16.9. Try to explain why the conductor is built in this special way.

Problems

5. (a) Can you tell from the field distribution shown in Fig. 16.10 the direction in
which the microwaves propagate in the rectangular waveguide?
(b) Point out where theremust be charges on the inner surface of a waveguide, and
how these charges must move as the microwaves move through the waveguide.
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Fig. 16.9 Cross section of a type of conductor used in power lines hanging between large masts
across large parts of the country. Clark Mills, Wikimedia Commons, CC BY-SA 3.0, [3]
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Fig. 16.10 Consider the field distribution in the shaded area and calculate the specified size. With
the help of Maxwell’s equations, you should be able to predict the time development

(c) Occasionally, for various reasons, we want to make narrow slits across a wall
of a waveguide. In which direction should the gap be made to disturb as little as
possible the propagation of the wave ? Justify as always the answer.

https://commons.wikimedia.org/wiki/File:Sample_cross-section_of_high_tension_power_(pylon)_line.jpg
https://creativecommons.org/licenses/by-sa/3.0/
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6. (a)A single-modefibre designed for light ofwavelengths between 450 and 600nm
has a core diameter of about 3.5µm. Calculate about how many per cent of the
energy flux in a laser beam we had received into the fibre if such a fibre was
directly inserted into the beam from a regular laboratory laser without using a
microscope objective to focus the beam onto the fibre. The beam diameter for
many laboratory lasers is about 1.5mm.
(b) When the light returns from the fibre to air at the other end, we get diffraction.
Calculate the beam diameter 1 m after the light went out of the fibre.
(c) Approximately how much focal length should be on a microscope objective
that we can place just after the light emanates from the fibre to create a laser beam
about 1.5mm in diameter?

7. Go to the web pages of, for example, ThorLabs (www.thorlabs.de) and search for
“single-mode optical fibre” to find the mode field diameter (the diameter of the
core) of three different single-mode fibres (calculated for different wavelengths).
(Do not get confused by the cladding and coating diameters. The cladding is glass

Fig. 16.11 Electron orbitals for the hydrogen atom in a quantum mechanical description. Read the
assignment text for details. PoorLeno, Public Domain, Modified from original [4]

www.thorlabs.de
https://en.wikipedia.org/wiki/Atomic_orbital#/media/File:Hydrogen_Density_Plots.png
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with a different index of refraction than the core, and the coating is often plastic
to protect the tiny glass string). You may want to check data for “Single-Mode
FC/PC Fibre Optic Patch Cables” to find fibres for widely different wavelengths.
Do you find some regularity as to how the diameter of the core varies according
to the wavelength?

8. Fig. 16.7 shows the patterns in the different modes of how electromagnetic waves
(light) can organize themselves as they pass through an optical fibre. In Fig. 16.11,
there is an overview of some of the common electron orbital of the hydrogen atom.
The orbits show an average of how the quantummechanical wave function differs
whenwe cross the atom. The distribution in Fig. 16.7 is based on classical physics,
yet there are certain similarities between the two figures.We need to be somewhat
careful about the comparison since the fibre is a two-dimensional problem while
the electrons are linked to a three-dimensional problem. In spite of this: Can you
understand that there is a kind of “quantization” both in the classical system and in
the quantummechanics?What is the underlying reason that we get “quantization”
in these cases.
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Appendix A
Front Figure Details

The figure on the front of this book is the diffraction pattern of He–Ne laser light after
passing through at 10µmdiameter circular hole. The central peak is far more intense
than the surrounding circular rings with increasing diameters. Thus, the central peak
and the first ring are heavily overexposed in order to see the ring structure outside
this peak. The size of the Airy disc (central peak) as well as the width of the first ring
is considerably larger than it would have been without the overexposure.
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Index

A
Absolute value, Fourier, 95, 104, 117
Absolute values, wavelets, 487–489, 495
Acoustic impedance, 165–168, 173
Adaptation, intensity and colour, 343, 356–

358
Additive colour mixing, 352, 355, 360
Airy disc, 450, 452, 454, 455, 457
Algorithm, 76
Aliasing, 107, 108
Amplitude, 8, 20, 137, 139, 143, 146, 147,

150, 158
Amplitude level summation, 460
Anaglyph glasses, 326
Angle of view, 399, 400
Angular diameter, 528
Angular frequency, 8, 15
Anomalous dispersion, 224, 227, 231, 243
Antenna diagram, 538
Aperture, 400, 402
Arago’s spot, 458
Audiogram, 194
Autocorrelation function, 516–518, 523, 531

B
Babinet’s principle, 460
Basilar membrane, 52
Beam optics, 380, 457
Beam waist, 456
Beat, 196, 197
Birefringent, 294, 313, 315, 316, 320
Border colours, 361
Border region, 441
Boundary, closed/fixed, 217
Boundary, open/free, 217
Brewster phenomenon, 308–310, 318

