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Preface

Origin

The University of Oslo in Norway is one of the first universities to introduce
numerical methods as an integral part of almost all mathematically oriented courses
for science students (first attempts started in 1997). This created the need for
textbooks in physics covering all the topics included in the syllabus. There were
many textbooks on oscillations and waves on the market, but none adhered well
with the learning objectives we adopted.

The Norwegian version of this book was originally written in 2008 for use in the
course “FYS2130 Svingninger og bolger” (Oscillations and Waves) and has
undergone many revisions and expansions since then. The course is given in the
fourth semester to students enrolled in the Department of Physics at the University
of Oslo. These students have taken courses in Python programming, classical
mechanics and electromagnetism, but have had limited education in oscillations and
wave phenomena.

Scope

In the present book, I have mostly adhered to traditional descriptions of the phe-
nomena; however, I have also tried to point towards potential limitations of such
descriptions. When appropriate, analogies between different phenomena are drawn.

The formalism and phenomena are treated quite differently from section to
section. Some sections provide only qualitative descriptions and thus only a
superficial or introductory understanding of the topics while other sections are more
mathematical and demanding. Occasionally, the mathematical derivations are not
essential to understand the material, but are included to show the connection
between basic physical laws and the phenomena discussed in the text.

vii



viii Preface

Principles from numerical methods are employed as they permit us to handle
more realistic problems than pure analytical mathematics alone, and they facilitate
to obtain a deeper understanding of some phenomena.

Program codes are given, ready to use, and is a tool for further exploration of the
phenomena that are covered. Our experience from teaching this topic to students
over years is that, numerical methods based on “hands-on computer code devel-
opment” expand the experimental attitude and facilitate the learning process.

We try in this book to emphasize how so-called algorithmic thinking can
improve understanding. As a personal example, the algorithm for calculating how a
wave evolves over time has given me a much deeper understanding of the wave
phenomena than by working with analytical mathematics over years. Another
example is the realization that all variants of classical interference and diffraction
can be calculated using a single computer program, demonstrating not only that
numerical methods are powerful, but also that the underlying physical mechanism is
identical in all these cases.

We have made an effort to ensure a logical and reader-friendly structure of the
book. Especially important parts of the core material in the text are marked by
coloured background, and various examples show how the core material can be
used in different contexts. Supplementary information and comments are given in
small print. Learning objectives point to the most important sections of each
chapter. Most of the chapters include suggestions to further reading.

There are three types of exercises in the book. The first type of exercise consists
of a list of concepts in each chapter that can be used by students in various ways for
active learning. Thereafter follow comprehension/discussion questions and more
regular problems often including calculations. Best learning outcome is achieved by
trying all the three types of tasks, including oral discussions when working with
understanding concepts and the comprehension/discussion questions. The problems
used in the exercises are taken from daily life experiences, in order to demonstrate
how physics is relevant in many aspects of our everyday life.

For the more regular problems, the aim is to encourage the reader to learn how to
devise a strategy for solving the problem at hand and to select the appropriate laws.
A “correct answer” without an adequate justification and reasoning is worthless. In
many tasks, not all the relevant quantities are supplied, and in these cases, the
reader must search for the necessary information in other books or the Internet. This
is a natural part of working with physics today. A list of answers for the problems is
not worked out yet. Some problems require particular data files to be analyzed that
will be available from a web page advertised by the publisher.

Content

In our daily life, oscillations and waves play an important role. The book covers
sound phenomena, our sense of hearing, and the two sets of measurements of sound
and units that are in use: one for physical purposes solely and the other related to



Preface ix

the sense of hearing. Similarly, the book treats light phenomena and our sense of
vision, as well as the two sets of measurements and units that are in use for these
purposes. In addition, we also discuss colour mixing and important differences
between our senses of hearing and vision.

By introducing Fourier transform, Fourier series and fast Fourier transform, we
introduce important tools for analysis of oscillatory/wave phenomena. Our aim is to
give the reader all necessary details so that she/he can utilize this numeric method to
its full potential. We also point out a common misconception we often find in
connection with Fourier analysis.

We introduce continuous wavelet transform with Morlet wavelets as a kind of
time-resolved Fourier transform and explain why we have chosen this method
instead of a short-term Fourier transform. Much emphasis is put on optimizing the
analysis and how this is closely related to the time-bandwidth product; a classical
analogue to Heisenberg’s uncertainty principle. A computer program is provided
for this topic as well as for many other parts of the book.

One chapter is devoted to numerical method, mainly in how to solve ordinary
and partial differential equations of first or second order. Other topics covered in the
book are geometric optics, interference, diffraction, dispersion and coherence. We
also briefly cover skin effect, waveguides and lasers.

Intended Audience

The reader of the book should have some basic programming experience, prefer-
ably in Matlab or Python, and know basic mechanics and electromagnetism. The
principal ingredients of the book encompassing physical phenomena and formal-
ism, analytical mathematics, numerical methods, focus on everyday phenomena and
state-of-the-art examples are likely to be of interest to a broader group of readers.
For instance, we have experienced that established physicists who want to look up
details within the themes like colour vision, geometrical optics and polarization also
appreciate the book.

Computer Programs

In this book all computer programs are given in Matlab code. However, all the these
programs are available as separate files both in Matlab and in Python code at the
“additional resources” Web page at https://urldefense.proofpoint.com/v2/url?u=http-
3A__www.physics.uio.no_pow_&d=DwIFAg&c=vh6FgFnduejNhPPDOfl_yRaS{Zy
8CWbWnlf4XJhSqx8&r=9V0dbmmXGCupx 1bqsdDysss YngDmbKz79g1diplcPn4
&m=FJQIEp2YVoXlg_zL.nM3m3k9m60a6GBqfvvj68AbJtMO&s=cXDHnCeHU
xv0te6xsUN3OLI9B2L4V3MHfUpay YSP6_gU&e=.
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X Preface

Some introduction is given to programming style, reproducibility and doc-
umentation, but not at a level as is expected for a course fully devoted to pro-
gramming. We do not provide an introduction to “dimensionless variables”.
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Chapter 1 ®)
Introduction Check for

Abstract Initially, the introductory chapter deals with different ways people com-
prehend physics. It might provide a better understanding of the structure of the book
and choices of the topics covered. It continues with a description and discussion on
how the introduction of computers and numerical methods has influenced the way
physicists work and think during the last few decades. It is indicated that the develop-
ment of physics is multifaceted and built on close contact with physical phenomena,
development of concepts, mathematical formalism and computer modelling. The
chapter is very short and may be worth reading!

1.1 The Multifaceted Physics

Phenomena associated with oscillations and waves encompass some of the most
beautiful things we can experience in physics. Imagine a world without light and
sound, and then you will appreciate how fundamental oscillations and waves are for
our lives, for our civilization! Oscillations and waves have therefore been a central
part of any physics curriculum, but there is no uniform way of presenting this material.

“Mathematics is the language of physics” is a claim made by many. To some extent,
I agree with them. Physical laws are formulated as mathematical equations, and we
use these formulas to calculate the expected outcomes of experiments. But, in order to
be able to compare the results of our calculations with actual observations, more than
sheer mathematics is needed. Physics is also an edifice founded on concepts, and the
concepts are entwined as much with our world of experience as with mathematics.
Divorced from everyday language, notions and experiences, the profession would
bear little resemblance to what we today call physics. Then we would just have pure
mathematics! The Greek word ¢pvo g (“physis’) means the nature and physics is a
part of natural science.

People are different. My experience is that some are fascinated primarily by
mathematics and the laws of physics, while others are thrilled by the phenomena in
themselves. Some others are equally intrigued by both these facets. In this book, I
will try to present formalism as well as phenomena, because—as stated above—it is
the combination that creates physics (Fig. 1.1)! A good physicist should be in close

© Springer Nature Switzerland AG 2018 1
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2 1 Introduction

Fig. 1.1 Oscillations and waves are woven into a host of phenomena we experience every single
day. Based on fairly general principles, we can explain why the most common rainbow has invariably
a radius of 40—42° and is red outward, and the sky just outside the rainbow is slightly darker than
that just inside. You already knew this, but did you know that you can extinguish the light from
a rainbow almost completely (but not for the full rainbow simultaneously), as in the right part of
the figure, by using a linear polarization filter? The physics behind this is one of the many themes
covered in this textbook

contact with phenomena as well as formalism. For practical reasons and with an eye
on the size of the book, I have chosen to place a lot of emphasis on mathematics
for some of the phenomena presented here, while other parts are almost without
mathematics.

Mathematics comes in two different ways. The movement of, for example, a
guitar string can be described mathematically as a function of position and time. The
function is a solution of a differential equation. Such a description is fine enough
but has an ad hoc role. If we know the amplitude at a certain time, we can predict
the amplitude at a later instant. Such a description is a necessity for further analysis,
but really has little interest beyond this. In the mechanics, this is called a kinematic
description.

It is often said that in physics we try to understand how nature works. We are
therefore not satisfied by a mere mathematical description of the movement of the
guitar string. We want to go a little deeper than this level of description. How can
we “explain” that a thin steel string under such-and-such tension actually gives the
tone C when it is plucked? The fascinating fact is that with the help of relatively
few and simple physical laws we are able to explain many and seemingly diverse
phenomena. That gives an added satisfaction. We will call this a mechanical or
dynamic description.

Mathematics has traditionally been accorded, in my opinion, overmuch space,
compared with the challenge of understanding mechanisms. This is due in part to
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the fact that we have been using, by and large, analytical mathematical methods for
solving the differential equations that emerge. To be sure, when we use analytical
methods, we must penetrate the underlying mechanisms for the sake of deducing the
equations that portray the phenomena. However, the focus is quickly shifted to the
challenges of solving the differential equation and discussing the analytical solution
we deduce.

This approach has several limitations. First of all, the attention is diverted from the
content of the governing equations, wherein lie the crucial mechanisms responsible
for the formation of a wave. Secondly, there are only a handful of simplified cases
we are able to cope with, and most of the other equations are intractable by analytical
means. We often have to settle for solutions satisfying simplified boundary conditions
and/or solutions that only apply after the transient phase has expired.

This means that a worrying fraction of many generations of physicists are left with
simplified images of oscillations and waves and believe that these images are valid
in general. For example, according to my experience, many physicists seem to think
that electromagnetic waves are generally synonymous with plane electromagnetic
waves. They assume that this simplified solution is a general formula that can be used
everywhere. Focusing on numerical methods of solution makes it easier to understand
why this is incorrect.

1.2 Numerical Methods

Since about the year 2000, a dramatic transformation of physical education in the
world has taken place. Students are now used to using computers and just about
everyone has their own or have easy access to a computer. Computer programs and
programming tools have become much better than they were a few decades ago, and
advanced and systematic numerical methods are now widely available. This means
that bachelor students early in their study can apply methods as advanced as those
previously used only in narrow research areas at master’s and Ph.D. level. That means
they can work on physics in a different and more exciting way than before.

Admittedly, we also need to set up and solve differential equations, but numerical
solution methods greatly simplify the work. The consequence is that we can play
around, describing different mechanisms in different ways and studying how the solu-
tions depend on the models we start with. Furthermore, numerical solution methods
open the door to many more real-life issues than was possible before, because an
“ugly” differential equation is not significantly harder to solve numerically than a
simple one. For example, we could write down a nonlinear description of friction
and get the results almost as easily as without friction, whereas the problem is not
amenable to a purely analytical method of solution.

This means that we can now place less emphasis on different solution strategies
for differential equations and spend the time so saved for dealing with more real-
life issues. I myself belong to a generation which learned to find the square root of
a number by direct calculation. After electronic calculators came on the market, I
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have had no need for this knowledge. We are now in a similar phase in physics and
mathematics. For example, if we use the Maple or Mathematica computer programs,
we get analytical expressions for a wealth of differential equations, and if a differential
equation does not have a straightforward analytical solution, the problem can be
solved numerically. Some skills from previous years therefore have less value today,
while other skills have become more valuable.

This book was written during the upheaval period, during which we switched
from using exclusively analytical methods in bachelor courses to a situation where
computers are included as a natural aid both educationally and professionally. We
will benefit directly from this not only for building up a competence that everyone
will be happy to employ in professional life, but also by using it as an educational tool
for enhancing our understanding of the subject matter. With numerical calculations,
we can focus more easily on the algorithms, basic equations, than with analytical
methods. In addition, we can address a wealth of interesting issues we could not study
just by analytical methods, which contributes to increased understanding. Numerical
methods also allow us to analyse functions/signals in an elegant way, so that we can
now get much more relevant information than we could with the methods available
earlier.

Using numerical methods is also more interesting, because it enables us to provide
“research-based teaching” more easily. Students will be able to make calculations
similar to those actually done in research today. There are plenty of themes to address
because a huge development in different wave-based phenomena is underway. For
example, we can use multiple transducers located in an array for ultrasound diag-
nostics, oil leakage, sonar and radar technology. In all these examples, well-defined
phase differences are used to produce spatial variations in elegant ways. Further-
more, in so-called photonic crystals and other hi-tech structures at the nanoscale,
we can achieve better resolution in measurements than before, even better than the
theoretical limits we believed to be unreachable just a few years ago. Furthermore,
today we utilize nonlinear processes that were not known a few decades ago. A lot of
exciting things are happening in physics now, and many of you will meet the topics
and methods treated in this book, even after graduation.

1.2.1 Supporting Material

A “Supplementary material” web page at http://www.physics.uio.no/pow is available
for the readers of this book. The page will offer the code of the computer programs
(both Matlab and Python versions), data files you need for some problems, a few
videos, and we plan to post reported errors and give information on how to report
errors and suggestions for improvements.
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1.2.2 Supporting Literature

Many books have been written about oscillations and waves, but none of the previous
texts covers the same combination of subjects as the present book. It is often useful
to read how other authors have treated a particular topic, and for this reason, we
recommend that you consult, while reading this book, a few other books and check,
for example, Wikipedia and other relatively serious material on the Web. Here are
some books that may be of interest:

Richard Fitzpatrick: “Oscillations and Waves: An introduction”. CRC Press, 2013.
H. J. Pain: “The Physics of Vibrations and Waves”. 6th Ed. Wiley, 2005.

A. P. French: “Vibrations and Waves”. W. W. Norton & Company, 1971.

Daniel Fleisch: “A Student’s Guide to Maxwell’s Equations”. Cambridge
University Press, 2008.

Sir James Jeans: “Science and Music”. Dover, 1968 (first published 1937).
Eugene Hecht: “Optics”, Sth Ed. Addison Wesley, 2016.

Geoffrey Brooker: “Modern Classical Optics”. Oxford University Press, 2003.
Grant R. Fowles: “Introduction to Modern Optics”. 2nd Ed. Dover Publications,
1975.

Ian Kenyon: “The Light Fantastic”. 2nd Ed. Oxford University Press, 2010.

e Ajoy Ghatak: Optics, 6th Ed., McGraw Hill Education, New Delhi, 2017.
e Karl Dieter Moller: “Optics. Learning by Computing, with Model Examples Using

MathCad, Matlab, Mathematica, and Maple”. 2nd Ed. Springer 2007.

e Peter Coles: “From Cosmos to Chaos”. Oxford University Press, 2010.
e Jens Jgorgen Dammerud: “Elektroakustikk, romakustikk, design og evaluering av

lydsystemer”. http://ac4music.wordpress.com, 2014.
Jonas Persson: “Vagrorelseslira, akustik och optik™. Studentlitteratur, 2007.
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Chapter 2 ®)
Free and Damped Oscillations oo

Abstract This chapter introduces several equivalent mathematical expressions for
the oscillation of a physical system and shows how one expression can be transformed
into another. The expressions involve the following concepts: amplitude, frequency
and phase. The motion of a mass attached to one end of a spring is described by
Newton’s laws. The resulting second-order homogeneous differential equation has
three solutions, depending on the extent of energy loss (damping). The difference
between a general and a particular solution is discussed, as well as superposition of
solutions for linear and nonlinear equations. Oscillation in an electrical RCL circuit
is discussed, and energy conservation in an oscillating system which has no energy
dissipation is examined.

2.1 Introductory Remarks

Oscillations and vibrations are a more central part of physics than many people
realize. The regular movement of a pendulum is the best-known example of this kind
of motion. However, oscillations also permeate all wave phenomena. Our vision,
our hearing, even nerve conduction in the body are closely related to oscillations,
not to mention almost all communication via technological aids. In this chapter, we
will look at the simplest mathematical descriptions of oscillations. Their simplicity
should not tempt you into underestimating them. Small details, even if they appear
to be insignificant, are important for understanding the more complex phenomena
we will encounter later in the book.

2.2 Kinematics

In mechanics, we distinguish between kinematics and dynamics, and the distinction
remains relevant when we consider oscillations. Within kinematics, the focus is
primarily on describing motion. The description is usually the solution of differential

© Springer Nature Switzerland AG 2018 7
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equations or experimental measurements. The underlying physical laws are not taken
into consideration.

In dynamics, on the other hand, we set up the differential equations of motion
based on known physical laws. The equations are solved either by analytical or
numerical methods, and we study how the solutions depend on the physical models
we started with. If we seek physical understanding, dynamic considerations are of
greater interest, but the kinematics can also be useful for acquiring familiarity with
the relevant mathematical description and the quantities that are included.

How do we describe an oscillation? Let us take an example: A mass attached to
one end of a spring oscillates vertically up and down. The top of the spring is affixed
to a stationary point.

The kinematic description may go like this: The mass oscillates uniformly
about an equilibrium point with a definite frequency. The maximum displace-
ment A relative to the equilibrium point is called the amplitude of oscillation.
The time taken by the mass to complete one oscillation is called time period
T . The oscillation frequency f is the inverse of the time period, i.e. f = 1/T,
and is measured in reciprocal seconds or hertz (Hz).

Suppose we use a suitably chosen mass and a limited amplitude of displacement
for the spring. By that we mean that the amplitude is such that the spring is always
stretched, and never so much as to suffer deformation. We will be able to observe that
the position of the mass in the vertical direction z (¢) will almost follow a mathematical
sine/cosine function:

z(t) = Acos(2nt/T) .

However, such a description is not complete. There is no absolute position or absolute
time in physics. Therefore, when we specify a position z (along a line), we must also
specify the point with respect to which the measurement is made. In our case, this
reference point is the position of the mass when it is at rest.

Similarly, we must specify the reference point relative to which the progress
of time is measured. In our case, the origin of time is chosen so that the position
has a maximum value at the reference time ¢ = 0. If there is a mismatch, we must
compensate by introducing an initial phase ¢, and use the expression

z(t) = Acos2nt/T + @) .

Since the quantity 277/ T occurs in many descriptions of oscillatory movements,
it proves advantageous to define an angular frequency of w as follows:

w=2n/T =2nf
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Fig. 2.1 A harmonic
oscillation is characterized
by amplitude, frequency and
phase; see the text

Position (cm)

where f is the frequency of oscillation. This is a fairly common way to describe an
oscillation (Fig. 2.1).

However, a “simple harmonic oscillation” can be described in many ways. The most
common mathematically equivalent ways are:

z(t) = A coswt + B sin wt 2.1)
= C cos(wt + ¢) 2.2)
=R {2} (2.3)
=R {E@HP} (2.4)

9 {} indicates that we take the the real part of the complex expression within
the braces, and & is a complex number.

Euler’s formula for the exponential function (complex form) has been used in the
last two expressions. According to Euler’s formula:

e = cosa +isina .
This formula forms the basis for a graphical representation of a harmonic motion:
First, imagine that we draw a vector of unit length in a plane. The starting point of
the vector is placed at the origin and the vector forms an angle « with the x-axis.

The vector can then be written as follows:

Xcosa + ysina



10 2 Free and Damped Oscillations

Fig. 2.2 A phasor is a vector
of a given length. The phasor
rotates at a given angular
frequency and with a definite
initial phase. The figure

A
Imaginary
axis

© 4,
|

shows the position of the Phasi o+ §

phasor at one point in time. L >

See the text A cos(ot + §) Real
axis

where X and y are unit vectors along the x- and y- direction, respectively. The
similarity to the previous expression is striking, assuming that the real part of the
expression is taken to be the component along the x-direction and the imaginary part
as the y-component.

This graphical vector representation can be extended immediately to represent
a harmonic oscillation. We then use a vector with a length corresponding to the
amplitude of the harmonic motion. The vector rotates with a fixed angular frequency
of w about the origin. The angle between the vector and the x axis is always wt + ¢.
Then the x-component of the vector at any given time indicates the instantaneous
amplitude of the harmonic oscillation. Such a graphical description is illustrated in
Fig.2.2 and is called an phasor description of the motion.

Phasors are very useful when multiple contributions to a motion or signal of the
same frequency are to be summed up. The sum of all contributions can be found
by vector addition. Especially in AC power, when voltages over different circuit
components are summed, phasors are of great help. We will come back to their uses
later. Phasors are useful also in other contexts, but mostly when all contributions in
a sum have the same angular frequency.

It is important to learn all the mathematical expressions (2.1)—(2.4) for simple
oscillatory motion so that they can be instantly recognized when they appear. It is
also important to be able to convert quickly from one form to another. This book is
full of such expressions!

2.3 Going from One Expression to Another

Phasors are of immense aid. As mentioned, a phasor is a vector that rotates in the
complex plane as time passes (see Fig.2.3). The vector rotates at an angular velocity
equal to w. The component of this vector along the real axis represents the physical
value of our interest, and it is this component that can be expressed in more than four
equivalent ways.
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Fig. 2.3 Sketch of a phasor
that rotates around the origin
with an angular velocity . iCsin(ot+¢) —>f------_

Imaginary axisA

>
T Real axis

C cos(ot + ¢)
= A4 cos(wt) + B sin(o?)

2.3.1 First Conversion

Let us first show the transition from Egs. (2.2) to (2.1). We use Rottmann’s compi-
lation of mathematical formula (an important tool when working with this book!),
and use the trigonometric addition formula for cosines to get:

z(t) = C cos(wt + ¢)
= C {cos wt cos ¢ — sin wt sin ¢}
= [C cos ¢] cos wt + [—C sin ¢] sin wt.

This expression is formally identical to Eq. (2.1), from which it follows that:

Ccos(wt + ¢) = Acoswt + Bsinwt ifweset A =Ccos¢ and B =—Csing .
2.5)

2.3.2 Second Conversion

We can go the opposite way by utilizing the details given in Eq. (2.5):
A%+ B? = (Ccos ¢)?> + (Csing)? = C*(sin® ¢ + cos’ ¢p) = C?

C=+VA%2+ B2,

And, by dividing the last two relations in Eq. (2.5), we get:

B —Csing

— = — = —t
A Ccos ¢ an ¢


https://www.springer.com/gp/book/9783860254622

12 2 Free and Damped Oscillations

This is a fraction whose numerator is the y-component and the denominator the
x-component of the phasor at = 0. Then, it follows that

¢ t 5
= —arctan — .
A

It should be noted here that both the tan and arctan have a periodicity of 7, and
one has to be careful about which of the two possible solutions one chooses. What
quadrant ¢ is in depends on the sign of A and B separately. We must keep this in
mind to make sure we choose the correct ¢!

If a computer is used for calculating arctan, the atan2(B, A) variant is recom-
mended for both Matlab and Python. Then the angle comes out in the correct quad-
rant.

With these reservations, we have shown:

B
Acos(wt) + B sin(wt) = C cos(wt + ¢) where C =+ A2+ B2 and ¢ = — arctan T
2.6)

2.3.3 Third Conversion

The transition from Eqs. (2.4) to (2.2) is very simple if we use Euler’s formula:
e = cosa +isina .
From this, it follows that:
R{E @) = R{E [cos(wt + ¢) +isin(wt + $)]} = E cos(wt + ) .

If this is equal to C cos(wt + ¢) one must have:

R{E P} = Ccos(wt +¢) if C=E. 2.7)

This simple relation holds equally well both ways (from Eqs. (2.4) to (2.2) or the
opposite way).