C
Candela, 335–337, 343
Capillary wave, 237, 240, 246
Cassegrain telescope, 394
Cavity, 540, 541
Chaotic signals, 525, 528
Characteristic polynomial, 17, 24
Chromaticity chart, 351
CIE, 347, 351, 356
Circular polarization, 312
Circular polarizing filter, 321
Cochlea, 50
Coherence length, 513, 517, 524, 527–529,

531
Coherence time, 513, 517, 525
Coherent, 422, 461
Colour horseshoe, 351, 352, 358, 360
Colourimetry, 349
Colour spectrum, 358, 362
Colour temperature, 356, 357
Compressibility modulus, 153, 155
Compressible, 233
Compressible medium, 151
Concave, 378, 380, 383, 408
Cone of influence, 492
Convex, 378, 380, 383, 408
Coupled difference equations, 62, 85
Critical damping, 19, 20, 28
Crossed polarizers, 322
Cutoff frequency, 561
Cutoff wavelength, 565

D
Damping, 18, 19, 25, 27
Decibel, dB(SPL), dB(A), 190–192, 194,

195
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574 Index

Depth of field, 404
Dielectric, 274
Dielectric constant, 274
Diffraction, 371, 380, 393, 397, 419, 421,

434, 439, 442, 444, 447, 449, 452,
456–461

Dioptre, 406, 408, 409
Dipole antenna, 536–538
Dipole radiation, 536
Discrete, 62
Discrete continuous, 483
Discrete Fourier transform, 106–108
Dispersion, 213, 222, 223, 225, 227, 228,

230, 231, 240, 245, 247, 345
Dispersion relation, 224
Documentation, 75, 79
Doppler effect, 199–202
Double slit, 420, 422, 425, 439, 461
Dynamic, 7, 13, 16

E
Electromagnetic spectrum, 275
Electromagnetic wave, 259, 262, 272, 274–

276, 278–284
Energy density, 276, 279, 284
Energy transport, 260, 275, 282, 283
Envelope, 224, 227, 228, 231
Epicycles, 118, 128
Ergodic signal, 514
Euler, 62
Euler-Cromer, 64
Euler’s method, 62–64, 69
Evanescent waves, 324, 325

F
Far field, 278, 279, 281–283
Far point, 406, 407
Fast Fourier Transform, 99, 108, 476, 479,

488
Fermat’s principle, 300, 301
Focal point, 378, 380, 381, 383, 390, 392,

395, 405, 408
Folding, 99, 107–109, 111, 113, 126
Forced oscillation, 32, 35, 37, 40, 41, 50
Fourier optics, 442
Fourier series, 102
Fourier transform, 93, 96, 100–102, 104,

112, 113, 116–119
Fraunhofer diffraction, 435, 448, 449
Frequency, 8, 9, 20, 171, 172, 174, 177, 181,

184, 185, 188, 191, 195, 196, 199–
202

Frequency analysis, 104, 115
Frequency domain, 94–96, 98, 100, 102,

104–106, 110, 115–117, 491, 498
Frequency resolution, 476, 478, 489, 492,

495, 496
Frequency response, 45, 48–50, 53
Frequency spectrum, 175, 176, 180–182,

499
Frequency width, 524
Fresnel diffraction, 435
F-stop, 400, 402
Fundamental frequency, 96, 106, 172, 174,

179, 182
Fundamental tone, 105, 117

G
Gaussian intensity profile, 457
General solution, 15, 17–20, 24
Goethe’s colour theory, 362
Grating constant, 434
Grating, optical, 428, 433, 437, 439, 459
Gravity-driven wave, 233, 237, 240, 241
Group velocity, 222–224, 227, 231, 241, 244

H
Half wave plate, 320
Half-width of peaks, 432
Harmonic, 9, 13, 16, 20, 27, 93, 105, 106,

117, 118, 132, 169–171, 174, 176–
178, 180–182, 186, 187, 189, 499,
501

Heisenberg, classical analogy, 44, 49, 50,
115, 122, 439, 458, 476, 478, 491

High speed camera, 221, 246
Homogeneous, 293, 294
Huygens-Fresnel diffraction, 448
Huygens-Fresnel principle, 421, 426, 439,

446, 449

I
Image brightness, 400
Impedance of free space, 278
Incident angle, 308
Initial conditions, 15, 18, 20, 24, 25, 28
Inner ear, 50, 51
Intensity pattern, 431, 436, 461
Interface, 294–297, 299, 300, 302, 303, 305,

306, 309, 325
Interference filter, 427
Interference pattern, 426, 431, 433, 435, 460
Interferometer, 531
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K
Kinematic, 7

L
Laser, 513, 521, 532, 539, 540, 544
Lens formula, 378, 380, 382–384, 393, 405,

406, 409
Lens makers’ formula, 376, 377, 383, 409
Light ray, 371, 373, 375, 376, 380–382, 384,

387, 392, 399, 408
Linear equation, 20
Linear magnification, 381
Linear polarization, 312, 313
Linear polarization filter, 318, 319
Line integral, 259, 261, 265
Local image, 389
Longitudinal, 146, 151, 152, 157, 233, 235
Loupe, 387, 389, 394, 409
Low-pass filter, 113
Lumen/lux, 335, 340–344
Luminous efficiency, 342
Luminous energy, 340