2.3 Going from One Expression to Another 13

2.3.4 Fourth Conversion

The last rendering to be considered here is also based on Euler’s formula. It is the
conversion of Egs. (2.3) to (2.1). It is crucial to note that & is complex. We write
this number as a sum of a real and an imaginary part:

9 = Dre +1Din
where D,. and Dj, are both real. This leads (once again through Euler’s formula):
N {2e'} = R{(Dre + iDim)(cos ot + isinwr)}
=N {Dre coS wt + iDye $in wt + 1Dy €08 wt + i Dy, sin a)t}
= D, coswt — Di, sinwt .
When this is compared with
Acoswt + Bsinwt ,

one is led to the simple relation:

N {2} = Acos(wt) + Bsin(wt) if 2=A—iB. (2.8)

This simple relationship also works both ways (from Egs. (2.3) to (2.1) or the
converse).

We could also look at the expression z(¢) = C sin(wt + ¢) instead of z(t) =
C cos(wt + ¢), but with the procedures outlined above it should be easy to navigate
from one form to the next.

When we come to treat waves in later chapters, we will often start with harmonic
waves. The expressions then become almost identical to those we have in Egs. (2.1)—
(2.4). It is important to be familiar with these expressions.

2.4 Dynamical Description of a Mechanical System

Let us come back now to physics. A spring often follows Hooke’s law: the deviation
from the equilibrium point is proportional to the restoring force exerted by the spring.

Suppose that the suspension hangs vertically without any mass at the end. It has
a length of L. If a mass m is attached to the free end, and we wait until the system
has settled, the spring will have a new length, say L, that satisfies the equation
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Fig. 2.4 Definition of
different lengths of the
spring with and without an
attached mass; see the text

Standstill

In motion

k(Ly — Lo) =mg

where the experimentally determined k is called the spring constant, and g, the
acceleration due to gravity, is considered constant (disregarding the variation of g
with the height) (Fig. 2.4).
If the mass is pulled down slightly and released, the force acting on the mass will
always be
F(t) = K[L(1) — Lol — mg

where L(t) is the instantaneous length of the spring. Upon combining the last two
equations, one gets

F(t) = k[L(t) — Lol — k(L — Lo)
= k[L(t) — L] .

Important: The elongation of the spring from length L, to L, is a consequence of
the force of gravity. Therefore, in later expressions, neither L nor g, the acceleration
due to gravity, will enter.

The displacement from the equilibrium point, i.e. L(#) — L is renamed to —z(¢).
The force that acts on the mass will then be

F(t) = —kz(t) .

The negative sign indicates that the restoring force is in the opposite direction with
respect to the displacement.
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According to Newton’s law, the sum of the forces acting on the mass is equal to
the product of the mass and the instantaneous acceleration:

F(t) = mZ(t) = —kz(t) .

Note once more that the gravitational force is not directly included in this expression. This is
because the restoring force due to the spring and the gravitational pull counterbalance each other
when z = 0.

7 is the double derivative of z with respect to time, i.e. acceleration in the vertical
direction:
d?z
dr? -’

(oM
1

The equation of motion can then be written as:

50 = —%20) . 2.9)
m

This is a second-order homogeneous differential equation with constant coef-
ficients, and we know its general solution to be

s [k
z(t) = Bsin —t ) + Ccos —t
m m

where B and C are two constants (with dimensions of length). We can identify this
solution as Eq. (2.1) if we set the angular frequency w in the latter equation to

| k
w=,—.
m

The constants B and C are found by imposing the initial conditions, and the par-
ticular solution for the oscillatory motion is thereby determined with one particular
amplitude and one particular phase.

The angular frequency w is convenient to use in mathematical expressions. How-
ever, when we observe an oscillating system, it is expedient to use frequency f and
period 7. Their interrelationship is stated below:
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For the mechanical mass—spring oscillator one gets:

1 [k
f =,

“2Vm

Im
T =21 |—.
k

‘What have we learned in this section? Well, we have seen that a mass, attached to
a spring and experiencing the forces exerted by the spring and gravity, will oscillate
up and down, executing a simple harmonic motion with a certain amplitude and time
period. We have managed to “explain” the oscillatory motion by combining Hooke’s
law and Newton’s second law.

The kinematic description gave in Sect.2.1 is identical to the solution of the
dynamic equation we set up in this section based on Newton’s law.

2.5 Damped Oscillations

No macroscopic oscillations last ceaselessly without the addition of energy. The
reason is that there are always forces that oppose the movement. We call these
frictional forces.

Frictional forces are often difficult to relate to, because they arise from complicated
physical phenomena occurring in the borderland between atomic and macroscopic
dimensions. A basic understanding of friction has begun to grow during the last
decades, because grappling with this part of physics requires extensive modelling by
means of computers.

Air friction is complex and we need at least two terms to describe it:

Fr= —bv — Dv?

where v is the velocity (with direction), and b and D are positive constants, which
will be called friction coefficients.

An expression that also indicates the correct sign and direction is:

—
P—

F,=—b7 — Dv*—~ = —b% — D 0|7 . (2.10)
v

In other words, the friction force F; works in a direction opposite to that of
the velocity V.
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If we start with a system executing harmonic motion without friction, and we
add friction as given in Eq. (2.10), it is not possible to find a general solution using
analytical mathematics alone. If the problem is simplified by setting the frictional
force to —bv only, it is possible to use analytical methods. The solution is useful for
slow motion in air. For small speeds, the term Dv? will be less than the term bv in
Eq. (2.10) so that the v? term can be neglected.

Remarks: — Dv? is a nonlinear term that is often associated with turbulence, one of the difficult
areas of physics, often associated with chaotic systems. Friction of this type depends on a number of
parameters that can be partially included into the so-called Reynolds number. In some calculations,
the quantity D must be replaced by a function D(v) if Eq. (2.10) is to be used. Alternatively, the
Navier—Stokes equation can be used as a starting point. Reasonably accurate calculations of the
friction of a ball, plane or rocket can be accomplished only by using numerical methods (Those
interested will be able to find more material in Wikipedia under the headings “Reynolds number”
and “Navier—Stokes equation”.).

Since no great skill is needed for solving the simplified differential equation,
we accept the challenge! The solution method will consolidate our familiarity with
complex exponents and will show the elegance of the formalism. Moreover, this is
standard classical physics widely covered in textbooks, and the results are useful in
many contexts. The mathematical approach itself finds applications in many other
parts of physics.

The starting point is, as before, Newton’s second law, and we use it for a mass
that oscillates up and down at the end of a spring in air. The equations can now

be written:
Z F = ma = m?

—kz(t) — bz(t) = mZ(t)
v b . k
Z(t) + ;z(t) + Zz(t) =0. 2.11)

This is a homogeneous second-order differential equation, and we choose a
trial solution of the type:
z(r) = Ae* . (2.12)

Remark: Here, both A and « are assumed to be complex numbers.

Differentiation of the exponential function (2.12), insertion into (2.11) and finally
the abbreviation of exponential terms and the factor A gives the characteristic poly-

nomial b ‘
o+ —a+—=0.
m m
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We rename the fractions to get a tidier expression:

=2y (2.13)

. (2.14)

I 3|
1]
S

The equation now becomes:
o>+ 2ya+w =0.

This is a quadratic equation whose roots can be written as:

ar =—y £y —w?. (2.15)

There arise three different types of solutions, depending on the discriminant:

e y > w : Supercritical damping, overdamping

If the frictional force becomes large, we get what is called overdamping. The
criterion of overdamping y > w is mathematically equivalenttob > 2+/km.
In this case, both A and « in Eq. (2.12) are real numbers, and the general
solution can be written as:

2(0) = ATV
+ ApelrVr=) (2.16)

where A; and A,, determined by the initial conditions, involve the initial
values of velocity and displacement.

e This is a sum of two exponentially decaying functions, one of which goes to zero
faster than the other. There is no trace of oscillatory motion here.
Note that, for certain initial conditions, A; and A, may have different signs, and
the time course of the displacement may hold surprises!

e y = w : Critical damping
The frictional force and the effective spring force now match each other in such
a way that the movement becomes particularly simple. Based on Egs. (2.12) and
(2.15), we find one solution: It can be described as a simple exponential function:

(1) = Ae 7",
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It is known from the theory of differential equations that the general solution of a
second-order differential equation must have rwo arbitrary constants, so that one
may satisfy two initial conditions. This means that we have yet to find the full
solution. To find the missing solution, we will use a simple trial solution of the
type:

2(t) = f(He™" .

If this trial solution 1s substituted into our differential equation (2.11) with y = o,
we find easily that f must be equal to 0. After two integrations with respect to 7,
we find f(r) = A + Br.

Thus the general solution of Eq. (2.11) for critical damping is then:
z(t) = Ae™"" + Bre "' . (2.17)

Critical damping in many cases corresponds to the fastest damping of a
system and is the one sought for, for example, in vehicle shock absorbers.

e ¥ < w: Sub-critical damping; underdamping
In this case, @ in Eq. (2.15) becomes complex, which means that the solution will
contain both an exponential decreasing factor and an oscillating sinusoidal term.
From Eq. (2.15), we get then:

ar = —y £Vy?— o? (2.18)

=—y+iv . (2.19)
where ' = \/w? — y? is a real number. The general solution then becomes:
2() = e ' {szei‘“” + %‘e*iw”}

where o7 and Z are complex numbers, and 9t means that we take the real part of
the expression.

The solution for sub-critical damping can be put in a simpler form:

z72(t) = e "' Acos(w't + ¢) . (2.20)

Here the constant A and ¢ must be assigned such values as to make the particular
solution conform to a given physical system. The mass will oscillate on both sides
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Fig. 2.5 Examples of
overcritical, critical and
sub-critical damping of an
oscillation that would be
simple harmonic in the
absence of friction. The
friction is increased by a
factor of four from one curve
to another: sub-critical, \ ;
critical and overcritical ' Subcritical
damping -0.5 i
0 1 2 3 4 5
Time (s)

Displacement (m)

of the equilibrium point while the amplitude decreases to zero. The oscillation
frequency is lower than when there is no damping (something that is to be expected
since the friction acts to slow down all movement).

It is common in textbooks to present a figure that typically shows the time course
for a damped harmonic motion, and Fig.2.5 perpetuates the tradition. However, it
should be noted that such figures can be very misleading, because they often assume
that the initial velocity is zero (as in our figure). In a task last in this chapter, we
ask you to investigate how an overdamped harmonic motion looks under some other
initial conditions. If you solve that task, you will see that the solution is more diverse
than the traditional figures indicate!

2.6 Superposition and Nonlinear Equations

When we tried to figure out how a damped oscillation changes with time, we assumed
the validity of the differential equation:

(1) + ﬁz'(t) + Ez(t) =0 (2.21)
m m

and found a general solution that consisted of two parts. For overcritical damping,
the solution looks like this:

z4(t) = Ale(*}/+«/}/2,w2)t A, e(,y, /yz,wz)t

where y and w are defined in Egs. (2.13) and (2.14) above.
In the interests of simplicity, we set:

fir) = T
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and

£ty = TV
One solution can then be written as:

za(t) = AL f1() + A2 fo(2) .

Another solution of the differential equation could be:
2g(t) = B fi(1) + B2 fo() .
It is easy then to see that
zag(t) = [A1 f1 (1) + A2 fo(D)] + [B1 f1(1) + B2 f2(1)]
zag(t) = (A1 + B1) f1(1) + (A2 + By) f2(1)

will also be a solution of the differential equation. This is due to the fact that the
differential equation (2.21) is a linear equation.

This is called the “superposition principle”. This principle pervades many parts
of physics (and notably also in quantum mechanics).

Previously, many people considered superposition principles to be a fundamental
property of nature, but it is not. The reason for the misunderstanding is perhaps that
most physicists of those days worked only with linear systems where the superpo-
sition principle holds. Today, thanks to computers and numerical methods, we can
tackle physical systems that were previously inaccessible. This means that there has
been an “explosion” in physics in the last few decades, and the development is far
from over.

Let us see what differences arise when nonlinear descriptions are used. By non-
linear description, for example, we mean that forces describing a system showing a
nonlinear dependence on position or speed. For example, when we described damped
oscillations, we found that friction must often be modelled with at least two terms:

F = —bv— Dv?.

The second term on the right-hand side makes a nonlinear contribution to the force.
The differential equation would then become:

. b. D. ., k
M)+ =2 + —=ZOI + —z(t) =0 (2.22)
m m m

In this case, we can prove the following:
If f4(¢) is one solution of this equation, and fp(¢) is another solution, it is in
general not true that the function f4(¢) + f5(¢) is a solution of Eq. (2.22).
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In other words, when we include a second-order term to complete the friction
description, we see that the superposition principle no longer applies! Even if
we find a possible solution for such an oscillating system, and then another
solution, the sum of these individual solutions will not necessarily be a solution
of the differential equation.

The term Dv? is a nonlinear term, and when the physics is such that nonlinear
terms play a nonnegligible role, the superposition principle does not apply.

Take a look at the “list of nonlinear partial differential equations’ on the Wikipedia
to get an impression of how important nonlinear processes have now become within,
for example, various areas of physics. The overview indirectly shows how many more
issues we can study today compared to what was possible a few decades ago. Despite
this, we still have a regrettable tendency to use formalism and interpret phenomena,
in both classical and quantum physics, as if the world was strictly linear. I dare say,
physicists will have, within a few decades, such a rich store of experience to build
on that the general attitude will change. Time will show!

2.7 Electrical Oscillations

Before we proceed with forced oscillations, we will derive the equation of oscillatory
motion for an electrical circuit. The purpose is to show that the mathematics here is
completely analogous to that used in mechanical system.

In electromagnetism, there are three principal circuit elements: Resistors, induc-
tors (coils) and capacitors. Their behaviours in an electrical circuit are given by
the following relationships (where Q stands for the charge, I = d Q/dt is electric
current, V is voltage, R is resistance, L inductance and C capacitance):

Vg = RI (2.23)
Ve =0Q/C (2.24)
V. = Ldl/dt

= Ld*Q/dr” . (2.25)

If the circuit elements are connected in a closed loop, the total voltage change will
be zero when we go around the loop from any point to the same point (Kirchhoff’s
law). For example, we connect a (charged) capacitor to a resistor (by closing the
switch in Fig. 2.6), the voltage across the capacitor will always be the opposite of the
voltage across the resistor. Thus, it follows that
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RI=-Q/C
o 1
dr ~ RCT’
1
0
C R

Fig. 2.6 The voltage across a charged capacitor will decrease exponentially to zero after the capac-
itor is connected to a resistor

RI=-0Q/C
9 1
o - rc?

If the charge on the capacitor was Qg attime ¢ = 0, the solution of this differential
equation is:

Q — Qoeft/RC .

The charge on the capacitor thus decreases exponentially and goes to zero (The reader
is supposed to be familiar with this.).

In the context of “oscillations and waves”, we will concentrate on oscillating
electrical circuits. An oscillating electrical circuit usually consists of at least one
capacitor and an inductor. If the two elements are connected in series so as to form
a closed loop, Kirchhoff’s law gives:

2
0 dl Ld 0

o G

C dr dr?

d>0 1
- = ——Q .
dt LC

We can write this in the same way as was done for the mechanical system:

N 1
o) = —EQ(t) : (2.26)

If we compare Eq. (2.26) with Eq. (2.9), we see that they are completely analogous.
The coefficient on the right-hand side is k/m for the mechanical system, and 1/LC
in the electrical analogue, but they are both positive constants.

This is oscillation once more, and we know that the overall solution is:
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0 = Qpcos(wt + ¢)

where w = 1/+/LC. Qg and ¢ are two constants whose values are fixed on the basis
of the initial state ( = 0) of the system.

It may be worth reflecting on why there must be two initial conditions to obtain a specific solution
for the LC circuit as compared to the RC circuit. In the RC circuit, the current is uniquely given if
the charge is given. We can then decide, by means of a snapshot, either the charge or the voltage,
will vary with time (assuming that R and C are known). For the LC circuit, this is not the case.
There we must know, for example, both charge and current at a particular instant, or the charge at
two adjacent times, to determine the further development. The reason is that we can not deduce
power from one charge (or voltage) alone. The difference in physical descriptions for the RC and
(R)CL circuit is reflected mathematically by the difference between a first-order and a second-order
differential equations.

An electrical circuit in practice contains some kind of loss/resistance. Let us take
the simplest example, namely that the loss is due to a constant series resistance R in
the closed loop. If Kirchhoff’s law is used again, we get the following differential
equation:

0 d7 do d’Q

== _RI-L—=-R—=—-L—
C dt dr dr?

or

d’Q R dQ 1
— —0=0. 2.27
dr? tI L dt Q 2.27)

This is a homogeneous second-order differential equation that can be solved using
the characteristic polynomial:

whose solution is:

The general solution to the differential equation is:
0 = Qo.e —ari+ ( (5= %) + Qpre —ari— (my. (2.28)

We note that for R = 0, we recover Eq. (2.26), whose solution is
Q = Q0.1 4 Qg pe= (VZIEC)!
= Q0,6 WVEO) 4 0 e (VI/LO)!
= Qpcos(wt + ¢) .
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where w = 1/+/LC. We see again that there are two constants to be determined by
means of the initial conditions.

When R # 0, we get an exponentially decreasing term e~ /25" multiplied by
either an oscillating term or a second exponentially decreasing term, depending on
whether (R/2L)? is less or greater than 1/LC. When (R/2L)* = 1/LC, the term
under the radical in Eq. (2.28) becomes zero, which corresponds to what we have
seen previously with two coincident roots. In such a case, the overall solution turns
out to of the same form as Eq. (2.17). Again, it is natural to talk about sub-critical,
critical and supercritical damping, similar to a mechanical pendulum.

We have seen that electrical circuits are described by equations completely anal-
ogous to those for a mechanical pendulum. Other physical phenomena show similar
oscillating behaviour.

Common to all the systems examined above is the equation for oscillatory
motion, which can be stated, in its simplest form, as

df
Wﬁ-cla +ef=0

where ¢; and c¢; are positive constants.

2.8 Energy Considerations

Let us calculate the energy and its time development in electrical circuits. We limit
ourselves to a loss-less oscillating system, that is, we take R = 0. The solution of
the differential equation is then:

Q = Qo cos(wt + ¢)
where w = \/% Qo and ¢ are two constants whose values are determined by using
the initial conditions (r = 0) of the system.

The energy stored in the capacitor at any particular time is given by:

1 102
T 2cC
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The instantaneous energy is thus:

1 [Qg cos(wt + ¢)]?

Ec(t) = 3 C
1 2
= EQ?Ocosz(wtdeJ).

From electromagnetism we know that the energy stored in an inductor is given

by the expression:
1 1 (do\’
B =oLrr=1r(%2Y |
2 2

Substituting the expression for Q from the general solution, the instantaneous
energy in the inductance is found to be

d[ Qg cos(wt + ¢)]]2

1
EL=3L [ dt

1
= ELQO%U2 sin®(wf + ¢) .

. 1 . .
Since w = ———, the expression can also be written as:

VLC

2
E, (t) = %QTO sin?(wt + ¢) .

The total energy, found by summing the two contributions, is thus:

Ew(t) = Ec(t) + EL(1)

1 Q¢* 2 ;2
=5 [cos (ot + @) + sin”(wt + ¢)]
1 2
E (1) = EQ?O .

We notice that the total energy remains constant, i.e. time-independent.
Although the energy of the capacitor and inductor varies from zero to a maxi-
mum value and back in an oscillatory fashion, these variations are time shifted
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by a quarter period, making the sum independent of time. The energy “flows”
back and forth between the capacitor and inductor. A time shift between two
energy forms seems to be a characteristic feature of all oscillations. Sim-
ple oscillations are often solutions of second-order differential equation, but
oscillations may also originate from phenomena that have to be expressed
mathematically in different way.

For the mechanical system, potential energy (from the conservative spring force)
and kinetic energy are the two energy forms. You are recommended to perform a
similar calculation as we have done in this section for the mechanical system to see
that the result is indeed analogous to what we found for the electrical system (This
is the theme for a calculation task in the end of this chapter.).

The energy calculations we have just completed apply only if there is no loss in
the system. If loss due to resistance (the equivalent of friction) is preset, the energy
will of course decrease over time. The energy loss per unit time pattern will depend
on the extent of damping (supercritical, critical or sub-critical), but in general, the
energy loss will follow an exponential decline.

2.9 Learning Objectives

The title of the book is “Physics of Oscillation and Waves”, but just about all basic
theory of oscillations is presented already in this chapter and Chap. 3. Nevertheless,
the basic ideas from these two chapters will resurface many times when we refer to
waves. We therefore think that a thorough study of this chapter and Chap. 3 will pay
handsome dividends when the reader moves to later chapters.

After working through this chapter you should be able to

e Know that a harmonic oscillatory motion can be expressed mathematically
in a variety of ways, both with sines and/or cosine functions, or in complex
form (using Euler’s formula). One goal is to recognize the different forms
and to be able to go mathematically from any of these representations to
another.

e Know that oscillations may occur in systems affected by a force that tries to
bring the system back to equilibrium. Mathematically, this can be described
easily in simple cases:

7= —kz

where x is the displacement from the equilibrium position and k is a real,
positive number.
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e Know that any oscillation must contain the two terms given in the equation
in the previous paragraph, but that other terms may also be included.

e Know how physical laws/relationships are combined by deriving the second-
order differential equation for both a mechanical and an electrical system.

e Know thatin order to find a unique solution to the above-mentioned equation,
two independent initial conditions must be imposed and suggest at least a
few different choices of initial conditions.

e Be able to derive and solve the equation of oscillatory motion both for free
and damped oscillation with linear damping. This means that you must be
able to distinguish between supercritical, critical and sub-critical damping,
and to outline graphically typical features for different initial conditions.

e Be able to deduce the equation for oscillatory motion also for a nonlinearly
damped system and find the solution numerically (after studying Chap. 4).

e Be able to explain why the superposition principle does not apply when
nonlinear terms are included in the equation of motion.

2.10 Exercises

Remark:

For each of the remaining chapters, we suggest concepts to be used for student active
learning activities. Working in groups of two to four students, improved learning
may be achieved if the students discuss these concepts vocally together.

The purpose of the comprehension/discussion tasks is to challenge the student’s
understanding of phenomena or formalism. Even for these tasks, it may be beneficial
for learning that students discuss the tasks vocally in small groups.

The “problems” are more traditional physics problems. However, our apperception
is that the correct answer alone is not considered a satisfactory solution. Full marks are
awarded only if the correct answer is supplemented with sound arguments, underlying
assumptions, and approaches used for arriving at the answer.

Suggested concepts for student active learning activities: Kinematics, dynam-
ics, amplitude, phase, frequency, harmonic, second-order differential equation, gen-
eral solution, particular solution, initial conditions, phasor, damping, characteristic
polynomial, supercritical/critical/sub-critical damping, superposition, linear equa-
tion.

Comprehension/discussion questions

1. Make a sketch similar to Fig. 1.1, which shows a time plot for one oscillation,
but also draw the time course for another oscillation with the same amplitude
and initial phase term, but a different frequency compared to the first one. Repeat
the same for the case where the amplitudes are different, while the phase and
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8.

9.

10.

11.

12.

frequency are the same. Finally, present the third variant of such sketches (Find
out what is meant by this.).

. What demands must we make for a force to be able to form the basis for oscil-

lations?

. If a spring is cut in the middle, what will be the spring constant for each part

compared to that for the original spring? How large is the time period for a mass
at the end of the half-spring compared with the period of the mass in the original
spring?

. Suppose we have a mass in a spring that oscillates up and down with a certain

time period here on earth, and that the spring and the mass are brought to the
moon. Will the time period change?

. Suppose we do as in the previous task, but take a pendulum instead of a mass

and spring. Will the time period change?

. A good bouncing ball can bounce up and down many times against a hard

horizontal surface. Is this a harmonic motion (as we have used the word)?

. Inthe text, a rather vague statement is made about a judicious choice of mass and

maximum extension of the spring to achieve an approximately harmonic oscil-
latory motion. Can you give examples of what conditions will be unfavourable
for a harmonic motion?