M
Magnification, angular, 388–390, 395, 409
Magnification, real, 381, 384, 399
Magnifying glass, 380, 387
Malus’s law, 319
Microscope, 386, 388, 394, 395, 409
Modulation transfer function, 396
Morlet wavelet, 478, 481–485, 488, 494
Musical interval, 185

N
Near field, 272, 278, 281, 282
Near point, 406–408
Newtonian reflector, 393
Newton’s rings, 428
Node, 170, 179
Nonlinear, 17, 21
Normal eye, 387, 405, 406, 409
Numerical method, 60, 61, 64, 71, 72, 75

O
Object/image point, 374–378, 381, 382, 384,

385, 388–390, 395, 397, 401, 403,
406, 408

Objective, 379, 388, 389, 392, 395, 397, 399,
402, 409

Octave, 185, 186

Ocular, 389, 390, 399
Ocular projection, 391, 395
Optical fiber, 302, 564, 566
Optical quality, 396
Optical strength, 406, 407, 409
Optimization, 494, 496, 497
Overtones, 105, 117

P
Paraxial approximation, 374, 375, 379
Partial differential, 68
Partial differential equation, 68
Particular solution, 19
Perceived sound intensity, 194
Periodic, non-periodic, 96, 97, 102–106, 117
Phase, 8–10
Phase difference, 34, 35, 39
Phase velocity, 216, 222, 224, 228, 229, 231,

237, 244
Phasor, 10, 11, 37, 39, 40
Phon, 191
Photometric, 335, 337, 339, 342
Photopic, 336
Photoreceptors, 347, 349
Pinhole, 526, 529
Pitch, 174, 176, 182, 184, 197, 199
Plane wave, 139–141
Polariometry, 316, 322, 323
Polarization, 304, 308, 310, 311
Polarization filter, 294, 310
Population inversion, 543
Position-frequency map, 52
Program snippets, 124
Pure electrodynamics, 279

Q
Quality factor, 40, 41, 43, 45, 50
Quantized wave, 171, 182
Quarter wave plate, 313

R
Radiance, 342
Radiant energy, 340
Radiation intensity, 337, 341, 342
Radiation pressure, 280
Radiometric, 335, 337, 339
Rayleigh’s resolution criterion, 454
Ray optics, 380, 381, 384
Real image, 382
Reflecting telescope, 392
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Reflection, 163–168, 170–172, 179, 180,
182

Refraction angle, 302
Refractive index, 222, 224, 274, 293
Relative permittivity, 261, 274
Resonance, 31, 34–37, 39, 41, 43, 44, 47, 53
Retarded potential, 534, 536
Right-handed circular, 312
Rods/cones, 336, 347–349
Rotational symmetry, 316
Runge-Kutta, 65, 67, 68, 79

S
Sampling, 106, 109–113, 117
Sampling theorem, 111, 113
Schmidt corrector plate, 393
Scotopic, 336
Second-order diff eq, 19, 24
Sensitivity curves, 335, 347
Shock wave, 202
Short-time Fourier transformation, 475, 478
Single slit, 434, 436, 439, 442, 458
Skin depth, 554–558, 563
Solid angle, 338–342
Sound intensity, 177, 181, 186, 190–193,

195, 198, 203
Sound pressure level, 190
Spatial coherence, 512, 521, 525, 528, 529,

542
Spectral colour, 336, 350, 351, 356, 358
Speed of light, 284, 286
Speed of light in glass, 222, 225, 226, 264
Spontaneous emission, 541
Standing wave, 169, 170, 178, 180, 541
Stationary signal, 514
Stereoscopy, 326
STFT, 475, 478
Stimulated emission, 539, 541, 543
Subtractive colour mixing, 355
Superposition, 20–22, 420
Superposition principle, 420, 423, 460
Surface integral, 259

T
Taylor expansion, 149
Telescope, 386, 389, 392, 393, 399, 402, 409
Temporal/longitudinal coherence, 512–515,

521, 542
Thin film, 427, 428
Time-bandwidth product, 49, 208, 476
Time domain, 94–98, 100, 102, 105, 106,

115, 117, 131, 494, 498
Time resolution, 476, 489, 492, 495, 497
Tone scale, 186
Total reflection, 302, 309, 324
Transverse, 146, 147, 157, 235

U
Ultrasound, 167, 201

V
Vector field, 260, 263–265, 268, 285
Virtual image, 382
Visual light, wavelength range, 337

W
Waist, 453
Wake behind a boat, 227, 243–245
Wave equation, 137, 138, 140, 143, 144, 147,

150, 153, 154, 157
Wavefront, 384, 387, 421, 422, 435, 441,

443, 444, 456, 461
Waveguide, 560–562
Wavelength, 139–141, 171, 178, 199, 202
Wavelet, 182, 183
Wavenumber K for wavelets, 481, 482, 485,

490, 494, 501
Wave packet, 224, 228–230, 245, 247
Wave velocity, 140
Wiener-Khintchine theorem, 525

X
X-ray diffraction, 459
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