Problems

Show mathematically that the total energy of an oscillating mass—spring system
(executing up and down movement only) is constant in time if there is no friction
present (Remember that changes in potential energy in the gravitational field
disappear if you take the equilibrium position of the plot as the starting point for
the calculations.).

It is sometimes advantageous to describe dynamics by plotting velocity versus
position, instead of position versus time, as we have done so far. Create such a
plot for a mass that swings up and down at the end of a spring (plot in phase
plane). What is the shape of the plot?

Make a plot in the phase plane (see previous task) for the movement of a bouncing
ball that bounces vertically up and down on a hard surface (practically without
loss). What s the shape of the plot? Comment on similarities/differences between
the plots in this and the previous task.

A spring hangs vertically in a stand. Without any mass, the spring is 30 cm long.
We attach a 100 g ball at the lower end, stretch the spring by pulling the mass
(and then releasing it) and find, after the ball has come to rest, that the spring
has become 48 cm long. We then pull the ball 8.0 cm vertically downwards, keep
the ball steady, and then let go. Find the oscillation period of the ball. Write a
mathematical expression that can describe the oscillatory movement. Find the
maximum and minimum force between the ball and the spring.

An oscillating mass in a spring moves at a frequency of 0.40 Hz. Attimer = 2.0s,
its position is +2.4cm above the equilibrium position and the velocity of the
mass is —16cm/s. Find the acceleration of the mass at time ¢t = 2.0s. Find a
mathematical description appropriate to the movement.
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13.

14.

15.

16.

17.

18.

19.

2 Free and Damped Oscillations

A mass m hangs in a massless spring with spring constant k. The amplitude is A.
How big is the displacement relative to the equilibrium point when the kinetic
energy is equal to half of the potential energy?

An oscillatory motion can be described by the equation z(¢#) = A cos(wt + ¢)
where A = 1.2m, the frequency f = w/(2mw) = 3.0Hz, and ¢ = 30°. Find out
how this oscillatory motion can be formally specified when we (a) do not use
the phase term, but only a combination of sine and cosine terms, and (b) when
using a complex description based on Euler’s formula.

Another oscillatory motion is given at y(t) = R{(—5.8 + 2.2i)e!'}. Convert the
equation to the same form as Eq. (2.1) and convert further until it has the same
form as Eq. (2.1).

Show that the period of a mathematical pendulum with small amplitude is given
by T = 2m+/L/g where L is the length of the pendulum and g is the acceleration
due to gravity. Hint: Use the relation T = I« where 7 is the torque, / the moment
of inertia (mL?) and « is the angular acceleration, to show that the equation of
motion is § (t) = (g/L) sin 0 and then use the usual approach for sines at small
angles.

A mass weighing 1.00N is hung at the end of a light spring with spring constant
1.50 N/m. If we let the mass swing up and down, the period is 7. If instead we let
the mass settle down and pull it to the side and release it, the resulting movement
will have a period of 27 (the amplitude in the second case is very small). What
is the length of the spring without the mass? (You may need the expression in
the previous assignment.)

Note: We recommend strongly that you make a real mass/spring system with a
length so that the period of the sidewise pendulum oscillation is twice the period
for the vertical mass—spring pendulum. Start the movement of the system by a
pure vertical displacement of the mass, and release it from rest at this position.
Watch the movement. You may be surprised! What you witness is an example
of a so-called parametric oscillator.

Show that the energy loss for a damped pendulum where the frictional force
is Fy = —bv is given by dE /df = —bv?. Here, b is a positive number (friction
coefficient) and v is the velocity (Start from the mechanical energy of the system,
E= Epmential + Exinetic-)-

An object of m = 2.0kg hangs at the end of a spring with the spring constant
k = 50N/m. We ignore the mass of the spring. The system is set in oscillations
and is damped. When the velocity of the mass is 0.50 m/s, the damping force is
8.0N.

(a) what is the system’s natural oscillation frequency f (i.e. if the damping was
not present)?

(b) Determine the frequency of the damped oscillations.

(c) How long does it take before the amplitude is reduced to 1% of the original
value?



Chapter 3 ®)
Forced Oscillations and Resonance Check for

Abstract In this chapter, we study a mechanical system forced to oscillate by the
application of an external force varying harmonically with time. The amplitude of
the oscillations, which is shown to depend on the frequency of the external force,
reaches its peak value when the frequency of the applied force is close to the natural
frequency of the system, a phenomena called resonance. However, details depend
on the energy loss in the system, a property described by a quality factor Q, and the
phase difference is described by so-called phasors. Emphasis is placed on how the
system behaves when the external force starts and vanishes. Numerical calculations
facilitate the analysis. At the end, some relevant details concerning the physiology
of the human ear are briefly mentioned.

3.1 Introductory Remarks

The words “resonance” and “resound” are derived from the Latin root resonare
(to sound again). If we sing with the correct pitch, we can make a cavity to sing
along and, to somehow, augment the sound we emitted. Nowadays, the word is
used in diverse contexts, but it always has the connotation of an impulse causing
reverberation in some medium. When we tune the radio to receive weak signals from
a transmitter, we see to it that other, unwanted signals, also captured by the radio
antenna at the same time, are suppressed. It may seem like pure magic. The physics
behind such phenomena is straightforward when we limit ourselves to the simplest
cases. If we dig a little deeper, we uncover details that make our inquiry much more
demanding and exciting.

3.2 Forced Vibrations

The Foucault pendulum in the foyer of the Physics building at the University of
Oslo oscillates with the same amplitude year after year, although it encounters air
resistance, which, in principle, should have dampened its motion. This is because
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the bob at the end of the pendulum receives a small electromagnetic push each time
it passes the lowest point. When that happens, a small red LED lights up. The push
comes exactly at the time the bob is moving away from the equilibrium point. In this
way, the time period is almost completely determined by the natural oscillation period
of the pendulum itself (determined by the length of the pendulum and acceleration
due to gravity).

In other contexts, “the pushes” come at a rate different from the natural rate of
oscillation of the system. Electrons in an antenna, the diaphragm of the loudspeaker,
the wobble of a boat when waves pass by, are all examples of systems being forced by
a vibratory motion energized by an external force that varies in time independently of
the system in motion. Under such circumstances, the system is said to be executing
forced oscillations.

In principle, an external time-dependent force can vary in infinitely many ways.
The simplest description is given by a harmonic time-varying force, i.e. as a sinusoid
or cosinusoid. In the first part of the chapter, we assume that the harmonic force lasts
for a “long time” (the meaning of the phrase will be explained later).

If we return to the mechanical pendulum examined earlier and confine ourselves to
a simple friction term and a harmonic external force, the movement can be described
analytically.

For a mechanical system, the starting point is Newton’s second law (see Chap.
2): The sum of the forces equals the product of mass with acceleration:

F cos(wrt) — kz(t) — bz(t) = mz(t)

where F cos(wpt) is the external force that oscillates with its own angular
frequency wp. If we put
w(z) =k/m,

(angular frequency of the freely oscillating system), the equation can also be
written as follows:

Z(t) + (b/m)z(t) + wgz(t) = (F/m) cos(wrt) . 3.1

This is an inhomogeneous second-order differential equation, and its general
solution may be written as:

2(t) = zp() + 2, (1)
where 7, is the general solution of the corresponding homogeneous equation

(with F replaced by zero) and z,, is a particular solution to the inhomogeneous
equation itself.
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We have already found in Chap. 2 the general solution of the corresponding
homogeneous equation, so the challenge is to find a particular solution.

We know that the solution of the homogeneous equation decreases with time to
zero. Therefore, after a long time from start, the movement will be dominated by the
external periodic force.

It becomes natural then to investigate if a particular solution may have the
form:
zp(t) = Acos(wrt — @) 3.2)

where A is real.

Here, we have to discuss the choice of the sign of the phase term ¢. Assume ¢
to be positive. In that case, we have: If F' is maximum at time ¢ = #; (for example,
wrt; = 2m), the displacement z,(¢) will reach its maximum value at a time 7' = 1,
(with f, > 1), i.e. at a time later than when F was at its maximum.

We then say that the output z,(¢) is delayed with respect to the applied force.

When the expressions for z,,(t) and F(¢) are inserted into Eq. (3.1) and the terms
are rearranged, the following result is obtained:

(0§ — wk) cos(wpt — ¢) — (b/m)wp sin(wrt — ) = F/(Am) cos(wrt) .

If we use the trigonometric identities for the sines and cosines of difference of angles
(see Rottmann), we find:

(0 — wi){cos(wrt) cos ¢ + sin(wpt) sin g} — (b/m)wp{sin(wrt) cosd — cos(wrt) sin ¢}
= F/(Am)cos(wrt) .
Upon collecting the terms with sin(wgt) and cos(wrt), we get:
[(w§ — @) cos — F/(Am) + (wpb/m) sin ¢] cos(wr1)
+ [(@w§ — @F) sing — (wrb/m) cos ¢ sin(wrt) =0 .

Since sin(wrt) and cos(wpt) are linearly independent functions of ¢, the above
equation can be satisfied only if each term within the square brackets vanishes sepa-
rately. This conclusion gives us two equations which can be used for the determination
of the two unknowns, namely A and ¢.

Equating to zero the terms within the square brackets multiplying sin(wgt), we
find:

(W — wr)sing = (wrpb/m) cos ¢ .
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The phase difference between the output and the applied force can be expressed

as:
cos¢p Wi — v

otgp =

sing  wpb/m (3-3)

We see that when wr = wy, cot ¢ = 0, which means that ¢ = 7 /2 or 37/2. Since
cot ¢ changes from a positive to negative value when wp passes wy from below, only
the choice ¢ = /2 is acceptable.

When we set the expression with the square brackets multiplying cos(wpt) to
zero, we get:

(0§ — w})cosp — F/(Am) — (bop/m)sing =0 .

We use the expression sin x = 4=1/+/1 + cot? x from Rottmann (and a corresponding
expression of cos) together with Eq. (3.3).

After a few intermediate steps, we get the following expressions for the ampli-
tude of the required oscillations:

F/m

A= .
@} = @32 + ooy /m)?

(34

It is time now to sum up what we have done:

When a system obeying an inhomogeneous linear second-order ordinary
differential equation is subjected to a harmonic force that lasts indefinitely, a
particular solution (which applies “long after” the force is applied) is itself a
harmonic oscillation of the same frequency that is phase shifted with respect to
the original force, as given in Eq. (3.2). “Long after” refers to a time many time
constants 1/y long, where y is proportional to the damping of the system. We
refer to the exponential decaying term e ~”’ in the solution of the homogeneous
differential equation discussed in the previous chapter.

The amplitude of the oscillations is then given by Eq. (3.4), and the phase
difference between the output and the applied force (or the input) is given by
Eq. (3.3). Figure 3.1 shows schematically how the amplitude and phase vary
with the frequency of the applied force. The frequency of the force is given
relative to the frequency of the oscillations in the same system if there was no
applied force or no friction/damping.

We see that the amplitude is greatest when the frequency of the applied force is
nearly the same as the natural frequency of oscillation in the same system when the
applied force and damping are both absent. We call this phenomenon resonance, and
it will be discussed in more detail in the next section.
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Fig. 3.1 The amplitude of a forced oscillation (left) and the phase difference between the output
and the applied force (right) as a function of the frequency of the applied force

The phase ¢ appearing in Eq. (3.2) is approximately equal to r /2 atresonance; that
is, the output is lagging behind (in phase) by about 7 /2 with respect to the applied
force. For the spring oscillation, it means that the force is greatest in the upward
direction when the pendulum has its highest speed and passes the equilibrium point
on the way upwards.

Away from resonance, the phase difference is less than (greater than) /2 when
the applied frequency is lower than (higher than) the “natural” frequency. These
relationships can be summarized so that the pendulum “is impatient* and tries to move
faster when the applied force changes too slowly relative to resonance frequency
(“natural frequency*). The movement of the pendulum depends more and more on
the force when the force changes too quickly in relation to resonant frequency.

The phase difference is an important characteristic of forced fluctuations.

3.3 Resonance

One sees from Eq. (3.4) that the amplitude of the forced oscillations varies with the
frequency of the applied force. When the frequency is such that the amplitude is
greatest, the system is said to be at resonance.

It may be useful to reflect a little about what is needed to get the largest possible
output, which corresponds to the highest possible energy for the system.

Let us start with the mechanical mass—spring oscillator again. We then have a
mechanical force that works on a moving system. We remember from mechanics
that the work done by the force is equal to the magnitude of the force multiplied
by how far the system moves under the action of the force. For a constant force,
the power delivered by the force equals the power multiplied by the velocity of the
system experiencing the force. Force and velocity are vectorial forces, and it is their
dot product that counts (Remember P = F - ¥ from the mechanics course.).
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In our case, the force will deliver the greatest possible power to the system
if the power has the highest value while the pendulum bob has the highest
possible velocity. Force and velocity must work in the same direction. This
will happen if the force, for example, is the greatest, while the bob passes the
equilibrium position on the way up. This corresponds to the position is phase
shifted /2 by force. To achieve such a state, the external force must swing
with the resonance frequency.

So far, we have been somewhat imprecise when we have discussed resonance.
Strictly speaking, we must differentiate between two nuances of the term resonance,
namely phase resonance and amplitude resonance. The difference between the two
is often in practice so small that we do not have to worry about it.

Phase resonance is said to occur when the phase difference between the applied
force and the output equals 7 /2. This happens when the frequency of the applied force
(input frequency) coincides with the natural frequency of the (undamped) system.

A close-up view of Fig. 3.1 shown in Fig. 3.2 shows that the amplitude is greatest
at a slightly lower frequency than the natural frequency. The small but significant
difference is due to a detail we mentioned when we discussed damped harmonic
motion in the previous chapter. In the presence of damping, the oscillation frequency
is slightly lower than the natural frequency. The frequency at which amplitude is
greatest indicates amplitude resonance for the system. The two resonance frequencies
are often quite close to each other, as already mentioned.

Let us find mathematical expressions for the two resonance frequencies.

The amplitude resonance frequency can be found by differentiating the expression
for the amplitude given by Eq. (3.4) (acommon procedure for finding extreme values).
We calculate the wr angular frequency at which:

dA
— =0.
d(,()F
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2
wWp = 602 — _b
F = 0 2m2 .

If we want to state the frequency rather than the angular frequency, we use the
expression:

We find that

The amplitude resonance frequency is:

1 b?

famp.res. = E a)(% - ﬁ (3.5)

where wy = +/k/m.

The phase resonance frequency is:

1
fph,res. = Ewo . 3.6)

We observe that the two resonance frequencies coincide only when b = 0 (no
damping).

3.3.1 Phasor Description

We will now consider forced oscillations in an electrical circuit. First, we will pro-
ceed in much the same manner as adopted in dealing with the mechanical system
examined above, but eventually we will go over to an alternative description based
on phasors. The system is a series RCL circuit with a harmonically varying voltage
source Vjcos(wrt), as shown in Fig.3.3. The differential equation for the system
then becomes [compare with Eq. (2.27)]:

20  do |
LF + RE + EQ = Vycos(wrt) . (3.7)

Fig. 3.3 A series RCL ] > )
circuit driven by a 1

harmonically varying applied + R /Q
voltage. The labels +, 7, and %(t) @ C ==
Q indicate the signs chosen L

for our symbols /m&
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This is an inhomogeneous equation, whose solution is found in the same way as
for its mechanical counterpart considered above. The solution consists of a sum of
a particular solution and the general solution of the homogeneous equation (with
Vo = 0). The solution of the homogeneous equation is already known, and it only
remains for us to find a particular solution. We try a similar solution as for the
mechanical system, but adopt a complex representation:

0,(t) = Ae™r! (3.8)

where A can be a complex number.
At the same time, a complex exponential form is chosen for the externally applied
voltage:
V(1) = Vycos(wpt) — Voelr! . 3.9

It goes without saying that the real part of the expressions are to be used for repre-
senting physical quantities.

Inserting the expressions for Q,(t) and V (¢) into Eq. (3.7), and cancelling the
common factor e we get:

1
—¢¢A+mwA+5A=%.
Solving the equation for A, we get:
2 . 1
A| —Lwy +i1Rwr + E =W

Vo

A=+ R .
E—LwF—i—lRwF

A again becomes a complex number (except when R = 0).

The instantaneous current in the RCL circuit is found by applying Ohm’s law to
the resistor:

I— Vg dQ
R dr
If we wait long enough for the solution of the homogeneous equation to die out, only
the particular solution remains, and the current is then given by the expression:
= % iwpt
dr

1 = Aia)pe

Simple manipulations lead one to the following expression:

Vi .
1(t) = 0 el (3.10)
R +1(LC()F — Ca)p)
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This expression should be compared with Vg, the voltage applied to the circuit, which
in complex form is given by: '
Vi(t) = Voe'®' .

It follows from Eq. (3.10) that if R = 0O the current will be phase shifted 90°
relative to applied voltage. If in addition L = 0, the current will lead the voltage by
90°. However, if wpL is much larger than 1/(wrC) (C “shorted”), the current will
be offset 90° after the voltage (In a calculation exercise at the end of the chapter you
are asked to show this.).

If R #0,but Log — c+uf = 0, the current and voltage will be in phase, and I =

Vo/R. This corresponds to wp = ﬁ, which was named phase resonance above.

The connection between R, C, L, current and phase can be elegantly illustrated
by means of phasors. We have already mentioned phasors, but now we extend
the scope by drawing in multiple rotating vectors at the same time. Figure 3.4
shows an example.

Both currents and voltages are displayed in the same plot. We start with a vector
that represents the current generated by the applied voltage. Then we draw vectors
representing voltages across the resistor, capacitor and inductor resulting from the
current flow. The vector which shows the voltage across the capacitor will then be
90° after the vector showing the current, the voltage across the resistor will have the
same direction as the current and the voltage across the inductance will be 90° ahead
of the current. The total voltage across the serial link of R, C and L should then be
the vector sum of the three voltage phasors and correspond to the applied voltage.
We see that the phase difference between current and voltage will be between +90°
and —90°.

A Imaginary axis
compleks
AU] 40]
: » compleks
PR
RAUN
s ot | '
: —» Real axis
o 10 Voltages
Current
[40)

Fig. 3.4 Example of phasor description of an RCL circuit subjected to a harmonically varying
voltage. The current at any time (anywhere in the circuit) is the x components of the vector /(z),
while the voltage across the various circuit components is given by the x component of the vectors
Vr(t), Vc(t) and Vi (¢), and their sum is V (7). See the text for details
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Fig. 3.5 A time plot in Voltage
which the current slightly Current
leads the applied voltage

Phasor diagrams can also be based on quantities other than those we have chosen
here. One variant is to use complex impedances that are added vectorially. The
strength of phasor diagrams is that we can easily understand, for example, how the
phase differences change with frequency. The depiction in Fig.3.4 applies only to
a particular applied angular frequency wp. If the angular frequency increases, the
voltage across the capacitor decreases while the voltage across the inductance will
increase. Phase resonance occurs when the two voltage vectors are exactly the same
size (but oppositely directed) so that their sum is zero.

Figure 3.5 shows the time development of voltage and current in a time plot. The
current in the circuit is slightly leading the applied voltage. For a series RCL circuit
with an applied voltage, this means that the applied frequency is lower than the
resonant frequency of the circuit.

Note that phasors can be used only after the initial rather complicated oscillatory
pattern is over, and we have a steady sinusoidal output corresponding to the particular
solution of differential equation.

3.4 The Quality Factor Q

In the context of forced oscillations, it is customary to characterize oscillating
systems with a Q-factor or Q-value, where the symbol Q, not to be confused
this with the charge Q in an electrical circuit, stands for “quality”, which is
why the Q-factor is also called the quality factor. The factor tells us something
about how easy it is to make the system oscillate, or how long the system will
continue to oscillate after the driving force is removed. This is more or less
equivalent to how small loss/friction is in the system.
The quality factor for a spring oscillator is given by:

0=—2— /= (3.11)

We see from this formula that the smaller the value of b, the larger is the quality
factor Q.

Figure 3.6 shows how the oscillation amplitude varies with the frequency of the
applied force for four different quality factors. A Q-value of 0.5, in this case, cor-
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Fig. 3.6 When the
frequency of the applied
force changes relative to the
system’s own natural
frequency, the amplitude will
be greatest when the two
frequencies are nearly equal.
The higher the quality factor
Q (i.e. smaller loss), the
higher the resonance
amplitude
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Frequency (rel /)

responds to critical damping and we see no hint of any resonance for such a large
damping.

There are two traditional ways of defining Q. The first is:

stored energy _5 E

(3.12)

— =2T
energy loss per period Ejoss-per-period

This definition implies a particular detail which few people are familiar with, but
which is extremely important for forced oscillations in many contexts. Once we have
achieved a steady state (when the applied force has been working for long and is still
present), the loss of energy will be compensated by the work done on the system by
the applied force. We see from Eq. (3.12) that a system with a high Q-value loses
only a tiny part of the total energy per period.

Suppose now we turn off the applied force. Then the system will oscillate at the
amplitude resonance frequency o' = \/w} — (b/2m)* ~ wy”, and the energy will
eventually disappear. It will take the order of Q/(27) periods before the energy is
used up and the oscillations end. Let us look a little more closely at this.

Loss of energy per period is a slightly unfamiliar quantity. Let us consider first
Pioss, which is “energy loss per second” with the unit watt. We know that after the
force has been removed, the loss will be given by:

dE
Pioss = 3 (3.13)
Then we can approximate the loss of energy over a period of time 7" with:

Eloss—per—period = Ploss T.
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Using the definition given in Eq. (3.12), we get:
2
ro

Combining Eqgs. (3.13) and (3.14) and the relation w = 27/ T, we get a differential
equation governing the time development of the stored energy after the removal of
the driving force. The equation is:

Pioss = E. (3.14)

dE_a)()

Pluss =

=0

The solution is:
E(t) = Ege~ /2 .

The energy falls to 1/e of the initial energy after a time

At = g = g . (3.15)
wo 2w

We see that the amplitude of oscillation decreases in a neat exponential manner
after the removal of an applied oscillatory force, with the time constant given in Eq.
(3.15).

It can be shown that nearly the same time constant describes the growth of the
output after the application of oscillating force. Obviously, the time course is not as
simple because it depends, apart from other factors, on whether or not the frequency
of the applied force equals the resonant frequency of the circuit (see Fig. 3.7). Never-
theless, if it takes an interval of the order of 10 ms for an oscillation to die out after an
applied force is removed, it will also take nearly the same interval to build a steady
amplitude after we switch on the applied force.

One might think that the time constant (and thus the Q-value) of the system could
be found by referring to the thin red line in Fig.3.7 and noting how long it takes
from the moment the force is removed till the output falls to 1/e of the value just
before the power was turned off. It turns out, however, that the number so inferred
is twice the expected value! The difference can be traced to the fact that the time
constant deduced in Eq. (3.15) applies to how energy changes over time, whereas
Fig.3.7 shows amplitude and not energy. The energy is proportional to the square
of the amplitude. Note that the stationary amplitude after the force has worked for a
while is greatest at the resonance frequency!

The curves in Fig. 3.7 show that after an applied force is turned on, the amplitude
of the oscillations increases, without becoming infinite. Sooner or later, the loss in
energy is as large as the power applied through the oscillating force. After equilibrium



3.4 The Quality Factor Q 43
% o OF = O % 3 OF = Wx 0.9

6 2
: . AT b s )
3 S 5 ol

-1

5 o 5 -
% -10 % -3
s 0 1 2 3 4 5 6 s 0 1 2 3 4 5 6

Time (rel.units) Time (rel.units)

Fig. 3.7 Two examples of the build-up of oscillations in an oscillating system after an external
sinusoidal force is coupled and subsequently removed (the force acts only during the interval
indicated by a thick red line at the bottom). The frequency of the applied voltage is equal to the
resonant frequency on the left and slightly lower on the right. While the force is present, the system
oscillates with the frequency of the force. After the force has ceased, the circuit oscillates with its
own resonance frequency. The thin red line marks the value 1/e times the maximum amplitude just
before the applied force was removed. The Q-factor of the circuit is 25

a steady state is achieved, the amplitude of the oscillations will remain constant as
long as the applied force has constant amplitude.

The mathematical solution of an inhomogeneous differential equation for an oscillating system
subjected to an oscillatory force with given initial conditions is rather tedious. However, it is possible
to find such a solution exactly using, for example, Maple or Mathematica. However, we have used
numerical solutions in the preparation of Fig. 3.7; it is a rational approach since complex differential
equations can often be solved numerically about as easily as simple differential equations. More
about this in the next chapter.

In experimental context, a different and important definition of the Q-value is
often used instead of that in Eq. (3.12). If we create a plot that shows energy
(NOTE: not amplitude) in the oscillating system as a function of frequency
(as in Fig. 3.8), the Q-value is defined as:

_fo
-

where the half-width Af, shown in the figure, compared to the resonance
frequency fo.

0 (3.16)

This relationship can be shown to be in accordance with the relationship given in
Eq. (3.12), at least for high Q-values.

The definitions given in Egs. (3.12) and (3.16) apply to all physical oscillating
systems, not just the mechanical ones.
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Fig. 3.8 The Q-value can Enmax
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For the most interested: It is now possible to make a remarkable observation: A resonant circuit
responds significantly to frequencies within a frequency band of width

fo
Af == .
/ 0

However, the circuit needs a certain amount of time

At =

Sl

to build-up the response if we start from zero. It takes about the same time also for a response that
is already built to die out.
The product of Af and At comes out to be:

AtAf =

SIS
ST

AtAf = i . (3.17)

Multiplying this expression with Planck’s constant /, and using the quantum postulate that
the energy of a photon is equal to E = Af, we get:

AtAE = - (3.18)
2

This expression is almost identical to what is known as Heisenberg’s uncertainty relationship
for energy and time. There is a factor 1/2 in front of the term after the equality sign, but such a
factor will depend on how we choose to define widths in frequency and time.

There are certain parallels between a macroscopically oscillating system and the relationships
we know from quantum physics. In quantum physics, Heisenberg’s uncertainty relationship is
interpreted as an “uncertainty” in time and energy: we cannot “measure” the time of an event more
accurately than what is implicit in the relationship

h

At =
2r AE

provided that we do not change the energy of a system by more than AE.
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Our macroscopic variant applies irrespective of whether we do measurements or not, but mea-
surements will of course reflect the relationship that exists. We will return to this relationship later
in the book, but in the form of Eq. (3.17) instead of (3.18).

“Inertia” in a circuit is important for what we can do with measurements. For a high Q oscillation
cavity in the microwave region (called a “cavity”), we can easily achieve Q-values of 10,000 or more.
If such a cavity is used in pulsed microwave spectroscopy, it will take of the order of 60,000 periods
to significantly change the energy in the cavity. If the microwave frequency is 10 GHz (10'° Hz),
the time constant for energy changes will be of the order of 6 s. If we study relatively slow atomic
processes, this may be acceptable, and the sensitivity of the system is usually proportional to the
quality factor. However, if we want to investigate time intervals lasting only a few periods of the
observed oscillations, we must use cavities with much lower Q-value. More will be said about this
in the next chapter.

3.5 Oscillations Driven by a Limited-Duration Force

So far, we have considered a system that is influenced by an oscillating force lasting
“infinitely long”, or a force that has lasted for a long time and ends abruptly. In
such a situation, we can determine a quality factor Q experimentally in terms of
the frequency response of the system as shown in Fig.3.8 and Eq. (3.16). Relative
oscillation energy (relative amplitude squared) must be determined after the system
has reached the stationary state, i.e. when the amplitude no longer changes with time.

How will such a system behave if the oscillatory force lasts only for a short time?
We will now investigate this matter.

When we introduce a limited-duration force (a “temporary force”), we must
choose how the force should be started, maintained and terminated. For a variety
of reasons, we want to avoid sudden changes, and have chosen a force whose overall
amplitude follows a Gaussian shape, but follows, on a finer scale, a cosinuosidal
variation. Mathematically, we shall describe such a force by the function:

F(1) = Fycos[o(t — to)]e 0=0/oT (3.19)

where o indicates the duration of the force (the time during which the amplitude falls
to 1/e of its maximum value). w is the angular frequency of the underlying cosine
function, and ¢, is the time at which the force has the maximum amplitude (peak of
the pulse occurs at time 7). The oscillating system is assumed to be at rest before
the force is applied.

Figure 3.9 shows two examples of temporary forces with different durations. Here,
the force has a frequency equal to 100Hz (period 7 = 10 ms). In the figure on the
left, o is equal to 25ms, i.e. 2.5 x T, and successive peaks have been marked (from
maximum onwards until the amplitude has decreased to 1/e) to highlight the role
played by the size of . In the figure to the right, 0 = 100ms, i.e. 10 x T'; again, the
markings give an indication of the relationship between w (or rather the frequency
or period) and o.
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Fig. 3.9 The force F(¢) for centre frequency 100 Hz and pulse width o equal to 0.025 and 0.10s.
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Fig. 3.10 The temporal response of the system (right) due to the applied force shown in the left
part of the figure

We would now like to study how an oscillating system will behave when it is
subjected to a temporary force. Based on Fig. 3.7, we expect the response to be quite
complicated. Since it is not easy to make headway analytically, we have opted for
numerical calculations instead.

Figure 3.10 shows the time course for one temporary force along with the response
of the system. For simplicity, the frequency of the force has been made equal to the
resonant frequency of the system, and according to the initial conditions chosen, the
system is at rest before the force is applied.

Figure 3.10 shows some interesting features. The system attempts, but fails to keep
pace with the force as it grows. We see that the peak of the response (amplitude)
occurs a little later than the time at which the force reached its maximum value.

The force adds some energy to the system. When the force decreases as quickly as
it does in this case, the system cannot get rid of the supplied energy at the same rate
as that at which the force decreases. Left with surplus energy after the vanishing of
the force, the system executes damped harmonic oscillations at its own rate. It may
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Fig. 3.11 Dependence of the 0.9
maximum amplitude on the
duration of the applied force
(o). Note the logarithmic
scale on both axes

o
3

Log (max rel amplitude)
o o
w [9)]

0.1
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Log (o) (oinms)

be mentioned that o here is 25 ms and that the Q-factor of the oscillating system is
chosen to be 25, which corresponds to a decay time for the energy for the oscillations
of 40 ms.

It may be useful to point out some relationships between various parameters:

e How much energy can be delivered to the system within a given time depends
on the force (proportionality?).

e The amount of energy that can be delivered, for a given input of force, will
depend on how long the force works.

e The loss of energy is independent of the strength of the force after it has
disappeared.

e The loss of energy is proportional to the amplitude of the oscillations.

As mentioned, we expect the amplitude to increase when the force lasts longer
and longer, but the precise relationship is not self-evident. In Fig.3.11 are shown
calculated results for the maximum amplitude attained by the system for different o
values. w always corresponds to the resonance frequency of the system. The figure
has logarithmic axes to get a large enough range of o. The straight line represents
the case that the amplitude increases linearly with o (duration of the force).

We see that for too small o (the power lasting only a few oscillation periods),
the maximum amplitude increases approximately proportionally with the duration
of the force. When the force lasts longer, this does not apply anymore, and beyond
a certain limit, the amplitude of the oscillation does not increase, however long the
duration of the pulse may be. This is due to the fact that at the given amplitude, the
loss is as large as the energy supplied by the power.

If the amplitude of the force is increased, the amplitude of the oscillations will
also increase, but so will the loss. It is therefore found that the duration of the force
required to obtain the maximum amplitude is approximately independent of the
amplitude of the force.
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Fig. 3.12 The frequency response (actually only maximum amplitude) of the oscillating system
for different durations (o) of the force pulse (left part). The o values used are respectively 25, 50,
100, 200, 400 and 800 ms (from blue/widest to red/narrowest curves). In the right part of the figure,
corresponding frequency analyses of the force pulses themselves are shown. See the text for further
explanations

3.6 Frequency Response of Systems Driven
by Temporary Forces *

There is an unexpected consequence of using short-term “force pulses”. We will
address this topic already now,!, but will return to it more than once in other parts of
the book. Full understanding of the phenomenon under discussion is possible only
after a review of Fourier analysis (see Chap. 5).

In Fig. 3.8, we showed how large an oscillation energy (proportional to amplitude
squared) a system gets if it is exposed to a harmonic force with an “infinitely long”
duration. The oscillation energy achieved was plotted as a function of the frequency
of the applied force. A plot like this is usually called “frequency response” of the
system, and the curve can be used to determine the Q-factor of the oscillating system
from Eq. (3.16). The narrower the frequency response, the higher the Q-factor.

It is natural to determine the frequency response also for the case when the force
lasts only a short time. The maximum energy system achieves as a result of the power
is plotted as a function of the centre frequency of the power in a similar manner as
in Fig. 3.8, and the result is given in the left part of Fig.3.12. Relative energy is
proportional to the square of the amplitude of the oscillations.

It turns out (left part of Fig.3.12) that the frequency response of the system
becomes different with temporary “force pulses” than with a harmonic force of
infinitely long duration (as shown in Fig.3.8). The frequency response becomes

I'This sub-chapter is for the most interested readers only.
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wider and wider (spreading over ever greater frequency range on both sides of the
resonant frequency) as duration of the force pulse becomes shorter and shorter.

If, on the other hand, we apply longer and longer “force pulses”, the frequency
response of the system will reach a limiting value. There is a lower limit for the
width of the curve, and thus a maximum limit for the calculated Q-factor. In general,
the term Q-factor is used only for this limiting value. For shorter power pulses, the
frequency response is specified rather than the Q-value.

However, it is possible to make a frequency analysis of the temporary force pulse
itself. We will find out how this is done in Chap. 5 when we come to review Fourier
analysis. To provide already now a rough idea of what a frequency analysis entails,
it will be enough to say that such an analysis yields information about the frequency
content of a signal, and tell us “which frequencies will be needed to reproduce the
signal at hand”.

The right part of Fig. 3.12 shows the frequency analysis of the “force as a function
of time” for the same o values as in the left part of the figure. The figure actually
shows a classical analogy to Heisenberg’s uncertainty relationship also known as the
time-bandwidth product . We already found this in Eq. (3.17), and we will return to
this in Chap. 5.

The two halves of Fig. 3.12 can be condensed into a single plot, and the result will
then be as shown in Fig.3.13.
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Fig. 3.13 The correlation between the frequency response of a system and the frequency of the
driving force when the duration of the force changes. There are two border cases. In one case (I) the
force lasts so long that the response depends only on the system itself (how much loss it is, and thus
which Q-value it has). In the other case (II), the system’s loss is so low in relation to the working
time of the influence that the response to the force depends only on the force itself (how short time
it lasts). The system’s features have the least to say for the response
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Based on these observations, we can say that:

e The quality factor is a parameter/quantity which characterizes the oscillating
system. The smaller the loss in the system, the higher the Q-factor and the
narrower frequency response, well and mark for harmonic forces that last
long.

e When the force lasts for a short time (few oscillations) the frequency of the
force is poorly defined. When an oscillating system is subjected to such a
force, the frequency response is dominated by the frequency characteristic
of the power itself and, to a lesser extent, the system itself.

Figure 3.13 is of some interest in the debate about whether Heisenberg’s uncertainty relationship
is primarily due to the perturbing influence of measurement on a system, or to the system itself. We
do not delve into this issue here, but the result suggests that each point of view has some merit.

3.7 Example: Hearing

Finally in this chapter, we will say a little about our hearing and the mechanisms
behind the process. Forced oscillations occupy the centre state in the present section,
while other aspects associated with hearing will be treated in Chap. 7.

In our ears (see Figs.3.14, 3.15 and 3.16), sound waves in the air cause oscilla-
tions at different frequencies in the auditory canal, tympanic membrane (eardrum),
auditory ossicles (three tiny bones in the middle ear that conduct sound from the
tympanic membrane to the inner ear), and the cochlea (“snailhouse”)—a system of
fluid-filled ducts which makes up the inner ear.

It is the inner ear that is of particular interest for us here, since it exemplifies reso-
nance phenomena and demonstrates how ingenious our hearing sense is. Figure 3.15

Fig. 3.14 Anatomical
structures of the human ear.
Inductiveload, CC BY 2.5,
[1]
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https://commons.wikimedia.org/wiki/File:Anatomy_of_Human_Ear_with_Cochlear_Frequency_Mapping.svg
https://creativecommons.org/licenses/by-sa/2.5/deed.en
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Fig.3.15 The inner ear has a three-channel structure that stretches almost three rounds from bottom
to top. This figure indicates how this would look like if we stretched out the insides of the cochlea.
See the text for details

Tectorial
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Fig. 3.16 Details on the anatomical structure of the basilar and tectorial membrane and their close
connection through the organ of Corti. Note the hair cells that translate mechanical strain to electric
signals. The organ of Corti structures are found along the full length of the basilar membrane with
the result that it is an impressive number of nerve cells going from each ear to the brain



52 3 Forced Oscillations and Resonance

illustrate a “stretched out” cochlea with the fluid-filled ducts scala vestibuli from the
oval window to the top of the cochlea and scala tympani from the top back to the
round window (which is facing the air filled space of the middle ear).

One wall of the scala tympani has a particular structure called the basilar mem-
brane, and weakly connected to the wall along the scala vestibuli we find the tectorial
membrane. These membranes will oscillate when the ear picks up a sound signal.

Between the basilar and tectorial membranes, we find “hair cells” that respond
to pressure. The amplitude of the oscillations is picked up by these hair cells, and
the information is transmitted through the nerves to the brain (via different signal
processing centres along the way).

It is a fascinating structure of cells named Organ of Corti (see Fig.3.16) that
translate pressure changes into electrical signals in nerves. Figure 3.16 also indicates
how the third duct inside the cochlea, the air filled scala media, is a part of the total
structure.

From our perspective, the important part is the basilar membrane. Earlier in this
chapter, forced oscillations have been analysed. By way of a trial, that analysis will be
applied to oscillations in the basilar membrane, which extends diametrically across
the conical cavity of the cochlea in the inner ear (see Figs.3.15 and 3.16).

The membrane can vibrate, just like the belly (top plate) of a violin, in unison with
the pressure variations generated by the sound. The membrane, however, changes
character from the outer to the inner parts of cochlea. The relative length of some
fibres in the basilar membrane varies from the outer to the inner part as indicated
in Fig.3.15. As a result, if we hear a dark sound (low frequency), only the inner
part of the basilar membrane will vibrate. If we hear a light sound (high frequency),
only the outer part will vibrate. This is a fabulous design that allows us to hear many
different frequencies at the same time as separate audio impressions. We can hear
both a bass sound and a disk rhythm simultaneously, because the two sound stimuli
excite different parts of the basilar membrane. The hair cells and nerve endings pick
up vibrations from different parts of the membrane in parallel.

It was the biophysicist Georg von Békésy from Budapest who found out how the basilar mem-
brane works as a “position-frequency map”’. He received the Nobel Prize in Physiology and Medicine
for this work in 1961.

The basilar membrane is a mechanical oscillation system that behaves in a man-
ner similar to the externally driven mass—spring oscillator and RCL circuit. Different
parts of the membrane have properties that make them responsive to different fre-
quency ranges. We can assign different Q-values to different parts of the basilar
membrane.

Based on what we have learned in this chapter, we should expect that even if we
hear a sound that delivers a harmonic force with a well-defined frequency on the
eardrum, the basilar membrane will vibrate not at one position only along the basilar
membrane, but over a somewhat wider area. Since we have “parallel processing” of
the signals from the hair cells, the brain can still “calculate” a fairly well-defined
centre frequency.
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If, however, we listen to shorter and shorter sound pulses, we expect that wider
and wider parts of the basilar membrane will be excited. This would make it harder
for the brain to determine which centre frequency the sound pulse had. This means
that it is harder to determine the pitch of a sound when the sound lasts very shortly.

When musicians play fast passages on, for example, a violin they can falter a little
with the pitch without the error coming to the notice of a listener. If they stumbled
as much with longer lasting tones, their slips will not escape the attention of the
audience.

When the sound pulse lasts only one period (and this period, for example, corre-
sponds to 1000Hz), we only hear a “click”. It is impossible to tell which frequency
was used to create the sound image itself.

On the other hand, it is easier to perceive the direction of the audio source of a
click than the source of a sustained sound. The ability to determine the time fairly
precisely when a sound occurs, along with the fact that we have two ears, is very
important in order to determine the direction the incoming sound (Nevertheless, it
should be mentioned that there are other mechanisms to determine where a sound
comes from.).

According to Darwin, our ears are the result of millions of years of natural selection
that was beneficial for the survival of our species. The ear has become a system where
there is an optimal relationship between the ability to distinguish between different
frequencies and the ability to follow fairly quick changes over time. Resonance,
time response and frequency response are very important details to understand our
hearing.

An interesting detail with regard to hearing relies on phase sensitivity. Nerve impulses (they
are digital!) cannot be transmitted over nerve fibres with a repetition rate much higher than about
1000 Hz. It is therefore impossible for the ear to send signals to the brain with a better time resolution
than about 1 ms. This means that the ear cannot, in principle, provide information about the phase
of a sound vibration for frequencies higher than a few hundred hertz (Some disagree and claim

that we can follow phases up to 2000 Hz.). The prevalent view is that sound impression become
indifferent to the phase of the various frequency components of a sound signal.

3.8 Learning Objectives

After working through this chapter you should be able to:

e Set up the differential equation for a system subject to forced harmonic
oscillations and find an analytical solution for this when the friction term is
linear.

e Find a numerical solution of the aforementioned differential equation also
for nonlinear friction terms and for nonharmonic forces (after having been
through Chap. 4).
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e Derive mathematical expressions for resonance frequency, phase shift and
quality factor for a single mechanical oscillating system or an electrical
oscillating circuit.

e Set up a phasor diagram to explain typical features of an RCL circuit for
different frequencies of an applied voltage.

e Know the time course of the oscillations in a circuit, as an externally applied
force begins and when it ends and how the time course is affected by the
Q-factor.

e Know how the response to an oscillating system changes when the force
lasts for a limited period of time.

e Know the coarse features of the anatomy of the ear well enough to explain
how we can hear many pitches all at the same time.

e Know that in a mechanical system we cannot get both high frequency-
selectivity and high time resolution simultaneously.

Both for the mechanical and electrical oscillating system examined so far, we end up with an
equation where the second derivative of a quantity along with the quantity itself is included. It may
lead to the opinion that all oscillations must be described by a second-degree differential equation.

However, there are also oscillations that are normally described by two or more coupled first-
order differential equation and a significant time delay between the “force” and “the response” in
the differential equations. In biology, such relationships are not uncommon.

3.9 Exercises

Suggested concepts for student active learning activities: Forced oscillation,
resonance, phasor, phase difference, quality factor, initial and terminal transient
behaviour, frequency response, simultaneous multiple frequency detection, basilar
membrane, cochlea, inner ear.

Comprehension/discussion questions

1. For a mass—spring oscillator, the phase difference between the applied force and
the amplitude of the bob change with the frequency of the applied force. How is
the phase difference at the resonance frequency and at frequencies well below
and well above it?

2. How does the phase difference between the applied force and the velocity vary
for a mass—spring oscillator exposed to a harmonic force?

3. It is often easier to achieve a high Q-value in a oscillating system with a high
resonance frequency than with a low one. Can you explain why?

4. If our hearing (through natural selection could distinguish much better between
sound at nearby frequencies than we are able to achieve, what would the disad-
vantage have been?
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10.

11.

12.
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. We operate with two almost equal resonant frequencies. What are their charac-

teristics? Is it possible for these frequencies to coincide?

. What would happen to an oscillating system without damping if it was exposed

to a harmonic applied force at the resonant frequency? What would happen if the
applied force had a frequency slightly different from the resonance frequency?

. In several laboratories attempting to detect gravity waves, oscillating systems

with suitable resonance frequencies and Q-values are used as detectors. For
example, a resonance frequency of about 2—4kHz is chosen when one wants
to detect gravity waves due to instability in rotating neutron stars. What is the
motivation behind using an oscillating system as a detector for this purpose?

. For a mechanical system, the phase shift /2 between the amplitude and the

applied force was explained by the fact that such a phase shift corresponds to
the force supplying the maximum power to the system (maximum force applied
over the longest possible way). Explain in a similar manner the phase shift also
for the electrical RCL circuit with a harmonically varying applied voltage.

. Attempt to explain the phase shift for the RCL series circuit with applied voltage

in case the frequency is far less and far greater than the resonant frequency of
the circuit alone. Based on how the impedance of a capacitor and the impedance
of an inductance change with frequency.

How can the oscillations that led to the collapse of the Tacoma Narrows Bridge
in Washington, USA, in 1940 be explained as a forced oscillation? Do you think
the Q-value was big or small? (May be relevant to watch one of the movies
featured on YouTube.)

An AC voltage V() = V) cos(wrt) is applied to an electrical oscillating circuit,
wr is equal to the resonance (angular) frequency of the circuit. After a long
time, the oscillations in the circuit stabilize and the amplitude of the current
fluctuations is ;. An interval of duration #; elapses between the connection of
the AC voltage to the circuit and the current reaching the value 0.9 x I;. We
then remove the voltage and let the circuit come to rest. We then reconnect to
the AC voltage, but now with twice the amplitude: V () = 2V cos(wpt).

(a) How large is the current in the circuit (relative to /;) a long time after the AC
voltage was reconnected?

(b) How long does it take for the amplitude of the current in the circuit to reach
90% of the limiting, long-time value?

(c) What do we mean by the expression “long-time value” in this context?

Problems

In the case of old-fashioned radio reception in the medium wave range, we
used circuitry consisting of an inductance (coil) and capacitance (capacitor) to
discriminate between two radio stations. The radio stations occupied 9kHz on
the frequency band, and two radio stations could be as close as 9 kHz. In order for
us to choose one radio station from another, the receiver had to have a variable
resonant circuit that suited one radio station, but not another. The frequency of
the Stavanger transmitter was 1313 kHz. Which Q-factor did the radio receiver’s
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resonant circuit need? [These considerations are still applicable in our modern
times, although digital technology makes certain changes.]

Figure 3.17 shows “sensitivity curve” for a “single-photon detector”. Let us con-
sider this curve as a sort of resonance curve, and try to estimate how long a contin-
uous electromagnetic wave (light) will have to illuminate the detector to achieve
maximum/stationary response in the detector? (Imagine a similar response as
in Fig.3.7.) The frequency of the light can be calculated from the relationship
Af = c where A is the wavelength, f the frequency and ¢ the velocity of light.

Search the web and find at least ten different forms of resonance in physics.
Enter a web address, where we can read a little about each of these forms of
resonance.

Derive the expressions given in Eq. (3.11) from Eq. (3.12) and other expressions
for an oscillating mass—spring oscillator.

The Q-value for an oscillating circuit is an important physical parameter.

(a) Give at least three examples of how the Q-value influences the func-
tion/behaviour of a circuit.

(b) Describe at least two procedures as to how the Q-value can be determined
experimentally.

(c) If we use a temporary force, it is more difficult to determine the Q-value
experimentally. Explain why.

A series RCL circuit consists of a resistance R of 1.0 2, a capacitor C of 100nF,
and an inductance L of 25 W H.

(a) Comparing Eq. (3.7) (slightly modified) with Eq. (3.1), we realize that these
equations are completely analogous. Just by replacing a few variables related
to the mechanical mass—spring oscillator, we get the equation for an electrical
series RCL circuit. Using this analogy, we can easily reshape the expressions
for phase shift [Eq. (3.3)], amplitude [Eq. (3.4)], Q-value [Eq. (3.11)] and the
expressions for phase resonance and amplitude resonance for the mass—spring
oscillator, to corresponding formulas for a series RCL circuit. Determine all
these terms for a series RCL circuit.

(b) Calculate the resonant frequencies (both for phase and amplitude resonance)
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of the circuit (based on amplitudes of charge oscillations, not current oscilla-
tions).

(c) Calculate the Q-value of the circuit.

(d) What is the difference in phase between the applied voltage and current in
the circuit at phase resonance and at a frequency corresponding to wg + Aw/2
in Eq. (3.16)?

(e) How wide is the frequency response of the circuit for a “long-lasting” applied
voltage?

(f) How “long” must the applied voltage actually last for the circuit to reach
an almost stationary state (that amplitude no longer changes appreciably with
time)?

(g) Assume that the circuit is subjected to a force pulse with centre frequency
equal to the resonance frequency and that the force pulse has a Gaussian ampli-
tude envelope function [Eq. (3.19)] where o has a value equal to twice the time
period corresponding to the centre frequency of the circuit. Estimate the width
of the frequency response to the circuit with this force pulse.

Reference

1. Inductiveload, https://commons.wikimedia.org/wiki/File:Anatomy_of Human_Ear_with_
Cochlear_Frequency_Mapping.svg. Accessed April 2018
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Chapter 4 ®)
Numerical Methods Geda

Abstract The purpose of this chapter is to provide a brief introduction as to how a
first- or second-order differential equation may be solved to the desired precision by
using numerical methods like Euler’s method and fourth-order Runge—Kutta method.
Emphasis is placed on the difference between an analytical and a numerical solution.
Movement of a pendulum for an arbitrary amplitude is calculated numerically to
exemplify how easily some problems can be solved by numerical methods. Methods
for solving partial differential equations are also described, but are not used until
a later chapter. The importance of testing, reproducibility and documentation of
successive program versions are discussed. Specimen programs are given at the end
of the chapter.

4.1 Introductory Remarks

During my student days (1969-1974), Norway’s largest computer had a memory
capacity (RAM) of 250kB and it filled a whole room. We made programs by punching
holes in a card, one card for each line (see Fig.4.1). The pack of cards was carried
carefully to a separate building; Abel’s House (it was a disaster to drop the pack).
A waiting period of a few hours up to a whole day passed before we could collect
the result in the form of a printout on perforated pages. A punching error meant
that a card had been punched again so that the wrong card in the stack could be
exchanged with the new card. This was followed by a new submission and another
waiting period. Guess if debugging a program took an eternity! Today, the situation is
totally different. Everyone owns a computer. Program development is incomparably
easier and far less time-consuming than in earlier times. And numerical methods
have become a tool as natural as analytical mathematics.

But all tools have one thing in common: training is needed in how they are to be
used. In this chapter, our primary concern will be to see how the equation of motion
for an oscillating system and the wave equation can be solved in a satisfactory manner.
It is not enough to read how things can be done. Practice is needed for acquiring the
requisite skills and mastering the routine.
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Fig. 4.1 Examples of punch cards, along with a modern memory device (sizes indicated) with
storage capacity equivalent to 800 million punch cards (which would have weighed 1900 tons!).
The memory device weighs about 0.5g

Parts of the chapter were written by David Skalid Amundsen as a summer job for CSE 2008.
Amundsen’s text has since been revised and expanded several times by Arnt Inge Vistnes.

4.2 Introduction

When in the “old days” (i.e. more than 30 years ago), we investigated the motion of
a mathematical or physical pendulum in a lower-level physics course, we had to be
content with “small amplitudes”. At that time, with only the rudiments of analytical
mathematics in our toolkit, we could only proceed by imposing the approximation of
small displacements, which implied that the movement is a simple harmonic motion.
Larger amplitudes are much more difficult to handle analytically, and if we consider
complicated friction as well, there is simply no analytical solution to the problem.

Once we have learned to use numerical methods of solution, it is often almost as
easy to use a realistic, nonsimplified description of a moving system as an idealized
simplified description.

This book is based on the premise that the reader already knows something about
solving, for example, differential equations with the aid of numerical methods. Nev-
ertheless, we make a quick survey of some of the simplest solution methods so that
those who have no previous experience with numerical methods would nonetheless
be able to keep pace with the rest. After the quick review of some simple methods, we
spend a little more time on a more robust alternative. Additionally, we will say a little
about how these methods can be generalized to solve partial differential equations.

It should be mentioned here that the simplest numerical methods are often good
enough for calculating, for example, the motion of a projectile, even in the presence
of air resistance. However, the simplest methods often accumulate errors and give
quite a bad result for oscillatory motion. In other words, it is often necessary to use
some advanced numerical methods in dealing with oscillations and waves.



4.2 Introduction 61

This chapter is structured along the following lines:

First, a quick review of the simplest numerical methods used for solving dif-
ferential equations is given. Secondly, the fourth-order Runge—Kutta’s method is
presented. This first part of the chapter is rather mathematical. Then comes a prac-
tical example, and finally, we will include examples of program codes that can be
used for solving the problems given in later chapters.

4.3 Basic Idea Behind Numerical Methods

In many parts of physics, we come across the second-order ordinary differential

equations:

2x

5= fx@), 2@, 1) . 4.1

o

X=

o

with the initial conditions x(#y) = x¢ and x(#)) = xo. The symbol f (x (), x(1), t)
means that f (for the case when x is the position variable and ¢ the time) is a function
of time, position and velocity.

In mechanical systems, differential equation often arises when Newton’s second
law is invoked. In electrical circuitry containing resistors, inductors and capacitors,
it is often Kirchhoff’s law together with the generalized Ohm’s law and complex
impedances that are the source of differential equations.

When we solve second-order differential equations numerically, we often con-
sider the equation as a combination of two coupled first-order differential
equations. We rename then the first derivative and let this be a new variable:

o

X

v a 3

The two coupled first-order differential equations then becomes:

dx

= v(x(), 1),

dv
55 Fx@), v(), 1) .

We will shortly see some simple examples of this in practice.
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4.4 Euler’s Method and Its Variants

We can solve a first-order differential equation numerically by specifying a starting
value for the solution we are interested in, using our knowledge of the derivative of
the function to calculate the solution for a short time Az afterwards. We then let the
new value act as a new initial value to calculate the value that follows At after this
(that is, at r = 2At). We repeat the process until we have described the solution in
as many points n as we are interested in.

The challenge is to find out how we can determine the next value from what we
already know. It can be done in a crude or refined method. The easiest method is
perhaps Euler’s method. It is based on the well-known definition of the derivative:

A —
(1) = lim X+ A —x@)
At—0 At

If At is sufficiently small, we can manipulate this expression and write:
x(t + At) = x() + Atx (1) .

Assume the initial values are given by (x,, X,, f,). Then follows the discrete version
of our differential equation (named “difference equations™):

Xptl = Xp + X, AL .

By using such an update equation for both x(¢) and x(¢), we get the famil-
iar Euler method (in our context for the solution of second-order differential
equation):

Fpa1 = oy + By Al

Xpi1l = X + X, Af .

Thus, we have two coupled difference equations.

Figure4.2 outlines how the method works. This is the most common way to
make such an illustration, but in my view it only gives a superficial understanding.
What happens when the discrepancy between the correct solution and the numerical
solution becomes bigger and bigger? Here are some details we should know.

Figure4.3 looks similar to Fig.4.2, but is illustrating a different message. The
mid-blue blue curve (bottom) shows how a projectile thrown obliquely will proceed
with an initial velocity of 1.0 m/s in the horizontal direction and 3.0 m/s in the vertical
direction. The calculation is based on an analytical solution to this simple problem.
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Fig. 4.2 Euler’s simple
method of calculating a
function numerically. The
top (blue) curve is the exact
analytic solution. The lower
(red) curve is calculated
using Euler’s simple method,
while the middle curve is
calculated using the
midpoint method. The time
step is the same in both cases
and is chosen very large to
accentuate the differences
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The figure also shows a plot of the solution found by using Euler’s method (red
curve) with very large time steps (0.2s). Even after the first step, the calculated new
position is quite far from what it should be.

After the first step, new values have been calculated for position and speed in both
horizontal and vertical directions. These values are now plugged into the differential
equation. If we had calculated the path for exactly these values, we would have got
the solution given by a green curve (next to bottom). This is a different solution of
the differential equation than we started with!

Not even now, we manage to follow this new solution closely since the time step
is so big and when we use Euler’s method once more, we get a position (and velocity)
quite far from the second solution of the differential equation we started with.

We keep going along this route. For each new time step, we get a new solution
of differential equation, and in our case, the error, being systematic, becomes bigger
and bigger after each time step.

It can be shown that if we reduce the time step significantly (!) compared to that
used in Fig.4.3, the solution will be far better than in the figure. Nevertheless, it is
not always enough to only reduce the size of the time step.

First of all, we cannot make the step size so small that we run into trouble
with inputting numbers accurately on a computer (without having to use extremely
time-consuming techniques). When we calculate x,,.; = x, + x, At, the contribution



64 4 Numerical Methods

X, At must not always be so small that it can only affect the least significant digit of
Xn+1-

Another limitation lies in the numerical method itself. If we make systematic
errors which accumulate at each time step, no matter how small the time steps are,
we also get problems. Then we must use other numerical methods instead of this
simplest variant of Euler’s method.

An improved version of Euler’s method is called the Euler-Cromer method.
Assume that the starting values are (x,, X,, #,). The first step is identical to
Euler’s simple method:

Xpt1 = Xy + X, AL .

However, the second step in the Euler-Cromer method differs from that in the
simpler Euler version: To find x,,, we use X,,.; and not x,, as we do in Euler’s
method. It provides the following update equation for x:

Xntl = Xp + Xpp1 AL .

The reason that the Euler-Cromer method works and that it often (but not always)
works better than Euler’s method is not trivial, and we will not go into this. Euler’s
method often causes the energy of the modelled system to become an unconserved
quantity that slowly but steadily increases. This problem becomes dramatically
reduced with the Euler-Cromer method, which in most cases works better.

Another improvement over Euler’s method, which is even better than the Euler-
Cromer method, is Euler midpoint method. Instead of using the gradient at the begin-
ning of the step, and using this for the entire interval, we use the gradient in the middle
of the interval. By using the slope at the midpoint of the interval, we will usually get
a more accurate result than using the slope at the beginning of the interval when we
are looking for the average growth rate.

In Euler’s midpoint method, we first use the gradient at the beginning of the
interval, but instead of using this value for the entire interval, we use it for half
the interval. Then we calculate the gradient at the middle of the interval and
use this for the entire interval. Mathematically, this is done by using the same
notation as before:

).C,H_% =X, + f(xn’ xn,tn)%At >

.1
Xyl = X + X5 AL .
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Here, x,,, 1 and x,,, 1 are the values of the unknown function and its derivative
at the mldpomt of the interval. The update equation for the entire range will
be as follows:

xn+1=xn+f(xn+ s +1,[n+ )éAt,

Xptl = Xy +)'cn+% At .

4.5 Runge-Kutta Method

In Euler’s method, we found the next value by using the slope at the beginning of
the chosen step. In Euler’s midpoint method, we used the slope in the middle of the
chosen step. In either case, it is quite easy to imagine that for some functions we will
be able to get a systematic error that will add up to a significant total error after many
subsequent calculations have been carried out. It can be shown that the error we make
becomes significantly less if we switch to using more refined methods for finding the
next value. One of the most popular methods is called the fourth-order Runge—Kutta
method. A total of four different estimates of the increase, one at the beginning, two
in the middle and one at the end are then used to calculate the average increase in
the interval. This makes the Runge—Kutta method much better than Euler’s midpoint
method, and since it is not much harder to program, this is often used in practice.

Let us see how the fourth-order Runge—Kutta method works and how it can be
used to solve a second-order differential equation (At the end of the chapter one
will find a pseudocode and the full code for a program that uses the fourth-order
Runge—Kutta method.).

4.5.1 Description of the Method

The Runge—Kutta method is not really difficult to understand, but you probably have
to read the details that are included twice to see it. We will first provide a mathematical
review and then try to summarize the method using a figure (Fig.4.4). Let us begin
with a few words about the mathematical notation. Consider the differential equation
given below:

¥@) = f(x@),%@),1) . 4.2)

For the damped mass—spring oscillator considered in Chap. 2 (where ¢ does not
appear explicitly), this equation will take the following form:
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b k

7)) = ——z() — —z(@) . 4.3)
m m

Suppose we are at the point (x,, X,,, t,) and that the duration of the time step is Af.
In what follows we will find estimates for x,,, X, and X,, and it will be convenient
to replace X,, and X, by v, and a,, respectively. An additional numerical index will
be used to indicate the ordinal position of an estimate (first, second, etc.). With this
notation, the kth estimate of a quantity x, (x = x, v = x, a = X) will be represented
by the symbol yy -

We can find the first estimate of X,, by using Eq. (4.1):

ain, = f(xnv ).Cna tn) = f(xn» Un, tn) .
At the same time, the first derivative is known at the beginning of the time step:
Vin = )‘Cn =V .

The next step on the route is to use Euler’s method to find x (#) and x (¢) in the middle
of the step:

At
X200 = Xtn + V107,

2

At
V2,n = VUl +al,n7 .

Furthermore, we can find an estimate of the second derivative at the midpoint of the
step by using v, ,, X2, and Eq. (4.2):

ayn = f(x2,nv V20 In + AI/Z) .
The next step now is to use the new value for the second derivative at the midpoint in

order to find a new estimate of x(¢) and x (¢) at the midpoint of the step using Euler’s
method:

At
X3n = Xl,n + Vn—x >

2

At
V3 = VUln +a2,n7 .

With the new estimate of x(¢) and x () at the midpoint of the step, we can find a new
estimate for the second derivative at the midpoint:

as, = f(x3,nv V3 5, t, + Al/Z) .

Using the new estimate of the second derivative in addition to the estimate of the
first served in the middle range, we can now use Euler’s method to estimate x(¢) and
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X (t) at the end of step. This is done as follows:

Xgp = X1n + U3, AL,

Vi, =V, +az,At .
Finally, in the same way as before, we can estimate X (¢) at the end of the step using
these new values:

aqn = f(x4,n7 V4,n, t, + At) .

We can now calculate a weighted average of the estimates, and then we get reasonable
estimates of the average values of the first and second derivatives in the step:

W = é (al,n + 2“2.}1 + 2“3.:1 + a4,n) s (44)
U_n - é (vl.n + 2”2,11 + 2U3,n + U4,n) . (45)
Using these averages, which are quite good approximations to the mean values of

the slopes over the entire step, we can use Euler’s method of finding a good estimate
of x(¢) and x(¢) at the end of the step:

Xnt1 = X + v, At (46)
Upt1 = Uy + a, At (47)
tpp1 =1, + At (4.8)

These are equivalent to the initial values for the next step.

In the Runge—Kutta method (see Fig. 4.4), we extract much more information
from the differential equation than in Euler’s method. This makes the Runge—
Kutta method significantly more stable than Euler’s method, Euler-Cromer
method and Euler’s midpoint method. The Runge—Kutta method does not make
an excessive demand on the resources of a computer, but it is relatively simple
to program. The Runge—Kutta method, in one or other variant, is therefore
often the method we first turn to when we want to solve ordinary differential
equations numerically.

Programming of the basic part of the Runge—Kutta method is done almost
once and for all. It is usually only a small file that changes from one problem
to another. The file specifies exactly the differential equations that will be used
in exactly the calculations that will be performed. See example code later in
the chapter.
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Fig. 4.4 Summary of the
fourth-order Runge—Kutta
method. See text

Some concentration is required to fully understand Fig. 4.4: In point 1 (x,,, ,), the
slope is k;. We follow the tangent line at point 1 for half a step to point 2 (pink). This
point is based on another solution of differential equation (thin pink line) than the
one we seek. We calculate the slope k; at point 2 for this solution (pink dotted line).
We then draw a line from point 1 again, but now with the gradient we found at point
2. Again we only go half the step length and find point 3 (green). There is yet another
solution of the differential equation that goes through this point (thin green line). We
calculate the slope k3 at point 3 for this solution (dotted green line). We then draw a
line through point 1 again, but now with the slope we just found. Now we go all the
way up to point 4 (brown). Again there is a new solution of the differential equation
that goes through this point. We calculate the slope k4 of this solution at point 4.

The final step is to calculate the weighted mean of four different slopes and use
this from the starting point 1 in the figure a full time span At to get the estimate
(point 5) for the change of our function in the current time interval. The result is
relatively close to the correct value (compare point 5 by a red dot in the figure).

4.6 Partial Differential Equations

Many physical problems are described by partial differential equations, perhaps the
most well known are Maxwell’s equations, Schrodinger equation and wave equation.
The term “partial differential equation” means that the unknown function depends
on two or more variables, and that derivatives with respect to these occur in the
differential equation.

There are several methods for solving partial differential equations, but a key
concept is finite differences. It is about replacing the differentials in the differential
equation with final differences. Consider the simple differential equation

9 9
D _ k¥

= . 4.9
0x Jt (4.9)
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The simplest way to convert the derivatives in this equation into difference quo-
tients is to use the definition of the derivative, as we have done before. The above
equation will then become

ﬂx+AxJ%—ﬂLﬂ__Kﬂmt+A0—y@J)
Ax B At ’

This equation can be solved for y(x, t + At), which gives

At) = Al A
y(x,t+ At) = y(x, 1) + m[y(x + Ax, 1) —y(x, 0] .

Suppose that y(x, #) is known at a time ¢t = t, for the interesting interval in x. The
right-hand side of the above equation gives y(x, fy + At), the value of the function
at a later time ¢ + Af¢. However, note that we also need the value of the function
at a different x from that appearing on the left-hand side. This means that we will
encounter a problem when we come to calculating the value of the function at a point
x near the outer limit of the region over which the calculation is to be performed.
From the equation above, we see that we need to know what the function was at the
next x coordinate at the last instant, and at the extreme x point, this is not feasible.

This means that, in order to find a unique solution to our problem, we must
know the boundary conditions, that is, the state of the system at the boundary
of the region of interest. These must be specified before the calculations can
even begin.

Note: Initial and boundary conditions are two different things and must not be
mixed together. Initial conditions specify the state of the system at the very
beginning of the calculations and must also be used here. Boundary conditions
specify the state of the system at the endpoints of the calculations at all time.

The finite differences introduced above are, however, rarely used, since they can
be replaced by something that is better and not much more difficult to understand.
Instead of using Euler’s method in the above differentials, Euler’s midpoint method,
which significantly reduces the error in the calculations, is used. If we do this, the
discretization of Eq. (4.9) leads to the following result:

yx 4+ Ax, 1) —y(x — Ax, 1) Ky(x, t+ At) — y(x,t — At)
2Ax B 2At '

Itis not hard to understand that the result will now be better, for instead of calculating
the average growth through the current point and the next point, the average growth
is used through the previous and next point. In the same way as before, this equation
can be solved with regard to y(x, t + At), and the result will be:
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At
yx, t+ A =y, t = At)+ —— [y(x + Ax, 1) — y(x — Ax, 1)] .
K Ax

We see that we get the same problem with boundary conditions as above; in fact,
an extra boundary condition is needed, even at the beginning of the x grid. Since
this is a problem that concerns a spatial dimension, we need to set two boundary
conditions to make the solution unique (there are two boundaries). To use the first
one the update equation must therefore take into account the other boundary as well.
In the same way as we replaced first derivative with a finite difference quotient,
the nth derivative can be approximated in the same way. An example is the second
derivative that can be approximated with the following difference quotient:

S+ Ax) =2f(x) + fx — Ax)

£ ~ o (4.10)
Proof
v fx+Ax) =2f(x) 4+ f(x — Ax)
o A by
_ [f(x+ Ax) = f(O)] = [f(x) = f(x — Ax)] 4.11)
(Ax)?

:L Jx+Ax)— f(x)  f(x) - flx—Ax) (4.12)

Ax | Ax L Ax

~f(x) ~f'(x—Ax)

_ ') = f'(x = Ax) ) (end)

Ax

This expression is nothing more than the definition of the derivative; thus, it is a
proof of the validity of Eq. (4.10). The expressions make it clear why we must know
the value of the function at three points (at least) in order to be able to calculate a
second derivative.

As with the ordinary differential equations, we can move on and use methods that
provide an even better result.

There are a number of methods available for different parts of physics. Interested
refer to special courses/books in numerical calculations.
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4.7 Example of Numerical Solution: Simple Pendulum

Let us take a concrete example, namely a pendulum that can swing with arbitrary
large amplitudes (up to &) without collapsing (i.e. the suspending rod is “rigid”).
We expect all mass to be in a tiny ball (or bob) at the end of the rod.
Mechanics tell us that the force that pulls the pendulum along the path towards
the equilibrium point is
Fy = —mgsinf

where 6 denotes the angular amplitude. If the length of the rod is L, the moment of
this force around the pivot (suspension point) is:

T =—mgLsinf .

The torque applied around the pivot can also be written as:

t=Ila=16.
Here o = @ is the angular acceleration and / the moment of inertia about the axis of
rotation (which passes through the pivot and is perpendicular to the plane in which
motion takes place). By using our simplifying assumptions for the pendulum, we
have:

I =mL?
which leads to the differential equation for the motion of the bob:
mL*0 = —mgL sinf
6 = _$ sin6 .
L

In an elementary mechanics course, this equation is usually solved by assuming that

the angle 6 is so small that sinf ~ 6. The solution then turns out to be a simple
harmonic motion with swing frequency (angular frequency) given by:

w =

oo

The approximation sinf ~ 6 was made to use analytical methods. This approach
was not absolutely necessary in just this particular case, because we can solve the
original differential equation analytically also for large angles by utilizing the series
expansion of the sinus function. However, it is by far easier to use numerical methods.

The result of numerical calculations where we use fourth-order Runge—Kutta
method is shown in Fig. 4.5. We see that the motion is near harmonic for small
angular amplitudes, but very different from a sinusoid for a large swing amplitude.
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Fig. 4.5 A pendulum swings harmonically when the amplitude is small, but the swinging motion
changes considerably when the swing angle increases. The swing period changes as well. See also
the text

Moreover, the period has changed a lot. Note that in the right-hand part of the figure,
we have chosen a motion where the pendulum almost reaches the “right-up” direction
both “forward” and “return” (swing angle near 4+ and —).

If we wanted to include friction in the description of the pendulum motion, it
would represent a more complex expression of the effective force than we had in our
case. For nonlinear description of friction, there is no analytical solution.

Since the main structure of a numerical solution would be the same, irrespective
of our description of the effective force acting on the system, the more complicated
physical conditions can often be handled surprisingly easily with numerical solution
methods (see Fig.4.7 in one of the tasks in the problem section below).

This is an added bonus of numerical solutions: the force that works—and thereby
the actual physics of the problem—becomes more central in our search for the solu-
tion! What force produces which result? Numbers are numbers, and there is no need
to figure out different—occasionally intricate—analytical methods and tricks espe-
cially adapted for each functional representation of the force. The focus is where
it should be: basically, the effective force, the governing differential equation, the
pertinent initial condition(s), and the results that emerge from the analysis.

4.8 Test of Implementation

It is so easy to make a mistake, either in analytical calculations or in writing a
computer program for obtaining numerical solutions. We have examples of many
disasters in such contexts.

It is therefore very important to test the results of numerical solutions to detect
as many errors as we can. It is often easier said than done! We often use numerical
methods because we do not have any analytical methods to fall back on.
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Fig. 4.6 Comparison between analytical and numerical solution of a shuttle movement. For expla-
nations: See the text

In the case of the simple pendulum, there happens to be a trick up our sleeve.
There is an analytical solution that is approximately correct for small amplitude. For
this special case, we can test if the numerical solution becomes nearly the same as
the analytical. If there is a serious disagreement between these two solutions, there
must be an error somewhere.

That the numerical solution is close to its analytical counterpart in this special
case, is unfortunately not a proof that the program is flawless! The implementation of
the program beyond the special case may give incorrect results. Here it is necessary to
consider the physical predictions: Do they seem reasonable or otherwise? It is often
impossible to be absolutely sure that a computer program is completely correct.
Within numerical analysis, there are special techniques that can be used in some
cases. We cannot go into these. The main point is that we must be humble and alert
to the possibility of errors and try to test the implementation of numerical methods
every time we develop a computer program.

As an example, we will now try to check the program we used in the calculations
that led to Fig.4.5. We will use only the small amplitude case in our test.

In Fig. 4.6, the results of the numerical calculations (red curve) are shown on the
left with an analytical solution (dashed blue curve) for the special case when the
pendulum swing is small (maximum +0.023 rad). There is no perceptible difference
between the two curves.

Plotting analytical and numerical solutions in the same figure are a common way
to check that two solutions are in agreement with each other. However, this is a very
rough test, because there is limited resolution in a graphical representation. In the
right part of the figure, we have chosen a better test. Here, the difference between
analytical and numeric results is plotted, and we see that there were certainly some
differences, although we did not see this in the left part.

We can now see that the difference is increasing systematically. After six periods,
the difference has increased to 2.7 x 107> rad. Is this an indication that our computer
program is incorrect?
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We know, however, that the analytical solution is itself only an approximation,
and the smaller the swing angle, the smaller will be the error in the approximation.
We can then reduce the amplitude and see what happens. Calculations show that
if the amplitude is reduced to 1/10 of what we have in the figure, the maximum
difference is reduced after six periods to 1/1000 of the earlier value. If we reduce the
amplitude to 1/100 of the original, the maximum difference is reduced to 107 of
the original difference. We see that numerical and analytical solutions are becoming
more and more similar and in a way that we would expect. If we take a look at the
series development for the sine function, it gives us a further clue that our results are
what we would expect.

We can then feel reasonably sure that the program behaves as it should for small
angular displacements, and that it seems to handle larger angles as it should, at least
as long as they remain small.

There is also another test we often have to do in connection with numerical calculations. We
chose to use 1000 steps within each period in the calculations whose results are plotted in Figs. 4.5
and 4.6. For calculations that span very many periods, we cannot use such small time steps. If we go
down to, e.g., 100 calculations per period, the result will still be acceptable usually (depending on
what requirements we impose), but if we go down to, say 10 steps per period, the result will almost
certainly depend markedly on the choice of the step size. We often have to do a set of calculations
to make sure that the “resolution” in the calculations is appropriate and manageable (neither too
high nor too low).

4.9 Reproducibility Requirements

Today it is easy to change a program from one run to another. Ironically, this presents
extra challenges that need to be taken seriously. When we make calculations to be
used in a scientific article, a master’s thesis, a project assignment, and almost in any
context where our program is used, we must know the exact program and parameters
that are used if the results are to have full value. In experimental physics, we know that
itis important to enter in the laboratory journal all details of how the experiments have
been performed. The purpose is that it should be possible to test the results we get.
This is essential for reproducibility and for achieving so-called intersubjectivity (that
the result should be independent of which person actually executes the experiment),
which is extremely important in science and development.

In experimental work, one occasionally succumbs to the temptation of not jotting
down all relevant details while the experiment is underway. Being interested primarily
in the result, we think that when we have come a little further and got even better
results, then we would write down all the details. Such practice often causes some
frustration at a later date, because suddenly we discover that an important piece of
information was never actually noted. At worst, the consequence of this lapse may
be that we have to repeat the experiment, and hunt for the conditions under which
the previous experiment, the results of which proved to be particularly interesting,
was performed.
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Modern use of numerical methods can in many ways be compared to experimental
work in the laboratory. We test how different parameters in the calculation affect
the results, and we use different numerical methods in a similar manner as we use
different measuring instruments and protocols in experiments. This means that there
are stringent requirements for documentation for those who use numerical methods
as for the experimentalist.

In order to comply with this requirement, we should incorporate good habits in
the programming. One way we can comply with reproducibility requirements is to
do the following:

In the program code, insert a ““version number” for your application.

In the result file you generate, the version number must be entered automatically.
Every time you change the program in advance of a calculation that you would
like to make, the version number must be updated.

Each version of the program (actually used in practice) must be saved to disk so
that it is always possible to rerun an application with a given version number.
Parameters which are used and which vary from run to run within the same version
of the program must be printed to a file along with the result of the run.

If we keep to these rules, we will always be able to return and reproduce the
results obtained in the past. It is assumed here that the results are independent of the
computer used for the calculations. If we suspect that a compiler or an underlying
program or an operating system might malfunction, it may be appropriate to provide
additional information about this along with the results (in a result file).

In the specimen programs given in this book, the lines needed for documentation
of parameters and version number are, for the most part, not included in the code. The
reason is that the program pieces provided here are intended primarily for showing
how the calculations can be performed.

4.10 Some Hints on the Use of Numerical Methods

In our context, it is often necessary to create relatively small computer programs to
get a specific type of calculation. There is usually no need to have the fancy interface
to select parameters and fancy presentations of the results as it is for commercial
programs. We need to do a specific task, and the program is usually not used by
many, or very often. This is the starting point for the tips that follow.

Many of the issues we encounter in this book are related to the integration of
differential equations that describe the processes we are interested in. The following
hints are partly influenced by this preoccupation.

Planning

Before we get to the computer, we should have a clear notion of what we want to
achieve. We must have already established the differential equation that describes the
process of our interest and have pondered over the parameters that are to be included
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in the calculations. Current parameter values and initial values need to be looked up
or chosen by ourselves.

It may be useful to outline how we can partition the program into main compo-
nents, each of which has its separate function. We also have to decide the order in
which we will work through the various parts of the program and have thoughts of
how we can test the different parts individually and together.

It is also natural to ask: Do we want to provide parameters while the program is
running or is it sufficient to insert them into the program code before the program
starts? How will we take care of the results? Should it be in the form of plots or
animations or numbers are printed on screen, or should the final results be written to
file(s) for later processing?

Writing of Code

There should be a one-to-one correspondence between the mathematical description
of a problem (algorithm) and the code. It applies to variables, formulas, etc.

It is recommended to adhere to the programming language guidelines, such as
“PEP 8—Style Guide for Python Code” or “MATLAB Style Guidelines 2.0”.

Try to collect the code lines where parameters are given special values already
as part of the code. This makes it easier to change parameters for later runs. Reset
arrays or give arrays values.

Put together all expressions of fixed constants which will be used in that part of
the program that is most frequently run, in order to avoid more calculation operations
than necessary in a loop. For example, it is a good idea to create a parameter

coeff = 4.0*3.141926*epsilon0*epsilonR*mul*muR

and use this coefficient in a loop that is recalled many times, instead of having to
repeat all these multiplications each time the loop is run (the parameters in this
example have been selected randomly).

A code should be broken up into logical functions. In Python, multiple functions
can be added to one and the same file. In Matlab, various functions are often allocated
to separate files (although it is actually possible to use a similar layout in Matlab as
in Python).

Generalize when you are writing a program, unless it seems inadvisable. For
example, when integrating an expression, a general integral of f(x) is programmed
and then a special f is chosen as its argument. This requires frequent use of functions.
Do not overdo it though, because it obstructs a survey and the readability of the
program.

Testing and Debugging

Make an effort to construct test problems for checking that the implementation is
correct. Functions should be tested as they are written. Do not postpone testing until
code writing is finished!

There are several types of errors that may occur. Some errors are detected by the
compiler. Read the error message carefully to see how such errors can be corrected.
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Other errors appear when running the program. For example, we can end up in an
infinite loop and must terminate the program manually. It is not always easy to find
out where in the program code such a fault is located. It is then useful to add dummy
print-to-screen here and there in the code so we can locate that line in the code where
the problem occurs.

While we are going through program development and testing, it is important to
save the program several times along the way, and preferably change names some-
times, in order to avoid a potential catastrophe. Then we will not have to start all
over again if you lose everything in a file.

Check that the program provides the correct result for a simplified version of the
problem, where there is also an analytical solution. This is crucial!

Repeat the calculations using different resolutions (often given by At) to see how
many points are needed to get a good match with the analytical answer or to verify
that the result depends only to a small extent on moderate changes in resolution.

Forms of Presentation

Plot the results or present them in some other form. Save data to file if desired.

Simple plots are often sufficient, but we can rarely read precise details from a
plot, at least not without having chosen a very special plot that displays just what we
want to show. Sometimes, the choice of linear or logarithmic axes in a plot is crucial
for whether we discover interesting relationships or not.

Make sure that the axes in the plot are labelled properly that symbol sizes and line
thicknesses and other details in the presentation meet the expected requirements.

In reports, articles and theses, one is a requirement that numbers and text along
the axes of the plots must be readable without the use of magnifying glass (!) in the
final size the characters have in a document. This means that numbers and letters
should have a size between 9 and 12 pt in final size, and indexes may be even a bit
smaller).

When using Matlab, it is a good idea to save figures which do not fill the entire
screen (use default display of figures on screen). Then the font size will be sufficiently
large even if the figure is reduced to approximately the same format as used in this
book. However, if the image size is reduced too much, the font size in the final
document will become too small. You can choose, for example, line thickness and
font size in plots generated by Matlab and Python. The following code piece indicates
some of the possibilities that exist (the example is in Matlab, but there are similar
solutions in Python):

axes ('LineWidth’,1, 'FontSize’, 14, 'FontName’, 'Arial’);
plot(t,z,’-r’, 'LineWidth’,1);
xlabel (‘Time (s)’, 'FontSize’,16, 'FontName’, 'Arial’);

Learn good habits as early as possible—it will pay off in the long run!
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Reproducibility

When we believe that the program as whole works as it should, we can finally embark
upon the calculations for the particular project we are occupied with. Reproducibility
requirements must be adhered to when the program now receives a solemn version
number, and the program code must be saved and not changed without a new version
number.

Files that document later runs must be preserved in a manner similar to a laboratory
record.

4.11 Summary and Program Codes

Summary of the Chapter

Let us try to summarize the key points in our chapter:

e A second-order differential equation can be considered equivalent to two
coupled first-order differential equations.

e In a single differential equation, we replace the derivative d f/d¢ with the
differential quotient Af/At. Starting from this approximate equation and
initial conditions, we can successively calculate all subsequent values of
f (). This method is called Euler’s method. The method often gives large
errors, especially when we are dealing with oscillations!

e There are better methods for estimating the average slope of the function
during the step At than just using, as we in Euler’s method, the derivative
at the beginning of the interval. One of the most practical and robust meth-
ods is called fourth-order Runge—Kutta method. In this method, a weighted
average of four different calculated increments in the interval Af is used
as the starting point for the calculations. The method often provides good
consistency with analytical solutions where these exist, also for oscillatory
phenomena. However, we must be aware that this method is not exempt
from error, and for some systems it will not work properly.

e For second-order ordinary differential equations, such as the equation for
oscillation, we can find the solution if we know the differential equation and
the initial conditions. For the second-order partial differential equations, for
example, a wave equation, we must in addition know the so-called boundary
conditions not only at the start but also throughout the calculations. This
makes it often far more difficult to solve partial differential equations than
ordinary other order diffusions.

e It is valuable to compare numerical calculations and analytical calculations
(where these exist) to detect errors in our programming. However, even if
the conformity is good in such special cases, there is no guarantee that the
numerical solutions will be correct also for other parameter values (where
analytical solutions are not available).
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e The program code is divided into an appropriate number of separate func-
tions that have their own task. In this way, the logical structure of the program
will clarify. Some features can be made so general that they can be reused
in many different contexts. For example, we can create one general Runge—
Kutta function that calls for a more specialized function that contains the
appropriate differential equation (where only the last small function will
vary from problem to problem).

e Since we can easily change programs and parameters, it is a big challenge
to keep track of how the computer program looked and what parameters
we used when we made calculations and arrived at results we would use.
Some systematic form of documentation is imperative, where program, input
parameters and results can be linked to each other in a clear way.

Pseudocode for Runge-Kutta Method *

The input to this function is x[n-1], v[n-1] and t[n-1] and

returns x[n] and v[n].

1. Use the input parameters in order to find the
acceleration, al, in the start of the interval.
The speed in the start of the interval, vl, is given as
an input parameter.
x1l = x[n-1]
vl = v[n-1]
al =

2. Use this acceleration and speed to find an estimate for
the speed (v2) and position in the middle of the interval.
X2 =

v2 =

3. Use the new position and speed to find an estimate for
the acceleration, a2, in the middle of the interval.
a2 =

4. Use this new acceleration and speed (a2 and v2) to find
a new estimate for position and speed (v3) in the middle
of the interval.
x3 =

v3 =

5. Use the new position, speed and time in the middle of
the interval to find a new estimate for the acceleration,
a3, in the middle of the interval.
a3 =

79



80

4 Numerical Methods

Use the last estimate for the acceleration and speed in
the middle of the interval to find a new estimate for the
position and speed (v4) in the END of the interval.

x4 =

vd =

Use the last estimate for position and speed to find an
estimate for the acceleration in the END of the interval, a4.
ad =

A mean value for speed and acceleration in the interval
is calculated by a weighted, normalized sum:

vMiddle = 1.0/6.0 * (vl + 2*v2 + 2*v3 + v4)

aMmiddle = 1.0/6.0 * (al + 2*a2 + 2*a3 + a4)

Finally, use these weighted mean values for speed and
acceleration in the interval to calculate the position
and speed in the end of the interval.

The function return this position and speed.

X [n] =

vin] =

return x[n], vI[n]

Matlab Code for Runge-Kutta Method

Important

The code of most of the example programs in this book is available (both for Mat-
lab and Python) at a “Supplementary material” web page. At the same web page,
files required for solving some of the problems are available as well as a list of
reported errors, etc. The address for the “Supplementary material” web page is
http://www.physics.uio.no/pow.

function [xp,vp,tp]l = rkdx(xn,vn,tn,delta_t,param)

o° O 00 P AP P Jd° d° J° d° o°

oe

Runge-Kutta integrator (4th order)

BRI R R R R I R R R R R Rk

This version of a 4th order Runge-Kutta function for Matlab
is written by AIV. Versjon 09282017.
This function can be used for the case where we have two
coupled difference equations

dv/dt = ffa(x,v,t,param)

dx/dt = v NOTE: This part is taken care of automatically

in this fuction.

Input parameters: x,v,t can be position, speed and time,
respectively. delta_t is the step length in time.
param 1s a structure in Matlab (in Python it is called a


http://www.physics.uio.no/pow
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o

class). It contains various parameters that is used to

o

describe the actual second order differential equation.

o

It MUST contain the name of the function that contains

o

the differential equation. The class "param" the user has
to define.

oe

% Input argumentents (n: "now")

% [xn,vn, tn,delta_t,param] = values for x, v and t "now".

% Output argumentets (p : "n plus 1")

% [xp,vp,tp] = new values for x, v and t after one step in
delta_t.

BRI R R R R R S R R R R Sk kI

o°  oe

ffa = eval([’'@’ param.fn]); % Picks up the name of the
% Matlab-code for the second derivative. Given as a text
% string in a structure param.

half_delta_t = 0.5*delta_t;
t_p_half = tn + half_delta_t;

x1l = xXn;
vl = vn;
al = ffa(xl,vl,tn,param);

x2 = x1 + vl*half_delta_t;
v2 = vl + al*half_delta_t;
a2 = ffa(x2,v2,t_p_half,param);

x3 = x1 + v2*half_delta_t;
v3 = vl + a2*half_delta_t;
a3 = ffa(x3,v3,t_p_half,param);

tp = tn + delta_t;

x4 = x1 + v3*delta_t;

vd = vl + a3*delta_t;

ad = ffa(x4,v4,tp,param) ;

% Returns (estimated) (x,v,t) in the end of the interval.
delta_t6 = delta_t/6.0;

xp = xn + delta_t6* (vl + 2.0*(v2+v3) + v4);

vp = vn + delta_t6*(al + 2.0*(a2+a3) + a4);

tp = tn + delta_t;

return;
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The Function that Contains the Differential Equation

function dvdt = forced(y,v,t,param)

%*********************************************************

o

o° oe

o

o° oe

o

o

o° O 00 o° of o°

o

This function is calculating the accelleration of a
mass-spring oscillator that is influenced by an external
periodic force that last only for a limited time interval.
The trivial first order diff.eq. dx/dt = v is taken care
of automatically in rk4x. The function "forced" is used
by a RK4 function, but the necessary parameters are
defined by the main program (given separately).

Written by AIV. Versjon 09282017.

Input parameters:
y = position
v = speed
t = time
Output parameters:
dvdt = Left side of an equation in a difference equation
for v.

%*********************************************************

o° oe

oe

The external periodic force last from the start of
calculation until the time is param.end. See the main
program for explanations of the other param items.

if (t < param.end)
dvdt = - param.A*v - param.B*y + param.C*cos (param.D*t) ;
else
dvdt = - param.A*v - param.B*y;
end;
return;
Example:

Matlab Program that Uses the Runge-Kutta Method

A program for calculating forced mechanical oscillations (spring pendulum) is
given below. It shows how Runge—Kutta method is used in practice if we program
the Runge—Kutta routine itself.

function forcedOscillationsl?7

o0 o° o° o°

o

An example program to study how forced oscillations which
start with a mass-spring oscillator with no motions. The
external force is removed after a while. The program calls
the functions rk4r.m which is also using the function
forced.m.



4.11 Summary and Program Codes

global param;

% Constants etc (see theory in previous chapters) in SI units
omega = 100;

= 25;

= 1.0e-2;

= m*omega*omega;

= m*omega/Q;

= 40;

time = 6.0; % Force only present halv of this time, see later

)

% Parameters used in the calculations (rk4.m, tvungen.m)

oo~ 8 0

param.A = b/m;
param.B = omega*omega;
param.C = F/m;

param.D = omega*1.0; % If this value is 1.0, the angular

frequency of the force equals the

o°  of

angular frequency for the system.
param.end = time/2.0;

param.fn = ‘forced’; % Name of Matlab file for 2. derivative
% Choose number steps and step size in the calculations

N = 2e4; % Number calculation points
delta_t = time/N; % Time step in the calculations

oe

Allocate arrays, set initial conditions
= zeros(1,N);

= zeros(1l,N);

= zeros(1l,N);

(1) = 0.0;

(1) = 0.0;
(1) = 0.0;

g K addK

)

% The loop where the calculations actually are done
for j = 1:N-1

ly(3+1), v(3+1), t(3+1)]l=rkdx(y(J),v(J),t(J),delta_t,param);
end;

% Plot the results

plot(t,y,’ -b’");

maxy = max(y);

xlabel ('Time (rel units)’);

ylabel ('Position of the mass (rel. units)’);

axis([-0.2 time -maxy*1.2 maxy*1.2]); % want some
% open space arround the calculated results

We should also have compared our results with the analytical
solution of the differential equation in order to verify

o0 o0 0P

that our program works fine. Not implementet in this

oe

version of the program.
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Using Matlab’s Built-in Runge-Kutta Function *

Finally, here is a specimen program for calculating damped oscillations, if we use
Matlab’s built-in solver of ordinary equations (ode) using the fourth-order Runge—
Kutta method. First, we enter the main program we called dampedOscill.m (the name
is insignificant here) and then follows a small application snap ourDiffEq.m that the
main application calls. Matlab’s equation solver requires a small additional function
that specifies the current differential equation as such and that is the one given in
vaarDiffLign.m.

function dampedOscill
Program for simulation of damped oscillations.
Written by FN. Version 09282017

o0 oe

% Solves two copuled differential equations
% dz/dt = v
% dv/dt = - coefl v - coef2 z

clear all;

% Defines the physical properties for the oscillator
% (in SI units).

b = 3.0; % Friction coefficient

m = 7.0; % Mass

k = 73.0; % Spring constant

% Reminder:

% Overcritical damping : b > 2 sqgrt(k m)

% Critical damping : b = 2 sgrt(k m)

oe

Undercritical damping: b < 2 sqgrt(k m)

coefl = b/m;
coef2 = k/m;

% Initialconditions (in SI-units)

z0 = 0.40; % Position rel. equilibrium point
v0 = 2.50; % Velocity

% Time we want to follow the system [start, end]
TIME = [0,20];

% Initial values
INITIAL=[z0,vO0];

oe

We let Matlab perform a full 4th order Runge-Kutta
integration of the differential equation. Our chosen

o

o

differential equation is specified by the function

oe

ourDiffEqg.

% T is time, F is the solutions [z Vv], corresponding to the
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o

running variable t (time) and f is the running variable
[z(t) v(t)] that Matlab use through the calculations.
Matlab chooses itself the step lengths in order to give

o° oe

o

proper accuracy. Thus, the calculated points are not

oe

equidistant in time!

[T F] = oded45(@(t,f) ourDiffEg(t,f,coefl,coef2),TIME, INITIAL);

)

% Plot the results, we choose to only plot position vs time.
plot(T,F(:,1));

oe

length(T) % Option: Write to sceen how many points Matlab

% actually used in the calculation. Can be useful
% when we compare with our calculations with our
% own Runge-Kutta function.

% We should also compare our results with the analytical

oe

solution of the differential equation in order to verify

oe

that our program works fine. Not implementet so far...

Our Own Differential Equation

Here comes the small function that gives the actual differential equation (in the
form of two coupled difference equations):

function df = ourDiffEqg(~, f,coefl,coef2)

% This function evaluate the functions f, where f(1) = z and
% £(2) = v. As the first variable in our input parameters we
% have written ~ since time does not enter explicitely in our
% expressions.

df = zeros(2,1);

%The important part: The first differential equation: dz/dt = v
df (1) = £(2);

% The second differential equation: dv/dt = -coefl v - coef2 z
df (2) = -coefl*f(2)-coef2*f(1);
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4.11.1 Suggestions for Further Reading

The following sources may be useful for those who want to go a little deeper into

this material:

e Hans Petter Langtangen: A Primer on Scientific Programming with Python. 5th

Ed. Springer, 2016.

e http://en.wikipedia.org/wiki/Semi-implicit_Euler_method (accessed 01.10.2017)

http://en.wikipedia.org/wiki/
Numerical_partial_differential_equations

4.12 Learning Objectives

After working through this chapter, you should be able to:

Know that a second-order differential equation can be considered equivalent
to two coupled first-order differential equations.

Solve a second-order differential equation numerically using the fourth-
order Runge—Kutta method.

Explain why numerical methods can handle, more frequently than analytical
methods, complex physical situations, such as nonlinear friction.

e Point to some factors that could cause numerical calculations to fail.
e Explain in detail why the fourth-order Runge—Kutta method usually works

better than Euler’s method.

Make a reasonably good test that a computer program that uses numerical
solution methods works as it should.

Put into practice your practical experience in using numerical methods to
integrate an ordinary differential equation or a partial differential equation.
Know and have some practical experience working out a computer program
with several functions that interact with each other and could explain the
purpose of such a partitioning of code.

Know and have some experience with troubleshooting and know some prin-
ciples that should be used to avoid postponing comprehensive troubleshoot-
ing until most of the code is written.

Know how we can proceed to consolidate documentation of programs and
parameters associated with the calculated values.

Know why it is a good idea to save a computer program under a new name
just as it is, while one is going through modifications to the program.


http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
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4.13 Exercises

Suggested concepts for student active learning activities: Discretizing, algorithm,
numerical method, Euler’s method, Runge—Kutta’s method, accuracy, coupled dif-
ferential equations, partial differential equation, documentation for programming
activities.

1.

2.

Comprehension/discussion questions

Why does the fourth-order Runge—Kutta method usually work better than Euler’s
method?

Figure 4.7 shows the result of calculations of a pendulum motion for the case that
there is some friction present. The figure shows position (angle) as a function of
time (left part) and angular velocity as a function of position (angle) in the right
part (also called a phase plane plot). The two upper figures result from an initial
condition where the pendulum at time ¢+ = O hangs straight down, but at the
same time has a small angular velocity. The lower figures result from an initial
condition which is the same as for the upper part, but that the initial angular
velocity is a good deal greater than in the first case.

Explain what the figures say about the motion (try to bring as many interesting
details as possible). How would the figure look if we increased the initial angular
velocity even more than the one we have in the lower part of the figure?

. Try to outline the working steps involved in analytical calculations of an oblique

projectile throw with or without friction (or planetary motion around the sun).
What do we spend most of the time on, and what do we concentrate on when
we inspect the calculation afterwards? Attempt to outline the work plan for a
numerical calculation and how we examine the result of such a calculation.
What are the pros and cons of each method? Also try to incorporate physical
understanding of the mechanisms of motion.

Problems

Remember: A “Supplementary material” web page for this book is available at

http://www.physics.uio.no/pow.

4 The purpose of this composite task is to create your own program to solve

different order differential equations using the fourth-order Runge—Kutta method
(RK4) and to modify the program to cope with new challenges. Feel free to get
extra help to get started! Specific assignments are as follows:

(a) Write a computer program in Matlab or Python that uses RK4 to calculate
the damped harmonic motion of a spring pendulum. The program should consist
of at least three different parts/functions following a similar scheme outlined
in Sect.4.7. You should not use Matlab’s built-in Runge—Kutta function. The
program should be tested for the case: m = 100g, k = 10N/m, and the friction


http://www.physics.uio.no/pow
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4.7 Motion of a simple pendulum. Position vs time is shown to the left and phase space

presentation of the motion to the right. See the text for a detailed description

is assumed to be linear with the coefficient of friction » = 0.10kg/s. Initial terms
are z(0) = 10cm and [dz/dt];—o = Om/s. Conduct a test of which time steps
are acceptable and check if there is agreement between numerical calculations
and analytical solution. Put correct numbers, text and units along the axes of the
plots. Add a copy of your code.

(b) Modify the program a little and change some parameters so that you can
create a figure similar to Fig.2.5 that shows the time course of the oscillation
when we have subcritical, critical and supercritical damping. Explain how you
chose the parameters. [We assume that the tests you did in (a) with respect to time
resolution and comparison with analytical solutions do not need to be repeated
here.]

(c) Modify the program so that it can also handle forced vibration (may last for
the entire calculation period). Use m = 100g, k = 10N/m, b = 0.040kg/s and
F =0.10Nin Eq. (3.1). Try to get a plot that corresponds to the initial part of
each of the time courses we find in Fig. 3.7.

(d) Use this last version of the program to check that the “frequency response”
of the system (a la Fig. 3.8) comes out to be correct, and that you can actually
read the approximate Q value of the system from a plot made by you.
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5. Write your own program to calculate the time development of a damped oscillator
using the fourth-order Runge—Kutta method. Test that it works by comparing the
results for analytical solution and numerical solution for a case in which they
should be identical. How large is the error in the numerical solution for the
position (relative to maximum amplitude)? If you choose the time step Az, we
ask you to test at least two to three different options for Ar to see how much this
choice means for accuracy.

6. Carry out calculations of forced oscillations for a variety of different applied
frequencies and check that the quality factor expression in Chap. 2 corresponds
to the frequency curve and the alternative calculation of Q based on the half-value
and centre frequency.

7. Study how fast the amplitude grows by forced oscillations when the applied
frequency is slightly different from the resonant frequency. Compare with the
time course at the resonance frequency. Initial conditions: the system starts at
rest from the equilibrium point.

8. Find out how the calculations in the previous tasks have to be modified if, for
example, wanted to incorporate an additional term —cv? x (9 /v) for the friction.
Feel free to comment on why numerical methods have a certain advantage over
analytical mathematical methods alone.

9. This task is to check if the superposition principles apply to a swinging spring

pendulum with damping, first in the case that the friction can be described only
with a —bv, that the friction must be described by —bv — sv?, or rather: —bv —
s|v|v to take account of the direction (see Chap. 2 where this detail is mentioned).
In practice, the task involves making calculations for one swing mode, then for
another, and then checking if the sum of solutions is equal to the solution of the
sum of states.
The physical properties of the spring pendulum are characterized by b = 2.0,
s =4.0, m = 8.0 and k = 73.0, all in SI units. Make calculations first with
the initial conditions zo = 0.40 and vy = 2.50, and then the initial conditions
zo = 0.40 and vy = —2.50. Add the two solutions. Compare this sum with the
solution of differential equation when the initial conditions are equal to the sum
of the initial conditions we used in the first two runs. Remember to check the
superposition principle both for runs where —s|v|v is present and where it is
absent. Can you draw a preliminary conclusion and put forward a hypothesis
about the validity of the superposition principle based on the results you have
achieved?

Note: In case you use Matlab’s built-in solver, the times will not match the two runs. You must
then take into account the time series corresponding to one run and use interpolation when the
addition of the result for the second run is to be performed. Below is an example of how such
an addition can be made. Ask for help if you do not understand the code well enough to use it
or something similar in your own program.

Addition of two functions Zl(t) and Z2(t’), where t is
elements in T1 and t’ in T2. The two series have the same
start value (and end value), but is different elsewhere.
nl = length(T1l) and n2 = length(T2). The function only

o0 o° of o°
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% works for n2>=nl. Modify the code if that is not the case.

% Use Tl as basis for for the summation
712 (1)=21(1)+22(1);
for i = 2:nl
% Find index to the last point in T2 less than T1 (i)
j=1;
kL = -1;
while kL<O
if (T2(3)<T1(i)) j=j+1;
else;
kL=j-1;
end;
end;
% The first point in T2 is then larger or equal the
% T1(i) index:

kH = kL+1;
% Summation of the two solutions (linear interpolation)
712 (1) = 21(i)+22 (kL) + (2z2(kH)-22(kL))...

*(T1(i)-T2 (kL)) /(T2 (kH) -T2 (kL)) ;
end;

4.13.1 An Exciting Motion (Chaotic)

11. Letus look at a nonharmonic “swing” that is beyond analytical mathematics. We
consider a ball that is bouncing vertically up and down influenced by gravity, and
we assume, for the sake of simplicity, that there is no loss. The special aspect
here is that the floor oscillates vertically and has much greater mass than the
bouncing ball so that the motion of the floor is not affected by the ball.

The velocity of the floor is described as u(¢) = A cos(wt) = A cos(¢(2)). The
ball has a speed of v; down just before it hits the floor, but according to mechanics,
the speed v;+; = v; + 2u(t) will rise soon after the ball has hit the floor. We
assume that the ball bounces so high in relation to the amplitude of the floor
that we can make the approximation that the time the ball uses from leaving the
floor until it hits the floor again is independent of the position of the floor and
depends only on the speed the ball had when it last left the floor. This time is
At; = 2v; /g where g is the acceleration due to gravity. Note that At varies from
bounce to bounce.

With these approximations, the phase difference between the floor oscillation
and the oscillations of the ball until their next encounter is:

2w
Api = At w="—v, =y (4.13)
g
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where y is a “normalized velocity” that depends on the constants g and w and
varies as v;. The term “velocity” is a little misleading, but since g and w are
both constant in our context, y varies linearly with the velocity of the floor at the
instant the ball hits it. When y; = 2, the bounce will equal exactly one period
in the oscillation of the floor.

We can then set up the following algorithm to calculate a new bounce based on
the knowledge of the previous bounce in the following way:

¢(n+ 1) = [modulo 2] (¢ (n) + y (n)) 4.14)

where [modulo 2] means that we take the modulo of what we calculate (to
ensure that ¢ is in the range of [0, 27 >). And further:

y(n+1)=ym) +acos(p(n+ 1)) 4.15)

where o o< A.

In this description, we operate with “normalized velocity” y (n), which is pro-
portional to the initial velocity of each bounce, and with ¢ (n), which is the phase
of the floor motion just as nth bounce begins. The quantity « is proportional to
the amplitude of the floor, and for simplicity we will choose an amplitude cor-
responding to o = 1.0.

We will plot the results in a form of phase plot, but not quite. We let the phase of
the oscillation ¢ (n) lie along the x-axis and “normalized velocity” y (n) along
the y-axis.

Create a plot showing points (¢ (n), y (n)) for N number of bounces. During the
test you can, for example, take N = 2 x 10, but when the program works with-
out errors, you may want to expand this to e.g. N = 2 x 10° if the calculation
time is still acceptable.

Remember to allocate space to the “phi” and “gamma” array before you enter
the loop using the algorithm in Eqs. (4.14) and (4.15).

Note: Do not connect the points with lines! Plotting of the points can be done in
Matlab, for example, as follows:

plot (phi,gamma, ‘r’, 'MarkerSize’,2);

Try the following initial conditions for (phi, gamma): (0.0, 1.0), (7 /2, 0.0), (1.4,
1.71), (1.4, 1.75). Also try other initial values to create a picture of various
movements that may occur. Try to describe in words different forms of motion.



Chapter 5 ®)
Fourier Analysis oo

Abstract In this chapter, the first major challenge is to understand the difference
between two descriptions of a signal: one in the time domain and another in the
frequency domain. We initially use a gradual increase in complexity to help the
reader grasp the difference. We then use phasors in order to introduce positive and
negative frequencies, a detail that is encountered later. The formal mathematical
Fourier transform and inverse transform are then introduced as well as Fourier series.
The remainder of the chapter is devoted to discrete Fourier transform in the form of
fast Fourier transform (FFT). All exact details on intervals in time and frequency are
stated with great care. Important details like aliasing/folding and sampling theorem
are given. We also analyse a time-limited oscillating signal and get our first encounter
with the bandwidth theorem, and a theme we will recur to in several later chapters
of this book.

5.1 Introductory Examples

5.1.1 A Historical Remark

Fourier transformation and Fourier analysis bear close resemblance to the medieval
use of epicycles for calculating how planets and the sun moved relative to each other.
That gives us an inkling of how powerful Fourier analysis is, but at the same time
it reminds us that Fourier analysis can sometimes hinder a deeper understanding of
the phenomena around us. Several later chapters in this book are based on a good
understanding of Fourier transformation, including the awareness of the danger to
think and argue almost in the same manner as in the Middle Ages.

5.1.2 A Harmonic Function

Before delving into the details about Fourier transformation, it will be useful to take
alook at Chap. 2. We saw that a harmonic function can be written in several different
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Fig. 5.1 Section of a harmonic function plotted, in the left part, as a function of time (“time
domain”) and, in the right part, as a function of frequency (“frequency domain”). See text for other
details

ways: _
z(t) = Ccos(wt + ¢) = Acos(wt) + Bsin(wt) = N {@e’“”} . (5.1)

9 {} means that we take the real part of the complex expression within the braces,
and Z is a complex number.

In the left part of Fig.5.1, we have plotted a section of an arbitrary harmonic
function of time. Amplitude C is 2.2 in some unspecified units and the frequency
f = 440Hz, which corresponds to the period 7 ~ 2.27ms ~ 1/440s. We chose the
phase shift @ = 110°. This means that the value of the function is neither zero nor
at the maximum at time ¢ = 0.

The three parameters C, w = 27 f and ¢ specify the function z(¢) = C cos(wt +
¢) unambiguously. Using the identities in Chap. 2, this function can also be expressed
as A cos(wt) + B sin(wt). In that case, A = C cosp ~ —0.76 and B = —C sin ¢ ~
2.06. The three parameters that specify the function completely are A, B and w.

Usually we plot a function of time as has been done in the left part of Fig.5.1.
However, we can also display the function graphically in an altogether different
way, which is done in the right part of the figure. Here we have frequency along
the x-axis and the coefficients A and B along the y-axis, and colour coding has
been used to distinguish A from B. Since we have fime along the x-axis in the left
part of Fig.5.1, we call this a “time-domain” representation of the function. For the
right part, the frequency is along the x-axis, and we therefore call this a “frequency-
domain” representation. Both representations contain (under certain assumptions)
the same information.

In the frequency-domain picture, we have also displayed C. Occasionally we are
interested only in amplitudes and not phases. Then C = +/A2 + B2 is useful, and C
is always positive (or zero). However, C and w alone are not sufficient to determine
the function unambiguously—phase information is missing.

If we use the last expression in Eq. (5.1), we can also specify the function as
follows:
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Fig. 5.2 A segment of a function that is a sum of two harmonic functions with frequencies 440
and 610Hz plotted, one the left, as a function of time (“time-domain picture”) and on the right
as a function of frequency (“frequency-domain picture”). The colour coding is the same as in the
previous figure. See text for other details

z(t) = R {2e"'} . (5.2)

It is important to remember that & is a complex number, and that ¥ = A — iB so
that & is the detail in Eq. (5.2) that contains the information about the phase of the
harmonic function. The amplitude C is the absolute value of the complex number 2.

If you do not remember all the details in Chap. 2 which are used in transforming
one version to another in Eq. (5.1), it is recommended that you revise that section
now. In the rest of this chapter, we will use the rendering given in Eq. (5.2), and it is
very important to fully understand this expression.

At present we need to refer only to the mathematics in Chap. 2. We will show that,
by using a so-called Fourier transform, we can generate the plot in the right part of
Fig.5.1 completely automatically. The prime purpose of this introductory part is to
find out what are meant by the terms “time-domain picture” and “frequency-domain
picture”.

5.1.3 Two Harmonic Functions

Let us see now what happens when we have a sum of two harmonic functions. The
time-domain picture is given in the left part of Fig.5.2. Since we have generated this
function ourselves, we know that it is described by

z(t) = Cycos(wit + ¢1) + Ca cos(wat + ¢2) (5.3)

where all the six parameters appearing above are known.
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We can also use the alternative form:
z(t) = Ay cos(wit) + By sin(wit) + Ay cos(wat) + By sin(wat) 5.4)

where Aj, Ay, B) are B, are to be found by using Cy, ¢;, C, and ¢,, and, since the
frequencies w; and w; are known, we can make a frequency plot corresponding to
this function. Such a plot is shown in the right part of the figure.

Someone who did not know how the function was generated, and obliged to
evaluate it only from the time plot in the left part of Fig.5.2, would find it difficult
to say with certainty that this a sum of only two harmonic signals. It would be quite
a challenge to determine the amplitudes and phases.

However, with the help of Fourier transformation, which is the subject of this
chapter, we can use the time plot to calculate, automatically, Ay, A, By, By, wi, and
wy and we can confirm that there are no other contributions to the signal. You may
now appreciate how useful Fourier analysis can be!

We recall the rendering based on Euler’s formula and complex coefficients. For
two harmonic functions, this takes the form:

2(t) = R{21e“" + e’} (5.5)

It is important to realize that all three form of writing in Egs. (5.3), (5.4) and (5.5)
are equivalent.

Since the coefficients 2, and %, can be determined by Fourier transformation,
they are commonly called Fourier coefficients of the z(¢) function.

5.1.4 Periodic, Nonharmonic Functions

In the last example, the signal was nonperiodic. In many parts of physics, we deal
with periodic functions. An example is shown in Fig.5.3. Looking at this feature in
the time-domain picture, it is hard to understand that such a signal can be described
in a relatively simple way.

Since we have generated the signal ourselves, we know how it was constructed.
The signal is made as a sum of six harmonic functions, each of which is described
by aset of [A;, B;, w;]-values. In order to get a periodic signal, each w; was taken as
nwy, an integral multiple of the lowest value wy, called “the fundamental frequency”.
In our case, wg = 610Hz and n = 1, 2, ... 6. The right part of Fig.5.3 shows how
the frequency-domain picture in this case looks like.

It is pleasing to note that even in this case we succeeded, thanks to a Fourier
transformation, in analysing the z(¢) signal directly, and in finding how the signal
was composed. It would be almost impossible to extract these details without Fourier
transformation, as there are 18 different parameters to be determined. We will come
back to the details later.
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Fig. 5.3 Time-domain picture on the left shows a section of a periodic, nonharmonic function and
on the right is shown the corresponding frequency-domain picture. See text for other details

It turns out that the more a periodic signal differs from a pure sinusoid, the more
harmonic functions (higher n values) are needed for describing it.

We remind the reader that if we choose Euler’s formula and complex coefficients,
a periodic function would look like this:

N
2(t) =N Z G, et

n=1

In our case N = 6.

5.1.5 Nonharmonic, Nonperiodic Functions

In the end, we look at something rather odd. We have seen in the three previous
examples that it is possible to make many different signals by combining harmonic
functions with different amplitudes and phases. As we shall see immediately, an
arbitrary function, including nonharmonic and nonperiodic functions, can be written
as a sum of harmonic functions as follows:

N N
2(t) = Z C, cos(wut + ¢n) = N Z D eln (5.6)

n=1 n=1

for some large N. Occasionally, we have to use a very large number of frequencies
in the description of a function. We can then replace the summation by an integral
with a continuous function Z(w) that specifies the coefficients:

+00
2(t) =N { @(w)em} (5.7)

w=0
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Fig. 5.4 Left part is a “time-domain picture” of a nonperiodic, nonharmonic function, and on the
right is the “frequency-domain picture” of the same function. See text for other details

In Fig. 5.4, we have created a signal that is built by adding more than 3000 har-
monic functions with frequencies lying in a wide band centred around 610 Hz. The
amplitude varies randomly, but the largest amplitudes occur only for frequencies in
the broad region near 610 Hz. The phases are random. The sum signal is then both
nonharmonic and nonperiodic, as indicated in the time plot on the left. An analysis
similar to that we have done in the previous examples gives the coefficients (and
amplitudes) indicated in the right part of the figure.

5.2 Real Values, Negative Frequencies

It is a little tiresome that when we use the functional form given in Eq. (5.2), we
always have to find the real value N of the complex expression inside the braces on
the right. There is a useful trick to get around this problem.

The basic element is this equation is the exponential term ¢'” and Euler’s formula
€' = cos(wt) +isin(wt). This relation is often illustrated through phasors.

The function z(#) = C cos(wt + ¢) can be described by a phasor which at time
t has an orientation as shown in Fig.5.5. The phasor rotates in a positive direction
(anticlockwise) with the angular frequency w, and it is always the component along
the x-axis (the real axis) that indicates the value of z(7).

If we now create a vector of the same length C, but always reflected about the
x-axis relative to the previous one, rotating in the negative direction (clockwise), the
sum of this phasor and the previous will always be along the x-axis. There will be
no imaginary contribution!

The maximum value of the sum of the two vectors will be equal to 2C, so we need
to enter a factor of 1/2 to correct for this. The maximum of the sum vector occurs
every time wt + ¢ is an integer multiple of 27.

iwt
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Imaginary axis A

i Csin(wt + ¢) —>
A Phasor™
Real axis
—>
Phasor’ + Phasor
=2C cos(ot + ¢)
~ = 2Acos(wt) + 2Bsin(wf)
i Csin(-ot - ) —> Phasor

Fig. 5.5 Common phasor description (in red) of a harmonic function C cos(wt + ¢) at time 7. A
second phasor is also drawn (in green), which is the reflection of the original phasor about the
x-axis, and rotates therefore the opposite way. Adding the two vectors, we get a resultant (blue)
that always lies along the real axis, but has twice the length we are interested in

‘We have now put sufficient pictorial flesh on algebraic bones to make the following
formula palatable:

Ccos(wt + ¢) = % {26 + 7% '} = = | Ze“' +c.c. (5.8)

R =

where the asterisk in Z* and “c.c.” stands for “complex conjugate”.

We see that by introducing “negative frequencies”, we can avoid having to take
the real value of the complex function Ze'“".

Fourier analysis uses the connection given in Eq. (5.8), which means that what
was said in the introductory examples was not the whole truth. If we actually do a
Fourier analysis of the first harmonic function we examined, the frequency-domain
picture will have the appearance shown in the right part of Fig.5.6. We receive
contributions from —440 to 4440 Hz. The coefficients in front of the cosine term have
the same value for positive and negative frequency, but only half of the coefficient
A in Eq. (5.1). However, the coefficients in the sine term, which correspond to the
imaginary axis of the phasor diagrams, have changed sign when we go from positive
to negative frequency. Here too the factor 1/2 comes in. The same also applies to the
C’s since C = +/A? + B2

All Fourier analysers of real signals have in principle this positive and negative
division, where the coefficients are complex conjugate of each other. A little later,
under the heading “folding”, we will see that the negative frequencies appear in a
rather odd way in the so-called fast Fourier transform (FFT).
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Fig. 5.6 Frequency-domain picture obtained when we work with only the positive frequencies
on the left. In that case, we must ourselves extract the real part of the expression in Eq. (5.5) if
we use this representation. With normal Fourier transform of real signals, half of the coefficients
P (w) are apportioned to the frequency w and the other half to the frequency —w; furthermore,
the coefficient at a negative frequency is the complex conjugate of the corresponding coefficient at
positive frequency

5.3 Fourier Transformation in Mathematics

So far in this chapter, we have seen several examples of how a continuous signal or
function of time can be written as a sum (or integral) of harmonic functions. This
actually applies in general, as was shown by the French mathematician and physicist
Joseph Fourier (1768-1830).!

We would like to write Fourier’s relation in the following manner:

Let f(¢) be an integrable function of ¢ (usually time) as a continuous parameter.
In physics, f(¢) is often a real function, but mathematically it may be complex.
The function f () can then be described as an integral of harmonic functions
as the limiting value of a sum:

f@t) = / - F(w)e“ dw. (5.9)

o0

Here F'(w) corresponds to Fourier coefficients and is called the “Fourier trans-
formof /. F(w) forms the so-called frequency-domain picture of the function,
while f () represents the time-domain picture.

On comparing with Egs. (5.6), (5.7) and (5.8), we see that we have now changed
the notation to z(r) — f(T) and Z(w) — F(w) and we have availed ourselves of
negative frequencies by allowing the integration to go from minus infinity to plus
infinity. If f(¢) is a real function, F(w) = F*(—w).

Fourier is also known to have demonstrated/explained the global warming effect in 1824.
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The challenge now is to find F (w), and this is where Fourier lends us a helping hand
of giant proportions. He introduced Fourier transformation in analytical mathematics:

Given f (), anew function F (w) (the Fourier transform of f) can be calculated
as follows:

F(w) = % / - F(e “dr. (5.10)

The parameter w is the angular frequency if ¢ represents time. Both ¢ and w
are continuously variables.

You may have come across Fourier transformation in an earlier course in mathematics. In
mathematics, the transformation is often linked to the inner product between two functions, and
one defines a basis of sine and cosine functions and uses Gram—Schmidt process on a function to
find its Fourier transform. Here, we choose a more practical approach in our context.

It may seem difficult to understand that Eq. (5.10) will work as we would like it
to, but let us look at some basic properties in analytical mathematics.

The harmonic functions sin(wt) and cos(wt) together form a complete set of
integrable functions that can describe any other integrable function. The functions
sin(w;t) are orthogonal to sin(wt) when w # wy, all sin(wt) are orthogonal to all
cos(wt). This is embodied in the familiar expression of the delta function:

1 [>
6(w1—w):2— / e Wi gy (5.11)

™ [}

As an example, we now allow £ () to be the simple harmonic function in Eq. (5.1),
but for the sake of simplicity, skip the details of finding the real value. We then write:

ft) = Qe

Substitution in Eq. (5.10) gives:

1 o0 . .
F(w) = ﬂ/ Derte W gy
—0oQ

1 o
F(w) =92 x 2—/ el@1=i gy

a 00

We recognize the last part as the delta function, and the result is that F(w) is zero
everywhere except when w; = w where F(w;) = Z. We therefore see that, in this
case, Eq. (5.10) does indeed work as desired.
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Equation (5.10) gives what we call the Fourier transform of the function f (¢).
In our context, it amounts to exchanging the time-domain description of a
function with one in the frequency domain.

Equation (5.9) gives what we call an inverse Fourier transformation. It takes
us from the frequency-domain representation of a function to a picture in the
time domain.

Note that in a Fourier transform we integrate over time and the exponent
has a minus sign in front. In the inverse transformation, we integrate over
frequency and the exponent has a plus sign in front. Also note that the factor
1/(2m) is only used in one transformation, as we have chosen to express the
two equations that, in part, belong together. Another choice is to use a 1 /+/27
in both Egs. (5.10) and (5.11).

Remarks: Several reasons account for why Fourier transformation became popular
in mathematics and physics. There are many simple mathematical relationships for
harmonic functions. This means that if we have to deal with a troublesome function
f(t) and do not know how to handle it directly, we can use Fourier transforma-
tion as an intermediate step in the calculation. By Fourier transforming the awkward
function, we obtain a linear sum (or integral) of harmonic functions. We can then per-
form mathematical operations on this alternative expression and use inverse Fourier
transformation on the result to retrieve the result we actually wanted. Fourier trans-
formation is therefore used extensively in analytical mathematics for, among other
purposes, solving differential equations.

We know from mathematics that there are several complete sets of functions (e.g.
polynomials), and in different parts of physics, we prefer to choose a basis set that
is best adapted for the particular system under consideration. Fourier transformation
utilizes probably the most widely used basis set of functions; unfortunately, it is also
applied in situations where it is not particularly beneficial.

5.3.1 Fourier Series

A special case in Fourier transformation is of particular interest, especially when
we study Chap. 7 to analyse sound from musical instruments. If f(¢) is a periodic
function with period T, Fourier transformation can be made more efficient than
through the general transformation in Eq. (5.10). The transformation can be specified
by an infinite but discrete set of numbers, called Fourier coefficients, {c;}, the index
k being a natural number between minus and plus infinity(!).
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The Fourier coefficients are calculated by integrating over a single period 7':

1 to+T .
k= —/ f(e *iiqr (5.12)
T J;

where w; = (27/T), that is to say, the angular frequency corresponding to a
function that has exactly one period in the time interval T, and k is an integer.

Since in this case f () is periodic, the lower limit for integration (#y) can be chosen
freely in principle. It is supposed that f (¢) is piecewise smooth and continuous, and
that [ | f (t)|?dt < 400 when the integration is over an interval of length T.

The inverse transformation is then given by the relation:

+00
fy =) ae* (5.13)

k=—o00

where, once again, w; = 27/ T corresponds to a frequency that has precisely
one sine period within the interval T'.

Should f(r) be real, it is easy to see that the symmetry properties of the sine and
cosine functions lead to the relation

o0
f@) =aop+ Z{ak cos(kwit) + by sin(kwqt)} (5.14)

k=1

where
2 to+T
ay =cy +c_x = ?/ f(t) cos(kwqt)dt, (5.15)
to
to+T
by =i(cy —c_p) = T/ f(t) sin(kwqt)dt. (5.16)
fo

Take note of the factor 2 in the last two expressions! The reason for this factor
is the simple recognition that the mean of both sin?> and cos® is 1/2 and another
factor of 2 that was explained above when we mentioned the inclusion of negative
frequencies.

Equation (5.14) along with the expressions (5.15) and (5.16) are as precious as
gold! They show that any periodic signal with period T can be written as a sum of
harmonic signals having exactly integral number of cycles within the period T .
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5.4 Frequency Analysis

Hitherto there has been a lot of mathematics and little physics in this chapter. It is
therefore high time to give a few examples of the practical use of Fourier transfor-
mation.

Fourier transformation is widely used for so-called frequency analysis where
we determine which frequency components are present in a signal. We often call
the frequency-domain picture a “frequency spectrum”. The frequency spectrum is
useful because it often gives a “fingerprint” of the physical processes that lie behind
the signal under consideration.

The number of sunspots increases and decreases over time regularly with an
approximately 11-year cycle, we are often told. What is the basis for such an asser-
tion? We can plot the number of sunspots per year over a number of years. We then
get a curve like the left part of Fig.5.7 where the curve corresponds to the f(z)
function in the theory above. This is the so-called time picture.

In the right part of Fig. 5.7, an extract of the results is shown after a Fourier trans-
formation of the data in the left part. Actually, the results after a Fourier transfor-
mation are complex numbers. However, if we are not interested in getting A cos(wt)
and B sin(wt) separately for the different frequencies, but are rather interested in
the amplitude C = /A2 + B2, we choose to plot the absolute value of the complex
numbers. It is the absolute values that are plotted in the right part of Fig.5.7.

The peaks near the middle of the figure correspond to a harmonic function with
a frequency of 0.09 or 0.10 per year. Since a frequency of 0.09-0.10 per year corre-
sponds to a period of approximately 10-11 years, we get a satisfactory confirmation
that the sunspots in the 300 years analysed have a considerable periodicity at 10—
11years. At the same time, the noise in the plot shows that the indicated time period
is more poorly defined than what we find for example in the movement of a shuttle!

48 * 11 year period
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Fig. 5.7 Left part shows the number of sunspots that appeared annually over the past three hun-
dred years. The right part shows an excerpt from the corresponding Fourier transformed functions
(absolute values of {cy}-s in Eq. (5.12)). The sunspots data were accessed on 30.1.2012 from http://
sidc.be/silso/datafiles
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Fig.5.8 Anexample of sound from a flute displayed both in the time domain and frequency domain.
Amplitudes in the frequency domain are given as absolute values of {c}-s in Eq. (5.12))

In this book, we often use Fourier transformation to analyse sound. For example,
Fig.5.8 shows a time-domain picture and a frequency-domain picture for a audio
signal from a transverse flute. The figure also shows relative amplitudes in the fre-
quency spectrum. We then lose the phase information, but the “strength” of the
different frequency components shows up well.

The spectrum consists mainly of a number of peaks with different heights. The
peak positions have a certain regularity. There is a frequency fy (might have been
called f;), the so-called fundamental tone, such that the other members of a group
of lines have approximately the frequencies kf,, where k is an integer. We say that
the frequencies kfy for k > 1 are harmonics of the fundamental tone and we refer to
them as “overtones”.

The frequency spectrum shows that when we play a flute, the air will not vibrate
in a harmonic manner (like a pure sine). The signal is periodic, but has a different
time course (shape) than a pure sinusoid. A periodic signal that is not sinusoidal
(harmonic) will automatically lead to overtones in the frequency range. It is a result
of pure mathematics.

The reason that it does not become a pure sinusoid is that the physical process
involved in the production of the sound is complicated and turbulence is involved.
There is no reason why this process should end up in a mathematically perfect
harmonic audio signal. For periodic fluctuations with a time course very different
from a pure sinusoid, there are many overtones. The ear will perceive the vibrations
as sound different from that which has fewer harmonics.

Different instruments can be characterized by the frequency spectrum of the sound
they generate. Some instruments provide fewer overtones/harmonics, while others
(e.g. oboe) provide many!

The frequency spectrum can be used as a starting point also for synthesis of sound:
Since we know the intensity distribution in the frequency spectrum, we can start with
this distribution and make an inverse Fourier transform to generate vibrations that
sound like a flute.
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It must be noted, however, that our sound impression is determined not only by the
frequency spectrum of a sustained audio signal, but also by how the sound starts and
fades. In this context, Fourier transformation is of little help. Wavelet transformation
of this type of sound discussed later in the book is much more suitable for such an
analysis.

A tiny detail at the end: In Fig. 5.8, we also see a peak at a frequency near zero.
It is located at 50Hz, which is the frequency of the mains supply. This signal has
somehow sneaked in with the sound of the flute, perhaps because the electronics
have picked up electrical or magnetic fields somewhere in the signal path.

Itis important to be able to identify peaks in a frequency spectrum that corresponds
to the fundamental frequency and its harmonics, and features which do not fit into
such a line-up.

5.5 Discrete Fourier Transformation

A general Fourier transformation within analytical mathematics given by Eq. (5.10)
is based on a continuous function f(¢) and a continuous Fourier coefficient function
F(w).

In our modern age, experimental and computer-generated data are only quasi-
continuous. We sample a continuous function and end up with a function described
only through a finite number of data points. Both the sunspot data and the audio
data we just processed were based on a finite number of data points. Assume that
N data points are registered (“sampled”) sequentially with a fixed time difference
At. The total time for data sampling is 7', and the sampling rate is f; = 1/At. Data
points have values x,, where n =0, ..., N — 1. The times corresponding to these
data points are then given as:

T
th=—n for n=0,1,...(N —1).
N

Based on the N numbers we started with, we cannot generate more than N indepen-
dent numbers through a Fourier transformation. The integral of Egs. (5.10) and (5.9)
must then be replaced by summation sign and the sum extends over a finite number
of data points in both the time domain and the frequency domain.

A side effect of discrete Fourier transformation is that when we Fourier trans-
form N data points x,, taken at times fy, 1, ..., ty—1, the result in practice is
the same as if we had one periodic signal which was defined from minus to
plus infinity, with period T'.

We have seen in the theory of Fourier series that for periodic signals only discrete
frequencies are included in the description. These are:
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2
wr = 7k for k=...,-2,—-1,0,1,2,....

When we record the function at only N instants, as mentioned above, the data
cannot encompass a frequency range with infinitely many discrete frequencies. It is
only possible to operate with N frequencies, namely

N -1 N -1 N -1 N -1
—k f = ——+1,...,-2,-1,0,1,2, ..., —— — 1, ———.
Wk k or k 7 5 ,—1,0,1,2, > 3

Note that the highest frequency included is

IN—-1 1IN-1 £

fSN?

wmax
frar =5 = =373 =3 N

for a sufficiently large N. Here f; is the sampling frequency.
In the original Fourier transformation, e~ entered as a factor in the integrand.
For N discrete data points, this is replaced by the following expressions:

. . 27rkn
—lwt > —lwgt, = 1—k X —T =— 5.17)
N N
The discrete Fourier transformation is thus given by the formula:
1 Nl
P
== xe ¥ (5.18)
n=0
fork =0,..., N — 1. If the set x,, consists of values given in the time domain,

X will be the corresponding set of values in the frequency domain.

Note that here we indicate that k£ runs from 0 to N — 1, which corresponds to
frequencies from 0 to % s & fs, while earlier we let k be between —(N — 1)/2
and +(N — 1)/2, corresponding to frequencies from ~ — f; /2 to &~ + f; /2. Since we
only operate with sine and cosine functions with an integral number of wavelengths,
it does not matter whether we use one set or the other. We come back to this page
when we mention folding or aliasing.

Further, take note of the factor 1/N in this expression. This factor is advanta-
geous for the variant of Fourier transformation we will use, because then we get a
simple correlation between Fourier coefficients and amplitudes, as in the introductory
sections of the chapter.

Through the expression in Eq. (5.17), we have shown that the expression for the
discrete Fourier transform in Eq. (5.18) is based squarely on the same expression as
we had in the original Fourier transformation. The difference is that in the discrete
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case we operate with a function described at N points and that only N frequencies
are included in the description.

The inverse discrete Fourier transformation naturally looks like this:

N—-1
=y Xl vk (5.19)
k=0

forn=0,...,N — 1.

5.5.1 Fast Fourier Transform (FFT)

Discrete Fourier transformation will be our choice when we use Fourier transfor-
mation in this book. We could have written a program ourselves to complete the
procedure given in Egs. (5.18) and (5.19), but we will not do that. It would not be a
particularly effective program if we used the expressions directly. There exists nowa-
days a highly effective algorithm for discrete Fourier transformation that utilizes the
symmetry of the sine and cosine functions in a highly effective way to reduce the
number of computational operations. Efficiency has contributed greatly to the fact
that Fourier transformation is widely used in many subjects, not least physics.

The algorithm was apparently discovered already in 1805 by Carl Friedrich Gauss,
but fell into oblivion (it was of little interest as long as we did not have computers).
The algorithm was launched in 1965 by J. W. Cooley and J. Tukey, who worked at
Princeton University. Their four-page article “An algorithm for the machine calcu-
lation of complex Fourier series” in Math. Comput. 19 (1965) 297-301, belongs to
the “classic” articles that changed physics.

In Matlab and Python, we make use of Cooley and Tukey’s algorithm when
we apply FFT (“fast Fourier transform”) or IFFT (“inverse fast Fourier trans-
form™). With this method, it is advantageous that the number of points N is
exactly one of the numbers 2" where # is an integer. Then we will fully utilize
the symmetry of the sine and cosine functions.

5.5.2 Aliasing/Folding

When using FFT, we need to take care of a particular detail. We previously saw
that it was beneficial to introduce negative frequencies in Fourier transformation.
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Fig. 5.9 Left part: A spectrum obtained by a continuous Fourier transformation of an infinite
signal contains all frequencies between —oo and 400, but it is, in fact, a reflection and complex
conjugation about the zero frequency (provided that the original signal was real). The real part of
the Fourier transformed function is marked in red, the imaginary in blue (We have shifted the real
ones relative to the imaginary points in the left part so that the sticks became distinct.). Right part:
By discrete Fourier transformation of a signal, the information for negative frequencies (left part
of the figure) is moved to the range above half the sampling frequency. Due to symmetries in sine
and cosine functions, this also actually corresponds to signals with the frequencies fs — | fnegativel-
For this reason, FFT also receives a reflection/folding and complex conjugation in the analysis of
real signals, but this time around half the sampling rate f;/2. The part of the plots that have a light
background colour contains all the information in the Fourier transformed signal of a real function
since the other half is just the complex conjugate of the first

For a continuous Fourier transform of a real function f(¢), we saw that F(wy) =
F*(—wyp), that is, the Fourier transform at an angular frequency is the complex
conjugate of the Fourier transform at the negative angular frequency. The same also
applies to FFT. The data points after a Fourier transform with FFT are nevertheless
arranged differently. The lower half of the frequency axis, which represents negative
frequencies, is simply moved so that it is above (to the right of) the positive points
along the frequency axis (see Fig.5.9).

When we perform inverse Fourier transformation with IFFT, it is expected that
the negative frequencies are positioned in the same way as they are after a simple
FFT.

5.6 Important Concrete Details

5.6.1 Each Single Point

In Eq. (5.18), mathematically speaking, only a set of {x,} with N numbers can be
transformed into a new set X; with N numbers and back again. All the numbers are
unlabelled.
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Fig. 5.10 A function sampled N = 8 times (/eft) along with the Fourier transform of the function
(right) consisting of N = 8 complex numbers. The real values are given by red circles and the
imaginary values by blue. Each point corresponds to a small time and frequency range (left and
right, respectively). Note the relationship between the sampling rate f; and At and in particular
the relationship between 7 and A f. In order to get a high resolution in the frequency range in the
frequency range, we have to sample a signal for a sufficiently long time T’

We, the users, must connect physics with the numbers. Let us explore what the
indexes k, n and the number N represent.

We imagine that we make N observations of a physical quantity x, over a limited
time interval 7 (a single example is given in the left part of Fig.5.10). If the obser-
vations are made at instants separated by an interval At, we say that sampling rate
(or sampling frequency) is f; = 1/At. The relationship between the quantities is as
follows:

N=Tf, =T/At.

This is an important relationship that we should know by heart!

Note that each sampling corresponds to a very small time interval Atz. In our
figure, the signal in the beginning of each time interval is recorded.

Fourier transformation in Eq. (5.18) gives us the frequency-domain picture (right
part of Fig. 5.10). The frequency-domain picture consists of N complex numbers, and
we must know what they represent in order to properly utilize Fourier transformation!
Here are the important details:

e The first frequency component specifies the mean of all measurements (cor-
responding to frequency 0). The imaginary value is always zero (if f is real).
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e The second frequency component indicates how much we have of a har-
monic wave with a period of time 7 equal to the entire sampling time. The
component is complex, which allows us to find amplitude and phase for this
frequency component.

e Amplitudes calculated by using only the lower half of the frequency spec-
trum must be multiplied by 2 (due to the folding) to get the correct result.
This does not apply to the first component (mean value, frequency zero).

e The nextfrequency components indicate contributions from harmonic waves
with exactly 2, 3, 4,...periods within the total sampling time 7.

e The previous points tell us that the difference in frequency from one point
in a frequency spectrum to the neighbouring pointis Af = 1/T.

e Assuming that the number of samples N is even, the first component after
the centre of all the components will be purely real. This is the component
that corresponds to a harmonic oscillation of N /2 complete periods during
the total sampling time 7'. This corresponds to a frequency equal to half of
the sampling rate f; mentioned above.

e All the remaining frequency components are complex conjugates of the
lower frequency components (assuming that f(¢) is real). There is a “mir-
roring” around the point just above the middle of the numbers (mirroring
about half the sampling rate). We do not get any new information from these
numbers, and therefore we often drop them from the frequency spectrum.

e Since the mirroring occurs around the first point after the middle, the first
point will not be mirrored (the point corresponding to the average value, the
frequency 0).

e The last frequency in a frequency spectrum is f;(N — 1)/N since the fre-
quency ranges are half open.

Why, one may wonder, do we calculate the top N/2 — 1 frequency components when these
correspond to “negative frequencies” in the original formalism (Eq. (5.10)). As long as f is real,
these components are of little/no worth to us.

However, if f happens to be complex, as some users of Fourier transformation take it to be,
these last, almost half of the components, are as significant as the others.

This is related to Euler’s formula and phases. As long as we look at the real value of a phasor,
it corresponds to the cos(wt + ¢) term, and it is identical regardless of whether w is positive or
negative. We can distinguish between positive and negative rotational speed of a phasor only if we
take into account both the real and imaginary part of a complex number.

5.6.2 Sampling Theorem

As mentioned above, the top half of Fourier coefficients correspond to negative
frequencies in the original formalism. However, we suggested that because of the
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Function (au)

Fig. 5.11 Harmonic functions with frequencies f; and fy_x (here k = 1) have exactly the same
value at the times for which the original function was defined (assuming thatk =0, 1,..., N — 1).
Therefore, we cannot distinguish between the two for the sampling rate used. In order to distinguish
functions with different frequencies, the rate must be at least twice as high as the highest frequency
component. If you carefully consider the curves with the highest frequency in the figure, you will
see that there are fewer than two samples per period for these

symmetry of the sine and cosine functions, it is also possible to consider these upper
coefficients as coefficients of frequencies above half the sampling frequency (except
that we get problems with the factor 1/2 mentioned earlier).

We can illustrate this by picking out two sets of Fourier coefficients from a Fourier
transform of an arbitrary signal. We have chosen to include the relative coefficients
fork = 1 (red curves) along withk = N — 1 and the imaginary coefficients fork = 1
and k = N — 1 (blue curves). The result is shown in Fig.5.11.

The functions are drawn at “all” instants, but the times where the original function
is actually defined is marked with vertical dotted lines. We then see that the functions
of very different frequencies still have the exact same value at these times, although
the values beyond these times are widely different. This is in accordance with equation

s 2T s 21
ekan — eflﬁk(an) (520)

forkandn = 1,..., N — 1 in the event that these indices generally range from 0 to
N —1.

The two functions cos(w;?) and cos[(N — 1)w¢] are thus identical at the discrete
times t € {t,} our description is valid (w; corresponds to one period during the time
we have sampled the signal.). Similarly, for cos(2w;#) and cos[(N — 2)w;t] and
beyond for cos(3w;t) and cos[(N — 3)w;t], etc. Then there is really no point in
including the upper part of a Fourier spectrum, since all the information is actually
in the lower half (Remember, this only applies when we transform a real function.).

Looking at the argument we see that at the given sampling rate, we would get
exactly the same result when sampling continuous signal cos[(N — m)wt] as if the
continuous signal was cos(mw;t) (m is an integer). After the sampling, we cannot
determine if the original signal was one or the other of these two possibilities—unless
we have some additional information.
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The additional information we need, we must supply ourselves through experi-
mental design! We must simply ensure that there are no contributions with frequen-
cies above half the sampling frequency of the signal we sampled. If so, we can be sure
that the signal we sampled was cos(mw;t) and not cos[(N — m)w;t]. This means
that we must sample at least twice per period for the highest frequency that is present
in the signal (see Fig.5.11).

This is an example of a general principle:

If we want to represent a harmonic function in an unambiguous manner by a
limited number of measurements, the target density (measurement frequency,
sampling frequency) must be so large that we get at least two measurements
within each period of the harmonic signal. The “Nyquist—-Shannon Sampling
Theorem” says this more succinctly:

The sampling frequency must be at least twice as high as the highest fre-
quency component in a signal for the sampled signal to provide an unambigu-
ous picture of the signal.

If the original signal happens to contain higher frequencies, these must be
filtered by a low-pass filter before sampling to make the result unambiguous.

It is strongly recommended that you complete the second problem at the back of
the chapter. Then you can explore how folding arises in practice, and how we can be
utterly deceived if we are not sufficiently wary.

5.7 Fourier Transformation of Time-Limited Signals

It follows from Eq. (5.10) that a Fourier transform can be viewed as a sum (integral)
of the product of the signal to be transformed with a pure sine or cosine:

1 o .
F(w) = ﬁ/ (e “dt.

Fw) = % /oo f(t)cos(wt)dt —1i x % /oo f () sin(wt)dt.

We assumed, without stating explicitly, that the signal we analysed lasted forever.
Such signals do not exist in physics. It is therefore necessary to explore characteristic
features of Fourier transformation when a signal lasts for a limited time.

We choose a signal that gradually becomes stronger, reaches a maximum value and
then dies out again. Specifically, we choose that the amplitude change follows a so-
called Gaussian envelope. Figure 5.12 shows two different signals (red curves), one
lasting a very short time, and another that lasts considerably longer. Mathematically,
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Fig. 5.12 Fourier transformation of a cosine signal multiplied with a Gaussian function. Only a
small part of the total frequency range is shown. See the text for details

the signal is given as:

f(t) = Ccos[w(t — to)]e” -0/

where o gives the duration of the signal (the time after which the amplitude has
decreased to 1/e of its maximum). w is the angular frequency of the underlying
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cosine function, and 7y is the time at which the signal has maximum amplitude (the
peak of the signal occurs at time #j).

In panels a and b, in Fig.5.12 the signal is of short duration (small o), but in
panels ¢ and d it lasts a little longer (o five times as large as in a and b).

Panels a and ¢ show, in addition to the signal pulse (in red), the cosine signal with
a frequency equal to w/27 (thinner blue line). In panels b and d, the cosine signal
has 10% higher frequency, which explains why we will calculate X} at two adjacent
frequencies.

We see that the integral (sum) of the product between the red and blue curves in
a and b will be about the same. On the other hand, we see that the corresponding
integral of d must be significantly smaller than the integral of ¢ since the signal we
analyse and the cosine signal get out of phase a little bit away from the centre of
the pulse in d. When the phases are opposite, the product becomes negative and the
calculated integral (the Fourier coefficient) becomes smaller.

If we make a Fourier transform (“all frequencies”) of the red curve itself in a
(the short-duration signal) and take the absolute value of the Fourier coefficients,
we get the result shown in e. The Fourier transform of the signal in ¢ (the longer
lasting signal) is displayed in the lower right corner of f. We can see that Fourier
transformation captures the predictions we could make from visual examinations of
a-b.

Note that the short-duration signal yielded a broad frequency spectrum, while
the signal with several periods in the underlying cosine function gave a nar-
rower frequency range. This is again a manifestation of the principle we have
observed in the past, which has a clear resemblance to Heisenberg’s uncer-
tainty relationship. In classical physics, this is called time-bandwidth theorem
or time-bandwidth product: The product of the width (duration) of a signal in
the time domain and the width of the same signal in the frequency domain is
a constant, whose precise value depends on the shape of the envelope of the
signal.
At Af > 1.

The actual magnitude of the number on the right-hand side depends on how
we define the widths Az and Af. We will later find in the chapter the same
relationship with the number 1 replaced by 1/2, but then we use a different
definition for the A’s.

Figure 5.12 illustrates important features of Fourier analysis of a signal.
More precisely, the following applies:

In a frequency analysis, we can distinguish between two signal contributions
with frequencies f; and f, only if the signals last longer than the time 7 =

1/ fi = f2D-
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Even for signals that last a very long time, in experimental situations, we
will have to limit the observation of signal for a time T. If we undertake an
analysis of this signal, we will only be able to distinguish between frequency
components that have a difference in frequency of at least 1/ 7.

The difference we talk about means in both cases that there must be a
difference of at least one period within the time we analyse (or the time the
signal itself lasts) so that we can capture two different signal contributions in
a Fourier transform. Suppose we have N; periods of one signal in time 7" and
N, periods of the second signal. In order to be able to distinguish between the
frequencies of the two signals, we must have |N; — N;| > 1. [Easily derived
from the relationship 7 = 1/(| 